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Supplement. Archimedes’ Method, Part 2

Note. In this note, we give some details of the study of the Archimedes palimpsest

and the techniques used in the study. We also present some of the mathematics in

the Method and consider how it changed some of the previously-held ideas in the

history of math (in particular, the understanding of the concept of infinity in the

time of the ancient Greeks).

Note AM2.A. We left off in the first part of this supplement, Supplement.

Archimedes’ Method, Part 1, with the palimpsest in the hands of the Walters Art

Museum in Baltimore, MD. They took possession of it in 1990 and the work of

disbinding it started in April of 2000. The binding was covered with two types of

glue: “hide glue” (made from animal skin) and a commercial wood glue. The hide

glue was easily removed, but the wood glue was stronger than the parchment and

did not lend itself to being dissolved by a solvent. Four of the folios were covered

with the forged paintings and the pages had been additionally damaged by the

forger who scuffed up the paintings (and the underlying folios) to make them look

older. The backs of the folios are also damaged by Blu-tack, a sticky substance

probably used in displaying the paintings. After a folios was disbounded, a record

of he tears, drops of wax, mold stains, rust, and Blu-tack was made. This note is

based on pages 164 and 175 of The Archimedes Codex.

Note AM2.B. There was concern among the history of mathematics community

that Johan Heiberg had already extracted all information that one could get from

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Archimedes-Method.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Archimedes-Method.pdf
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the palimpsest (especially given its current degraded condition); see Notes AM.B

and AM.M. The Walters Museum team needed something new to justify the work

that they were putting into the project. Some of this came from the first folio

of the codex. It contained a whole page of Archimedes’ Floating Bodies in Greek

that Heiberg had overlooked. Heiberg’s photographs of the folios of the codex

were incomplete, as well. There were whole sections of the Method and of Floating

Bodies that he did not photograph. These parts had not been read, so there was

still plenty to learn from the palimpsest. This note is based on page 180 of The

Archimedes Codex.

Note AM2.C. Many of Archimedes’ most famous results involve the area of a

region bounded by a “curved line” or the volume of a solid bounded by a curved

surface. We first consider the area bounded by a parabola. We now look at Propo-

sition 1 of the Method. The proof is a “combination of physics, mathematics, and

infinity” (as it is put in The Archimedes Codex on page 187). The statement, as

given by Thomas Heath in his 1912 supplement “The Method of Archimedes” in

The Works of Archimedes (Cambridge University Press, in print today by Dover

Publications), is:

Proposition 1. “Let ABC be a segment of a parabola bounded by

the line AC and the parabola ABC, and let D be the middle point of

AC. Draw the straight line DBE parallel to the axis of the parabola

and join AB, BC. Then shall the segment ABC be 4
3 of the triangle

ABC.”
For a version of Proposition 1 in less quaint language, consider the figure below

(left). The claim is that the area bounded by the parabolic segment ABC and the
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line segment AC (the area in orange, if we consider the yellow triangle as obscuring

part of this area; see the figure below right) is 4/3 of the area of triangle 4ABC

(in yellow).

We note that we can easily use calculus and geometry to establish the claim. In the

figure above (right), we consider the parabola y = −x2 (which is arbitrary, since

all parabolas have the same shape). We let A = (a,−a2) and C = (c, c2). The line

through points A and C has equation y =
c2 − a2

a− c
x + ac = −(a + c)x + ac. Recall

that the area between continuous functions f and g with f(x) ≥ g(x) for x ∈ [a, b],

the area of the region between the curves y = f(x) and y = g(x) from a to b is the

integral of (f − g) from a to b (see my online Calculus 1 [MATH 1910] notes on

Section 5.6. Substitution and Area Between Curves). Therefore the area in orange

is ∫ c

a

(−x2)− (−(a + c)x + ac) dx =

∫ c

a

−x2 + (a + c)x− ac dx

=

(
−1

3
x3 +

a + c

2
x2 − acx

)∣∣∣∣c
a

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s6-14E.pdf
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= −1

3
(c3 − a3) +

a + c

2
(c2 − a2)− ac(c− a)

=
1

3
a3 − 1

3
c3 +

1

2
ac2 − 1

2
a3 +

1

2
c3 − 1

2
a2c

−ac2 + a2c

= −1

6
a3 +

1

6
c3 − 1

2
ac2 +

1

2
a2c

=
1

6
(c3 − 2ac2 + 2a2c− a3) =

1

6
(c− a)3.

