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14.2. Impossibility of Solving the Three Famous

Problems with Euclidean Tools

Note. In this section, we further explore “The Three Famous Problems” of Sec-

tion 4.3. In Chapter 4, “Duplication, Trisection, and Quadrature,” we explored

attempts to give compass and straight edge constructions of the (1) duplication

of the cube (in Section 4.5), (2) trisection of an angle (in Section 4.6), and (3)

quadrature of the circle (or “squaring the circle”; in Section 4.7). None of these

constructions were successful, but we saw how certain curves could be used to solve

these problems (such as conic sections, the conchoid of Nicomedes, and the quadra-

trix of Hippias; none of these curves are constructible with a compass and straight

edge). We also some mechanical devices that could be used to “solve” the three

famous problems. A proof that none of the three famous problems can be solved

with a compass and straight edge alone requires some knowledge of modern algebra

and the properties of fields. As a consequence, this proof of the impossibility of

such a construction was not given until the 19th century.

Note. We start with a definition. A real number is an algebraic number if it

is a root of some polynomial with rational coefficients (we could also state that

an algebraic real number is a root of some polynomial with integer coefficients

since, when setting a rational polynomial equal to 0, we can multiply through by a

common multiple of the denominators of the coefficients to produce an equivalent

polynomial equation where the coefficients are integers). Every rational number

is algebraic since x = p/q ∈ Q, where p, q ∈ Z and q 6= 0, is a root of the first
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degree polynomial qx− p. The nth root of every rational number is algebraic since

x = n
√

p/q is a root of the n degree polynomial qxn − p. In particular,
√

2 is

algebraic though, as shown by the Pythagoreans, it is not rational; see Note 3.5.B

of Section 3.5. Discovery of Irrational Magnitudes. A real number is transcendental

if it is not algebraic. With A denoting the algebraic numbers (so that T = R \ A

denotes the transcendental numbers; this is not a standard notation), we have the

relationships:

N ⊂ Z ⊂ Q ⊂ Q ⊂ A ⊂ R, and A ∪ T = R.

Each subset inclusion here is proper.

Note. Eves (on page 540) states that the following two theorems “are established”:

1. The magnitude of any length constructible with Euclidean tools from a given

unit length is an algebraic number.

2. From a given unit length it is impossible to construct with Euclidean tools

a segment the magnitude of whose length is a root of a cubic equation with

rational coefficients but with no rational root.

Eves then dispatches with the construction problems. First he observes that

quadrature of the circle is impossible with a compass and straight edge because

this requires construction of
√

π, which is transcendental, in violation of the first

theorem. Next, duplication of the cube with Euclidean tools is impossible because

this requires the construction of 3
√

2, in violation of the second theorem. Finally,

the general trisection of an angle with Euclidean tools is impossible because the

particular angle 60◦ cannot be trisected, since this requires solving the polyno-
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mial equation 8x3 − 6x − 1 = 0, in violation of the second theorem (we need

x = cos(60◦/3) = cos 20◦ here; see Note 4.6.A of Section 4.6. Trisection of an

Angle). We will give references from Introduction to Modern Algebra 2 (MATH

4137/5137) to elaborate on Eves’ two theorems and spell out the history of the

results in more detail.

Note. With the claim that
√

π is transcendental, we have that π itself must

be transcendental (because squares and square roots of algebraic numbers are al-

gebraic). The fact that transcendental numbers exist may, itself, be surprising!

Another famous transcendental number is the base of the natural logarithm func-

tion, e. Since 3
√

2 is algebraic but is not constructible (by Eves’ second theorem),

we see that the set of constructible numbers, which we denote C (the font “C” is

almost universally used to denote the complex numbers), is a superset of the ratio-

nal numbers and a subset of the algebraic numbers. So we can extend the above

subset inclusion as follows:

N ⊂ Z ⊂ Q ⊂ Q ⊂ C ⊂ A ⊂ R.

Again, each subset inclusion is proper.

Note. We now state some definitions and observations from Introduction to Mod-

ern Algebra 1 (MATH 4127/5127). See my online notes for that class on Section

IV.18. Rings and Fields for more details. The numbering scheme used here is the

same as in those online notes.
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https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-4-6.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IV-18.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IV-18.pdf


14.2. Impossibility of Solving the Three Famous Problems with Euclidean Tools 4

Definition 18.1. A ring 〈R, +, ·〉 is a set R together with two binary operations

+ and ·, called addition and multiplication, respectively, defined on R such that:

R1: 〈R, +〉 is an abelian group (that is, addition is associative, commutative, and

there is an additive identity and additive inverses).

