
1.10. Arbitrary Bases 1

1.10. Arbitrary Bases

Note. In Section 1.7. Positional Numeral Systems we saw that any nonnegative

integer can be written as a sum of multiples of nonnegative powers of a given base

b ≥ 2 (see Note 1.7.A). In this section we consider specific examples of bases other

than 10 and representation of these numbers using a positional system. We cover

addition and multiplication tables and illustrate their use.

Note. Recall that for b ≥ 1, any nonnegative integer N can be written uniquely

in the form

N = anb
n + an−1b

n−1 + · · ·+ a2b
2 + a1b + a0,

where 0 ≤ ai ≤ b− 1 for each i ∈ {0, 1, . . . , n}. This is proved in Elementary Num-

ber Theory (MATH 3120); see my online notes for that class on Section 13. Numbers

in Other Bases (see Theorem 13.3). We then represent N with respect to base b in

a positional numeral system as the sequence of basic symbols: an an−1 · · · a2 a1 a0.

In this section, as is common whenever considering a setting where more than one

base may be used, we represent this representation as (an an−1 · · · a2 a1 a0)b. When

we do not write the base b as a subscript, it should be understood that we are

considering the standard base 10.

Note. As an example, suppose we consider base b = 12. This results in a duodec-

imal system. This is the topic of Section 14. Duodecimals in Elementary Number

Theory (MATH 3120). Since we need symbols for each integer between 0 and
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b− 1 = 11, we use the usual numerals for 0 through 9 and add the symbols t and

e to represent 10 and 11, respectively. We then have:

6647 = 3(123) + 10(122) + 1(12) + 11 = (3t1e)12.

To find such a representation, we need a technique for finding the coefficients of

the powers of the base.

Note. Let N be a nonnegative integer and let b ≥ 2. Then we know

N = anb
n + an−1b

n−1 + · · ·+ a2b
2 + a1b + a0,

for unique 0 ≤ ai ≤ b − 1. The proof of this is based on iterated use of the

Division Algorithm (as shown in Elementary Number Theory [MATH 3120]). We

now illustrate how to use this idea to find the coefficients ai. If we divide N by b

then we have

N/b = anb
n−1 + an−1b

n−2 + · · ·+ a2b + a1 + a0/b = N ′ + a0/b.

That is, N divided by b is N ′ (N ′ is the “quotient”) with remainder a0 (this is the

Division Algorithm; see Theorem 1.2 in my online notes for Elementary Number

Theory on Section 1. Integers). Applying the Division Algorithm to N ′ we next

have:

N ′/b = anb
n−2 + an−1b

n−3 + · · ·+ a2 + a1/b = N ′′ + a1/b.

That is, N ′ divided by b is N ′′ (the quotient) with remainder a1. Hence, by iterating

the Division algorithm and applying it to the quotient of the previous application

gives the desired values of the ai as remainders.
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Note. Eves illustrates this idea on page 26 by expressing 198 in base 4, and

expressing 6647 in base 12. We have 198/4 has quotient 49 with remainder 2, so

a0 = 2; 49/4 has quotient 12 with remainder 1, so a1 = 1; 12/4 has quotient 3

with remainder 0, so a2 = 0; and 3/4 has quotient 0 (so the iteration ends with

this step) with remainder 3, so a3 = 3. Since the process has stopped, we have

(a3 a2 a1 a0)4 = (3012)4 = 198. Similarly in duodecimals for N = 6647, we have

6647/12 has quotient 553 with remainder 11 = e, so a0 = e; 553/12 has quotient

46 with remainder 1, so a1 = 1; 46/12 has quotient 3 with remainder 10 = t, so

a2 = t; 3/12 has quotient 0 with remainder 3, so a3 = 3. The process stopped since

the last quotient was 0, and we have (a3 a2 a1 a0)12 = (3t1e)12 = 6647 (as we saw

above).

Note. When computing sums and products (and differences and quotients) in a

positional numeral system (or “place-value system”), we need only know the sum

and products of basic symbols 0, 1, . . . , b−1. That is, we need to know our addition

and multiplication tables. For base 4 we have:

Addition Multiplication

0 1 2 3

0 0 1 2 3

1 1 2 3 10

2 2 3 19 11

3 2 10 11 12

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 10 12

3 0 3 12 21

Notice through symmetry (and the obvious entries which involve the additive iden-

tity 0 and the multiplicative identity 1) how few entries need to be memorized. Con-
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sider the sum and product of (3012)4 and (233)4. In the usual hand-computation

style we have (eliminating the base 4 as a subscript):

3012

+233

3311

3012

×233

21102

21102

12030

2101122

We can similarly perform division using the multiplication table. In Elementary

Number Theory (MATH 3120), the base 12 multiplication table is given in Section

14. Duodecimals. Its use in multiplication and division is illustrated in those online

notes.
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