In Exercise AM.1 it is to be shown that the area of triangle 4ABC is 3/4 of this

value, establishing Proposition 1 with calculus. Next, we give Archimedes’ proof

of a simplified version of Proposition 1.

Note AM2.D. We consider the special case of a region bounded by a parabola

and a line in which the line is perpendicular to the axis of the parabola (see the

figure below).

We now give Archimedes’ argument, and justify his claims as best we can using

results from his era (in Heath’s 1912 “The Method of Archimedes,” there is not

justification of every little step, as there is in Euclid’s Elements). Construct a line

tangent to the parabola at point C. This construction would no doubt be known

to the ancient Greeks. For such a construction, see my online notes for the history
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part of Introduction to Modern Geometry (MATH 4157/5157) on Section 3.1. The

Parabola (see Note 3.1.C). Construct a perpendicular line to line AC at point A,

and label its intersection with the tangent line as Z (this construction is given in

Euclid’s Elements, Book I Proposition 12). These two lines (line segments) are red

in the figure below. Introduce the axis of the parabola through point B and label

its intersection with line AC as point D and its intersection with line CZ as point

E (since the parabola is considered as given, then its axis would be considered as

given). Add line CB and let its intersection with line AZ be point K. These two

new lines (line segments) are in blue in the figure below (left).

Let X be an arbitrary point between A and C on line segment AC. Add a line

perpendicular to AC through point X (Euclid, Proposition I.12), and introduce

the points of intersection M , N , and O as given in the figure above (right). These

points and line segment MX are in green. Extend line segment CK so that the

distance from C to K equals the distance from K to T (that is, K is the midpoint

of segment CT ). Add line segment SH where the length of SH equals the length

of OX (we take T as the midpoint of line segment SH, as in the figure below).

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-3-1.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-3-1.pdf
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In Apollonius’ (circa 262 bce–circa 190 bce) Treatise on Conic Sections, Book I

Proposition 33 gives some properties of parabolas, including the implications that

(1) B is the midpoint of segment ED, (2) N is the midpoint of segment MX,

and (3) K is the midpoint of segment AZ; these claims are also justified in the

Elements of Conics by Aristaeus (circa 370 bce–circa 300 bce) and Euclid (circa

325 bce–circa 265 bce). Apollonius’ work is discussed in Section 6.4. Apollonius,

and Euclid’s lost work on conics is mentioned in Section 5.8. Euclid’s Other Works

(see Note 5.8.F, where it is stated that Euclid’s work is an improvement on an earlier

work of Aristaeus). In Archimedes’ Quadrature of the Parabola (available in Heath’s

1897 The Works of Archimedes), Proposition 5 implies that
MX

OX
=

AC

AX
(where we

denote the length of a line segment simply in terms of its endpoints). Since MX and

AZ are parallel, then
AC

AX
=

KC

KN
, and hence

MX

OX
=

KC

KN
. Since TK = KC then

MX

OX
=

TK

KN
, and since SH = OX then

MX

SH
=

TK

OX
or MX ×KN = SH × TK.

Now comes Archimedes’ argument based on physics. He interprets lengths MX

and SH as “weights” on a balance with fulcrum located at point K (see the figure

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-4.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-8.pdf
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below; the arms of the balance are in purple).

Since we have MX ×KN = SH × TK, then the “weight” MX balances with the

“weight” SH when the fulcrum is located at point K. Sometimes called the Law

of the Balance, this is established in Archimedes’ On the Equilibrium of Planes,

Book I Propositions 6 and 7 (On the Equilibrium of Planes is also in Heath’s 1897

The Works of Archimedes). We now paraphrase Heath’s 1912 English version of

the Method on this part of the proof (some of the variables have been changed to

match the figures above, and the wording is very slightly modified):

Therefore K is the center of gravity of the whole system consisting (1)

of all straight lines MX intercepted between ZC and AC, and places

as they actually are in the figure and (2) of all the straight lines placed

at T equal to the straight lines as OX intercepted between the curve

and AC.

And, since the triangle 4CZA is made up of all the parallel lines

line MX,
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and the area bounded under the parabolic segment CBA is made up

of all the straight lines like OX within the curve,

it follows that the triangle 4CZA, placed where it is in the figure, is

an equilibrium about K with the area bounded under the parabolic

segment CBA placed with its center of gravity at T .