R2: Multiplication · is associative: (a · b) · c = a · (b · c) for all a, b, c ∈ R.

R3: For all a, b, c ∈ R, the left distribution law a · (b + c) = (a · b) + (a · c) and the

right distribution law (a + b) · c = (a · c) + (b · c) hold.

Note. We do not require commutativity of multiplication in a ring. If it is present,

then we have a commutative ring. There may not exist a multiplicative identity

either. A ring which does have a multiplicative identity is a ring with unity (unity is

denoted “1”). You can see how this algebraic structure is taking on rather abstract

properties! To make things more tangible, we consider an example of a noncom-

mutative ring. Consider the ring Mn(R) of all n × n matrices with real entries.

Properties R1, R2, and R3 are familiar to you from Linear Algebra (MATH 2010).

However, you know that matrix multiplication is not, in general, commutative.

Also, many square matrices do not have multiplicative inverses (namely, the singu-

lar matrices), so the desirable property of the existence of (multiplicative) inverses

may not be present in a ring. A ring in which every nonzero (i.e., non-additive-

identity element) has a multiplicative inverse is called a division ring. A quick word

of caution. In a sense, there is “no such thing” as division! There is multiplication

and multiplicative inverses, but no division. We would denote the multiplicative

inverse of ring element a as a−1. Then we read ba−1 as “b times a inverse,” NOT
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as “b divided by a” (if you want to press this, you could also claim that “times”

should be replaced with “multiplied on the right by”. . . ).

Note. For ring R with additive identity denoted “0”, we have for all a, b ∈ R

that (1) 0a = a0 = 0, (2) a(−b) = (−a)b = −(ab), and (3) (−a)(−b) = ab

(this is Theorem 18.8 in the Modern Algebra notes). So in a ring, we have the

familiar behavior of multiplication in terms of an interaction between “positive”

and “negative” elements. However, these concepts are largely restricted to real

numbers! For example, there are no such things as “positive matrices” (you may

have heard of “positive definite matrices,” but that is something different). In fact,

there is no such thing as positive or negative complex numbers (beyond the fact

that the complex numbers contain the real numbers, and the real numbers can be

expressed as positive, negative, or 0). So in the setting of a ring, the third property

“(−a)(−b) = ab” should not be read as “a negative times a negative is positive,”

but instead as “the additive inverse of a times the additive inverse of b equal a

times b” (since the symbol “−” denotes an additive inverse). This is related to the

fact that, similar to the observations about “division” in the previous note, there

is so such thing as subtraction, but instead there is addition of additive inverses).

This abstraction which may at first seem awkward and ugly, it is the key to proving

the impossibility of solving the Three Famous Problems with Euclidean Tools!

Definition 18.16. A field is a commutative division ring.
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Note. Fields have the algebraic structure we want (we’ll see that the constructible

numbers C form a field)! Examples of fields are Q, R, and C, where we use

the usual addition and multiplication. An example of a finite field is the integers

modulo prime p, Zp; it is necessary to use a prime number to insure the existence

of multiplicative inverses.

Note. I have an online video, “Compass and Straight Edge Constructions” posted

on YouTube, as a supplement to my Introduction to Modern Algebra 2 notes on

Section VI.32. Geometric Constructions . A transcript of the video is available in

PDF. The rules by which compass and straight edge constructions are performed

are given in the video as follows. We start with a line segment of a length which we

define as the unit length. For example, we could assume the line segment lies along

the x-axis between the points (0, 0) and (1, 0). We can construct other lines or line

segments using a straight edge through two constructed points. Given a point p

and a line segment of a given length `, we can use the compass to construct a circle

with center p and radius `. Given a line segment of a certain length, a line segment

of the same length can be constructed on any given line. A point is constructed

when it results from the intersection of two lines, two circles, or a line and a circle.

Definition. A real number α is constructible if we can construct a line segment

of length |α| in a finite number of steps from a given unit length segment and a

compass and straight edge (as described above).

https://www.youtube.com/watch?v=S24GYj1rWGs
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/4127/Compass-Straightedge/Compass-Straightedge.pdf
https://faculty.etsu.edu/gardnerr/4127/Compass-Straightedge/Compass-Straightedge.pdf
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Note. The relevant three key results from modern algebra are the following.

Theorem 32.1. If α and β are constructible real numbers, then so are α + β,

α− β, αβ, and α/β if β 6= 0.

Corollary 32.5. The set of constructible real numbers C forms a subfield of the

field of real numbers.

Theorem 32.6. The field of constructible real numbers consists precisely of all

real numbers that we can obtain from Q by taking square roots of positive numbers

a finite number of times and applying a finite number of field operations (the field

operations are addition and multiplication).