The “it follows” comment is explained in The Archimedes Codex as “taking to-

gether” all of the line segments which make up triangle 4CZA and “taking to-

gether” all of the line segment which make up the area bounded under the parabolic

segment CBA. Archimedes’ argument is that since each pair of slices (i.e., line seg-

ments) of the areas balance about point K, then the whole collection of these slices

balance.

In the figure above, we place the area bounded under the parabolic segment such

that its center of gravity (or centroid) coincides with point T . The centroid of
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such an area is given in On the Equilibrium of Planes, Book II Propositions 4 and

8. We also need to find the centroid of the triangle 4CZA. This can be found

by intersecting two of the three line segments from a vertex of the triangle to a

bisector of the opposite side (line segment CK is one such line segment). This

is shown in On the Equilibrium of Planes Book I Propositions 13 and 14. The

centroid of triangle 4CZA is labeled Y in the figure above. In Exercise AM.2 it is

to be shown that line segment KY is one third of the length of line segment KC;

that is, KY =
1

3
KC. An alternative view of this in terms of the centroids and a

balance is as follows:

Applying the Law of the Balance we now have that

3(area bounded by parabolic arc ABC) = (area of 4AZC).

Archimedes’ Proposition 1 claims that the area under the parabola equals the area

of triangle 4ABC. So, we introduce line segment AB and shade triangle ABC

yellow in the figure below. Since DE is parallel to AZ, then triangles 4AZC



Supplement. Archimedes’ Method, Part 2 10

and 4DEC are similar. Since D is the midpoint of AC, then the area of triangle

4AZC is 4 times the area of triangle 4DEC (since the base and height of 4AZC

are twice the base and height, respectively, of 4DEC).

That is,

(area of 4AZC) = 4(area of 4DEC).

We now have

3(area bounded by parabolic arc ABC) = (area of 4AZC) = 4(area of 4DEC),

or

(area bounded by parabolic arc ABC) =
4

3
(area of 4DEC).

Since the base of 4ABC is twice the base of 4DEC, and the height of 4ABC

is half the height of 4DEC, then the areas of 4ABC and 4DEC are equal.

Therefore,

(area bounded by parabolic arc ABC) =
4

3
(area of 4ABC),

as claimed. This note is based largely on pages 150–157 of The Archimedes Codex.
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Note. As mentioned in Note AM2.C, Archimedes considers the more general case

where where the parabola is but by an arbitrary line (and not necessarily one which

is perpendicular to the axis, as we considered in Note AM2.D). The figure given

in Heath’s 1912 “The Method of Archimedes” (on his page 16), as given below,

considers the more general case.

Note AM2.E. The uniqueness of Archimedes’ argument given for Proposition

1 in Note AM2.D is twofold. First, he considered geometric objects as if they

were physical and had “weight.” It is stated on page 155 of The Archimedes

Codex: “. . . no one ever did this prior to Archimedes. Just as he invented the

mathematical treatment of physics, he has also invented the physical treatment

of pure mathematics.” Second, he has touched on the topic of integration, some

1900 years before Newton and Leibniz. He has avoided the idea of summations



Supplement. Archimedes’ Method, Part 2 12

by generalizing from the behavior of cross sections of the areas to the behavior

of the areas themselves. You will recall that in Calculus 1 (MATH 1910), we

introduce Riemann sums (named after Bernhard Riemann, September 17, 1826–

July 20, 1866) and then take limits of these Riemann sums. See my online Calculus

1 notes on Section 5.2. Sigma Notation and Limits of Finite Sums and Section 5.3.

The Definite Integral. A consequence of the modern approach is that integrals are

not sums! Integrals are limits of sums. So it is good that Archimedes didn’t simply

try to sum up cross sections! Of course it isn’t a finite sum. . . it’s not even an infinite

sum (i.e., a series). It is more complicated, and requires a more subtle approach.

This is related (at least indirectly) to the fact that there are different “levels” of

infinity. As you see in Mathematical Reasoning (MATH 3000), some infinities are

bigger than others! See my online notes for Mathematical Reasoning on Section

4.3. Countable and Uncountable Sets. The cross sections of the areas do not form

a countable set. Archimedes avoid summing all together in proving Proposition 1

by “taking together” all of the cross sections. The exploration of the Archimedes

palimpsest would reveal that his understanding of this process was deeper than the

proof of Proposition 1 reveals. This would lead to a reinterpretation of Archimedes’

contributions and a revision of the history of mathematics.

Note AM2.F. In Proposition 1, Archimedes considered an area bounded by a

“curved line.” His Proposition 14 involves finding the volume of a solid bounded,

in part, by a cylinder. In Heath’s 1912 “The Method of Archimedes,” Proposition

14 is stated as follows:

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s2-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s3-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s3-14E.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
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Proposition 14. “Let there be a right prism with square base (and

a cylinder inscribed therein having its base in the square ABCD and

touching its sides at EFGH; let the cylinder be cut be a plane through

EG and the side corresponding to CD in the square face opposite to

ABCD). This plane cuts off from the prism a prism, and from the

cylinder a portion of it. It can be proved that the portion of the cylinder

cut off by the plane is 1
6 of the whole prism.”

See the figure below. In these notes, we consider the special case were the “whole

prism” is a cube with base ABCD (as opposed to a taller or shorter right prism

with square base). We take line segment AB to have length 2 (so that the cylinder

has radius 1); we could choose any scale, but this special case makes proof of the

result using calculus a bit easier. The volume of the cube is then 23 = 8, so that

the claim is that the portion of the cylinder cut off by the plane is (1/6)(8) = 4/3.

These are Figures 8.1 and 8.2 from The Archimedes Codex (with labels of points

added). The figure on the left is the part of the solid of interest.
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The portion of the cylinder cut off by the plane (the “solid of interest” in the figure

above) is described as a “fingernail-like shape” on page 189 of The Archimedes

Codex, and as “a hoof” in S. Gray, D. Ding, G. Gordillo, S. Landsberger, and C.

Waldman’s “The Method of Archimedes: Propositions 13 and 14,” Notices of the

American Mathematical Society, 62(9) (2015). This paper is online on the Amer-

ican Mathematical Society webpage (accessed 11/5/2023) and includes a compu-

tation of the volume of the solid using triple integrals (the triple integral implies

the integral involving a single variable which we give next). In Calculus 2 (MATH

1920) we define the volume of a solid which has a cross-sectional area of A(x) from

x = a to x = b to be V =

∫ b

a

A(x) dx (see my online notes for Calculus 2 on Section

6.1. Volumes Using Cross-Sections).

In the figure above, we introduce an xy-coordinate system and illustrate a typical

“dx slice” (as we shall call it; granted this is imprecise and informal).

https://www.ams.org/notices/201509/rnoti-p1036.pdf
https://www.ams.org/notices/201509/rnoti-p1036.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c6s1.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c6s1.pdf
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In the images above, we have the xy-plane (left) with the base of the solid in

green and the base of the dx slice in orange. The yz-plane (center) gives the

profile of the slanted surface of the solid, a cross section of the base in green,

and a cross section of the dx slice in orange. On the right, we have the profile

of the dx slice. Since the dx slice (itself a cross section of the volume) is a right

triangle with base
√

1− x2 and height 2
√

1− x2, then the cross sectional area is

A(x) = (1/2)
√

1− x2(2
√

1− x2) = 1 − x2. So by the definition of volume from

Calculus 2, we have that the solid has volume

V =

∫ b

a

A(x) dx =

∫ 1

−1
1− x2 dx =

(
x− 1

3
x3

)∣∣∣∣1
−1

=
4

3
.

As mentioned above, this value confirms Archimedes Proposition 14. As in Note

AM2.C, we again have a calculus-based justification of a claim of Archimedes. We

now turn to the way Archimedes approached the problem. This note is based on

pages 188–192 of The Archimedes Codex.

Note AM2.G. In The Archimedes Codex, the state of the understanding of the

history of Greek mathematics, as of January 2001, is described as (see page 184):
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“The Greeks invented mathematics as a precise, rigorous science. They

avoided paradox and mistakes. In doing so, they also avoided the pitfall

of infinity. Their science was based on numbers that can be as big as

you wish, or as small as you wish, but never infinitely big or small.

Numbers that are as big or small as you wish are known as ‘potentially

infinite,’ instead of actually infinite. The Greeks did not use actual

infinity.”

This topic of potential versus actual infinity will be addressed here in the setting of

integration and we will see that, in fact, Archimedes manipulated actual infinity.

This discovery came from analysis of the palimpsest. By the way, in modern math-

ematics the study of applications of infinity is accomplished in the area of analysis

and historically this study was put on a rigorous foundation in the 19th century.