Note. To show the impossibility of solving the Three Famous Problems, we need

a clear explanation of why 3
√

2, a real solution of 8x3 − 6x − 1 = 0, and π are not

constructible. This requires some knowledge of the degree of a field extension (the

needed result is Corollary 32.8 in Section VI.32. Geometric Constructions). A more

rigorous exploration of these ideas are also given in graduate-level Modern Algebra

1 (MATH 5410) in Section V.1.Appendix. Ruler and Compass Constructions.

Note. We now turn to the history of the above mentioned material. My choice

for a text book in Introduction to Modern Algebra 1 and 2 (MATH 4127/5127 and

4137/5137) is John B. Fraleigh’s A First Course in Abstract Algebra, Seventh Edi-

tion, Pearson Education (2003). This book includes brief historical notes by Victor

Katz (author of History of Mathematics, An Introduction, 3rd edition, Addison-

https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-1-A.pdf
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Wesley, 2009; I have planned online notes based on his book as a possible source

in this class). In Fraleigh’s Section VI.32. Geometric Constructions, it is stated on

page 298 that “Peirre Wantzel (1814–1848). . . proved Corollary 32.8 [on the degree

of a field extension] and also demonstrated Theorems 32.9 [on the impossibility

of the duplication of the cube] and 32.11 [on the impossibility of trisection of an

angle].” It is surprising that Wantzel does not even appear in Eves’ book!

Note. Pierre Wantzel was born in Paris in 1814. At the age of 14 he entered

the Collège Charlemagne and at age 15 edited a second edition of Antoine Rey-

naud’s book Treatise on Arithmetic. He entered the engineering school of Ponts et

Chaussées in 1834 and became a lecturer at the prestigious École Polytechnique in

1838. From 1841 he was professor of applied mechanics at the École des Ponts et

Chaussées.

Pierre Laurent Wantzel (June 5, 1814–May 21, 1848)

The image of Wantzel and this historical information is from the MacTutor History

https://faculty.etsu.edu/gardnerr/3040/notes-Katz.htm
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Wantzel/
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of Mathematics Archive biography of Wantzel (accessed 4/30/2023). Little infor-

mation seems to be available on his early death at the age of 33, but in Florian

Cajori’s “Pierre Laurent Wantzel,” Bulletin of the American Mathematical Soci-

ety, 24(7), 339–347 (1918), Jean Claude Saint-Venant (who wrote “Biographie:

Wantzel,” Nouvelles Annales de Mathématiques (Terquem et Gerono) 7, 321–331,

(1848) upon Wantzel’s death) is quoted as saying of Wantzel:

“. . . Ordinarily he worked evenings, not lying down until late; then read,

and took only a few hours of troubled sleep, making alternately wrong

use of coffee and opium, and taking his meals at irregular hours until he

was married. He put unlimited trust in his constitution, very strong by

nature, which he taunted at pleasure by all sorts of abuse. He brought

sadness to those who mourn his premature death.”

Wantzel published over 20 mathematical papers (they are listed in Saint-Venant’s

biography of Wantzel).

Note. Wantzel’s paper that proves the impossibility of the duplication of the cube

and the trisection of an angle is: “Recherches sur le moyens de reconnaitre si un

Problème de Géométrie peut se résoudre avec la règle et le compas” [Research

on Ways to Recognize if a Problem of Geometry can be Solved with Ruler and

Compass], Journal de Mathématiques pures et appliquées, 2, 366–372 (1837). One

would assume that a rigorous resolution of these 2000-plus years old construction

problems would meet with great attention and fame. This was not the case. Jesper

Lützen adresses this in “Why was Wantzel overlooked for a century? The chang-

ing importance of an impossibility result,” Historia Mathematica, 36(4), 374–394

(2009):

https://mathshistory.st-andrews.ac.uk/Biographies/Wantzel/
https://mathshistory.st-andrews.ac.uk/Biographies/Wantzel/
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“Though the classical construction problems were not at the center

stage of mathematical research during the early 19th century, they

were certainly well known. The quadrature of the circle was the most

celebrated of the problems, but the duplication of the cube and the

trisection of the angle enjoyed so much fame that one would have ex-

pected Wantzel’s resolution of them to have made an impression on

the mathematical community. However, that did not happen until a

century later when Wantzel began to be generally acknowledged as the

first person to have solved the problems.”

Lützen speculates that Cajori (in his 1918 biography of Wantzel that appear in the

Bulletin of the AMS) may be responsible for the spread of Wantzel’s fame in the

20th century.