Big names is establishing this foundation are Augustin Louis Cauchy (August 21,

1789–May 23 1857; he is the one that brings us the ε/δ arguments of calculus),

Bernhard Riemann (September 17, 1826–July 20, 1866; you know him from Rie-

mann sums and the Riemann integral in calculus), and Karl Weierstrass (October

21, 1815–February 19, 1897). For more on these three, see Section 13.5. Cauchy

and Section 14.10. Weierstrass and Riemann. The idea behind “potential infinity”

in the setting of finding the area of a region r involves a claim that the area is an

actual value A then showing that, for any given positive tolerance t, there a region

s contained in r that such that the area B of s is within the tolerance of area A

(i.e., A − B < t). In The Archimedes Codex (see page 185), this is described as

a back-and-forth conversation in which Archimedes claims that A is the area of

region r because it is close to area B1 (the area of a region s1, a subset of r). But

the other party objects that there is still a difference “greater than a grain of sand”

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-13-5.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-14-10.pdf
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between A and B1. Archimedes then replies that he can find a new region s2, a

subset of r, with an area B2 closer to A than a grain of sand. The other party

then object that there is still a difference “greater than a hair’s width” between

A and B2. Archimedes then creates another region s3, a subset of r, with an area

B3 closer to A than a hair’s width, and so on. The hypothetical dialogue goes on

indefinitely, and this is potential infinity. The regions constructed by Archimedes

can be made arbitrarily close to r, but “never” precisely equal to r. This process

is called the method of exhaustion, and it is usually credited to Eudoxus of Cnidus

(408 bce–355 bce); see Section 11.3. Eudoxus’ Method of Exhaustion. It is used

in Euclid’s Elements, Book XII in several results concerning volumes (including

the fact that the volume of a cone is V = πr2h/3); see Note 5.4.P of Section 5.4.

Content of the “Elements”. You likely notice the similarity between this and an ε

argument from analysis.

Archimedes employs the method of exhaustion in his Quadrature of the Parabola

when showing the area bounded by a parabolic segment is 4/3 the area of the

triangle it determines (as described in Note AM2.C above, and given in the Method

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-11-3.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-4.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-4.pdf
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as Proposition 1 where it is proved using the Law of Balance). This appears as

Proposition 24 of Quadrature of the Parabola and he packs the area with triangles.

The figure above is from Heath’s 1897 The Works of Archimedes (see page 251) for

Proposition 24 and shows some of the triangles inscribed in the parabolic segment.

Additional details on this result are given in G. Swain and T. Dence, “Archimedes’

Quadrature of the Parabola Revisited,” Mathematics Magazine, 71(2), 123–130

(1998). It is available online on the JSTOR website (accessed 11/10/2023). This

note is based largely on pages 184 and 185 of The Archimedes Codex.

Note AM2.H. We now consider Archimedes’ solution to Proposition 14 as revealed

by the palimpsest. In the first 13 propositions of the Method, Archimedes considers

parallel slices of an area or volume which are “taken together” to produce the final

area or volume, as discussed above in Note AM2.E. In his proof of Proposition 14,

it appears that he is starting another proof using the same approach.

The slice he takes is of the form given in the figure above (based on Figures 8.5,

https://www.jstor.org/stable/2691014
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8.6, and 8.7 of The Archimedes Codex). The orange triangle represents the part of

the slice that is contained in the solid of interest (as given by the orange triangle

of the second figure in Note AM2.F on the right). The gray triangle (part of which

is obscured by the orange triangle; middle) is the gray triangle on the left in the

figure above. The base of the whole solid on the left is given on the right. The

base is a rectangle, the cylinder intersect the base in a semicircle, and the gray

triangular slice intersects the base in the gray line segment. Archimedes then uses

the two points on the left corners of the base to introduce a parabola on the base

(finding the third point using the midpoint of the line joining the other two points,

as is done in the figure in Note AM2.B when finding point B there; in our special

case, this is easy since the base is a rectangle, and not just a parallelogram), and

introduces a line segment parallel to the axis of the parabola, as shown in blue

(notice that this is not the base of the orange triangle). Archimedes bases his

argument on the orange triangle (called “the triangle of the cylinder”), the gray

triangle (called “the triangle of the prism”), the gray line segment (called the line

of the rectangle”), and the blue line segment (called “the line of the parabola”). In

Proposition 13 of the Method, Archimedes proves that in this configuration:

“The area of the triangle of the prism is to the triangle of the cylinder

as the line of the rectangle is to the line of the parabola.” [As stated

on page 195 of The Archimedes Codex.]

“(4 in prism) : (4 in portion of cylinder) = MN : ML = (straight

line in rect. DG) : (straight line in parabola).” [As stated in Heath’s

1912 The Method of Archimedes on page 42.]

At this stage of the proof of Proposition 14, unfortunately, the writing in the

palimpsest is not legible. This results in a gap in the argument. Johan Heiberg,
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when reading the palimpsest in 1906, is able to read the proof of Proposition 14

up to this point. After the gap, the next part that he is able to read is (see

The Archimedes Codex, page 195): “The volume of the triangular prism is to the

volume of the cylindrical cut as the area of the entire rectangle is to the area of the

entire parabolic segment.” Presumably, Archimedes has arrived at this by “taking

together” the slices, as he is known to have done in his previous propositions in the

Method (see Note AM2.D). But maybe not, as we discuss further below. . . Now the

area bounded by the parabola in light blue, part of which is obscured by the yellow

triangle (see the figure below), is 4/3 of the area of the yellow triangle inscribed

in the parabola by Proposition 1 of the Method. The area of the rectangular base

is twice that area of the yellow triangle, so the “area of the entire rectangle” to

the “area of the entire parabolic segment” is (4/3) : 2 or (4/3)/2 = 2/3. That is,

the area bounded by the parabola is 2/3 the area of the rectangular base, or the

area of the rectangular base is 3/2 of the area bounded by the parabola. Hence,

by Archimedes’ claim, the volume of the triangular prism is 3/2 of the volume of

the cylindrical cut (i.e., the solid of interest).

Now the triangular prism containing the solid of interest (a slice of the triangular
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prism is taken in the figure in Note AM2.H on the left) is 1/4 of the cube containing

the solid of interest (see the first figure, left, in Note AM2.F). So the volume of the

entire cube 4 times the volume of the triangular prism, and the triangular prism is

3/2 the volume of the solid of interest. We now have that the cube is 4× 3/2 = 6

times the volume of the solid of interest. That is, the volume of the “cylinder cut

off by the plane” (i.e., the solid of interest) is 1/6 the volume of the cube (or, more

generally, the “whole prism,” by which Archimedes in Proposition 14 means a right

prism with a square base, but not necessarily a cube). This completes Archimedes’

proof. But what about that missing part of his proof? This note is based on pages

192–196 of The Archimedes Codex.

Note AM2.I. Heiberg’s failure to record Archimedes’ argument for the crucial

step in his proof of Proposition 14 is easily explained by viewing the palimpsest

as it is today. The page containing the argument is largely illegible. Even with

ultraviolet light, it cannot be read. How was it that Archimedes transition from

infinitely many proportions to single proportion representing a “sum” of the in-

finitely many proportions (more appropriately, an “integral” of the infinitely many

proportions)? The team studying the palimpsest was persistent. Reviel Netz (one

of the coauthors of The Archimedes Palimpsest) and Ken Saito (a well-known histo-

rian of mathematics) made their first breakthrough when Noel identified the letters

εγεθ, corresponding to the English “egeth.” The two decided that this must be

part of the Greek word megethos, meaning “magnitude.” This would not be ex-

pected in a specific “concrete” calculation. The Greek interpretation of the term

in Archimedes’ time is given on page 197 of The Archimedes Codex as:
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“The word ‘magnitude,’ with it generality, is appropriate not in a con-

crete, geometrical context, but in a more abstract context such as in

the study on the theory of proportions or of magnitudes. It was as if,

in the middle of a calculation with concrete numbers, the text moved

to a discussion of the principles of calculations as such.”

Speculation started that Archimedes had gone beyond potential infinity to actual

infinity. This gave great motivation for the imaging team in the palimpsest project

to start with this part of the palimpsest. A high-resolution, sharp digital image,

made with UV light, of the single piece of the palimpsest involving the bifolio

105-110 of the prayer book was made. With this image, Netz was able to pick out

“megethos’ (“magnitude”) in several places on the page, as well as words referring to

various geometric objects. This revealed that the digital images would be extremely

useful in reading parts of the Method that were otherwise illegible. The most

revealing term that Netz found was isos plethei, or “equal in magnitude.” The

page was “peppered with ‘equal in magnitude’ ” (as Netz puts it in The Archimedes

Codex on page 201). The Greeks used the term “equal in magnitude” to indicate

that the number of objects in two sets are the same. Today, we would say the

two sets have the same cardinality. Archimedes’ argument is that the set of cross

sections of the cube is equal in cardinality to the set of lines in the rectangle. The

cross sections of the cube are given by the gray triangles above (actually, these are

1/4 of cross sections of the cube), and the lines in the rectangle are the grey lines

in the figure above (see Note AM2.H). He is using this equality in cardinality to

justify passing a proportion between areas of triangles and lengths of lines (as given

in Method 13) to a proportion between volumes of solids and areas of regions. The

“volumes of solids” here are the volumes of the triangular prism (which is 1/4 the
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volume of the cube) and the volume of the cylindrical cut (i.e., the solid of interest),

and the “areas of regions” here are the areas of the rectangle and the area of the

parabolic segment (these ratios are shown to be 3/2 in Note AM2.H; this is then

multiplied by 4 to get the ratio of 6 : 1, or 1 : 6 as given in Proposition 14). Netz

summarizes Archimedes’ argument as (see pages 201 and 202 of The Archimedes

Codex):

“And Archimedes pointed out that the number of triangles of which

the prism was made was the same as the number of lines of which the

rectangle was made. Surely he meant this to be verified by the fact that

there was a onto-to-one relationship. . . . Archimedes repeated this

type of statement three times: he went through the various configura-

tions produced by the slices, showing which set was equal in multitude

to which set. . . . of course, those equalities of number were like noth-

ing else we every knew from Greek mathematics. . . .Archimedes was

explicitly calculating with infinitely great numbers.” [Emphasis

added]

This note is based on pages 196–201 of The Archimedes Codex.

Note AM2.J. In dealing with the equality of the two infinite sets in cardinality

(or “equality in magnitude”), Archimedes is using the one-to-one correspondence

between the triangular cross sections of the volumes and the line segment cross

sections of the areas. The one-to-one correspondence is given by the fact that each

triangle sits on one of the lines; each gray triangle sits on a gray line, and each

orange triangle sets on a blue line in the first figure of Note AM2.H. In Mathe-
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matical Reasoning (MATH 3000), two sets are of equal cardinality (or are equal in

magnitude) or are equipotent if there is a bijection between them (i.e., if the two

sets are in a one-to-one correspondence); see Definition 4.1 in Section 4.1. Cardinal-

ity; Fundamental Counting Principles of my online Mathematical Reasoning notes.

This is basically what Archimedes did, but this definition of equipotence dates from

the late 1800s. Georg Cantor (March 3, 1845–January 6, 1918) is a key figure in

the development of cardinalities of sets and cardinal numbers. A brief biography

of Cantor is given in my Mathematical Reasoning notes on Section 4.2. Comparing

Sets, Finite or Infinite. Notice that Archimedes might have simply assumed that

all infinite sets can be put in a one-to-one correspondence with each other, but

he did not do this. Instead, he focused on approaching the slices in such a way

that the one-to-one correspondence was given by their relative positions. In fact,

some infinite sets are “larger” than others. For example, both sets N and R are

infinite, but R is a set that is strictly larger than N (that is, R is of a cardinality

that is a larger infinity than the infinite cardinality of N). See my online notes on

Mathematical Reasoning on Section 4.3. Countable and Uncountable Sets. In The

Archimedes Codex (pages 202 and 203), the lessons learned by deciphering bifolio

105-110 include:

1. “[Archimedes relied] on certain principles of summation. This means that

he was already making a step toward modern calculus and was not merely

anticipating it in some naive way.”

2. “. . . Archimedes calculated with actual infinities in direct opposition to every-

thing historians of mathematics have always believed about their discipline.

Actual infinities were known already to the ancient Greeks.”

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-2.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-2.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
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3. “. . . we see that this concept of infinity—as with so many others—the genius of

Archimedes pointed the way toward the achievements of modern science itself.

Back in the third century bc, at Syracuse, Archimedes foresaw a glimpse of

Set Theory, the product of the mature mathematics of the late nineteenth

century.”

Note AM2.K. We now return to the story of the deciphering of the Archimedes

palimpsest. Two imaging teams, one at Johns Hopkins University and the other

at the Rochester Institute of Technology, used the technique of “multi-spectral

imaging” to extract the Archimedes texts from the palimpsest. For example, when

the parchment is illuminated with ultraviolet light it absorbs the light and re-

emits it in the blue part of the spectrum. The ink on the parchment obscures the

absorption/emission process and, as a consequence, the writing appears dark with

the parchment appearing in blue light back lighting the dark writing. But this was

just the starting point since it was still hard to distinguish between the writing

in the prayer book and the underlying Archimedes work. Using tungsten light,

the teams created images in red, green, and blue “channels.” In the red channel,

the Archimedes text almost disappeared. In this way, the different channels could

be combined to produce images with bright parchment, dark prayers, and dark

Archimedes print in red. This color difference allowed the Archimedes text to be

distinguished from the other writing based on its color. By September of 2001, the

teams had a solid approach to generate useful images that could be used to see the

work of Archimedes. This note is based on pages 205, 207, 219, and 220 of The

Archimedes Codex.
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Note AM2.L. The work was slow going, though. By autumn of 2003, the palimpsest

was still not completely disbounded. The images were good, but not good enough

for “Mr. B.” The biggest obstacle was provided by the four folios containing the

forged paintings (see Note AM.N and Note AM2.A). The multi-spectral imaging

was useless to “see through” the paintings to the underlying text. The imaging

was eventually approached with the technique of X-ray fluorescence. With this,

the object is bathed with X-ray radiation which is absorbed and re-emitted at

wavelengths which indicate the composition of the material. The plan was to use

this to detect the iron in the ink of the writing, thus showing the writing which

is under the forged paintings. Tests of the technique were promising, though it

became clear that a very high energy source for the X-rays would be needed. The

team turned to the Stanford Linear Accelerator (“SLAC”) in California. In March

2006 the team spent two weeks at SLAC producing images using the synchrotron

radiation from the accelerator. William Nowell described the experience as (see

page 277 or The Archimedes Codex):

“From the moment the scanning started, it was clear that something

extraordinary was happening. The charred, stained, and worm-eaten

parchment [being scanned] appears on the screen as a dense lattice of

Greek characters. I knew that we were seeing, pixel by pixel, line by

line, at the Stanford synchrotron, a map of the iron on the page. . . ”

In 2011, the results of the exploration of the Archimedes palimpsest team was

published in a two volume set. The title was The Archimedes Palimpsest (The

Archimedes Palimpsest Publications), Volumes 1 and 2. The editors were Reviel

Netz, William Noel,Nigel Wilson, and Natalie Tchernetska and it was published by

Cambridge University Press.
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In addition, there is a lengthy Archimedes Palimpsest website (accessed 11/25/2023).

This note is based on pages 261, 269, 270, 273, 277 of The Archimedes Codex.

Note. The palimpsest does not consist only of the Method. It also includes two

previously unknown folios of Archimedes Floating Bodies. Based on the information

extracted from the palimpsest, new editions of Stomachion and Floating Bodies are

in preparation. Details on these works are given in Section 6.2. Archimedes. In

addition, about 30 folios contain writing by someone other than Archimedes. These

writings have also lead to new historical insights in nonmathematical areas. In

addition, the prayer book itself is of interest. See pages 226–232 of The Archimedes

Codex for more on this.

Note. Reviel Netz (coauthor of The Archimedes Codex) has produced two volumes

of Archimedes’ work. The first is The Works of Archimedes: Volume 1, The Two

http://www.archimedespalimpsest.org/
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-2.pdf
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Books On the Sphere and the Cylinder: Translation and Commentary (Cambridge

University Press, 2009); the “two books” are On the Sphere and Cylinder I and On

the Sphere and Cylinder II. It contains the first English translation of Eutocius’s

commentary on Archimedes’ On the Sphere and Cylinder. The second is The Works

of Archimedes: Volume 2, On Spirals: Translation and Commentary (Cambridge

University Press, 2017). It contains the first fully-fledged English translation of On

Spirals.

Netz also recently published A New History of Greek Mathematics (Cambridge

University Press, 2022; above right). In the preface he describes this work as an

updated version of Thomas Heath’s History of Greek Mathematics (Oxford, 1921),

and not a replacement of Heath. Though Heath’s work still stands up, it takes more

of an encyclopedic approach, whereas Netz gives a historical account and details

the conditions and scope of the new science that emerged in the ancient Greek

world “providing the tools for modernity” (page xii of his Preface).



Supplement. Archimedes’ Method, Part 2 29

Note. Finally, we observe that an episode of the Public Broadcasting System’s

(PBS) show NOVA aired on September 30, 2003 titled Infinite Secrets. PBS has

a webpage devoted to Infinite Secrets which includes links to a transcript of the

show, and a “Teacher’s Guide” for use in the middle school and high school class-

room. There is also a YouTube video of Infinite Secrets, though it is of rather low

resolution. These two website were accessed 12/3/2023.

Revised: 12/3/2023

https://www.pbs.org/wgbh/nova/archimedes/
https://www.youtube.com/watch?v=BJHFzqyc3Jg