Note. Another compass and straight edge construction associated with Wantzel

is the construction of regular polygons. Carl Friedrich Gauss (April 30, 1777–

February 23, 1855) gave a construction using Euclidean tools of a 17 sided regular

polygon in 1796. In his Disquisitiones Arithmeticae of 1801, Gauss showed that

a regular n-gon can be constructed if n is a power of 2 or if n is the product of

a power of 2 and any number of distinct “Fermat primes.” A Fermat prime is a

prime number of the form 2(2m)+1 (the only known Fermat primes are 3, 5, 17, 257,

and 65537; this shows how Gauss’ construction of a 17 sided polygon fits into this

scheme). More on Fermat primes is in my online notes for Mathematical Reasoning

(MATH 3000) on Section 6.7. More on Prime Numbers . However, Gauss did not

show that the given values of n are are a necessary condition for the construction

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-7.pdf
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of a regular n-gon. As was a tradition for Gauss, he claimed that the condition

was necessary, but he failed to present a proof. The necessity of the condition is

also given in Wantzel’s 1837 paper. Therefore the “Gauss-Wantzel Theorem” (as

it is called on the Wikipedia page on Constructible Polygons; accessed 4/30/2023)

can be stated as:

The Gauss-Wantzel Theorem. A regular n-gon is constructible with a compass

and straight edge if and only if n = 2kp1p2 · · · pt where k and t are nonnegative

integers, and p1, p2, . . . , pt are distinct Fermat primes.

This story of the construction of regular n-gons is told in Ian Stewart’s Why Beauty

Is Truth: A History of Symmetry. Basic Books (2007); see pages 134 to 136.

This book seems unique in that it is a “popular level” book that includes a small

biography of Pierre Wantzel (see pages 126 and 127).

Note. By Theorem 32.6 stated above (or by Eves’ first theorem above), all con-

structible numbers are algebraic. Quadrature of the circle requires that π is con-

structible. Therefore, if we can show that π is transcendental (that is, not alge-

braic) then it is not constructible and the impossibility of the quadrature of the

circle follows. This is how the impossibility of the construction was shown in 1882

by Ferdinand von Lindemann (April 12, 1852–March 6, 1939).

https://en.wikipedia.org/wiki/Constructible_polygon
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Lindemann was born in Hanover (in modern-day Germany). He studied in Göttingen,

Munich, and Erlangen. He wrote his dissertation under the direction of the ge-

ometer Felix Klein (April 25, 1849–June 22, 1925). He taught in England and

France, and back in Germany he taught at the University of Freiburg, University

of Königsberg, and the University of Munich. In 1873 Charles Hermite (Decem-

ber 24, 1822–January 14, 1901) proved that e is transcendental. Shortly after,

Lindemann visited him to discuss the proof. Using methods similar to those of

Hermite, Lindemann proved in 1882 that π is transcendental and published it in

Über die Zahl π [On the Number π], Mathematische Annalen, 20, 213–225 (1882).

A copy (in German) can be viewed online on the Goettingen Digitization Center

webpage (accessed 4/30/2023). In the book by Edward Berger and Robert Tubbs,

Making Transcendence Transparent: An Intuitive Approach to Classical Transcen-

dental Number Theory, Springer (2004), a proof of the transcendental nature of π

is given (see Chapter 3, Theorem 3.1, and Corollary 3.2).

https://gdz.sub.uni-goettingen.de/id/PPN235181684_0020?tify=%7B%22view%22:%22info%22,%22pages%22:%5B227%5D%7D
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0020?tify=%7B%22view%22:%22info%22,%22pages%22:%5B227%5D%7D
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Note. We now discuss some other relevant results on e, π, irrational numbers, and

transcendental numbers. These observations are largely based on the Wikipedia

page on Transcendental Numbers (accessed 4/30/2023). Johann Lambert (August

26/28, 1728–September 25, 1777) conjectured that e and π were transcendental

numbers and proved that π is irrational (and sketched a proof that π is transcen-

dental) in “Mémoire sur quelques propriétés remarquables des quantités transcen-

dantes, circulaires et logarithmiques,” Mémoires de l’Académie Royale des Sciences

de Berlin, 265-322 (1768). Joseph Liouville (March 24, 1809–September 8, 1882)

was the first to prove the existence of transcendental numbers in 1844, presented

Liouville’s constant,
∞∑

n=1

10−n!, in 1851 and proved that it is transcendental. As

mentioned above, Hermite proved that e is transcendental in 1873 and Lindemann

proved that π is transcendental in 1882. In terms of cardinality, the algebraic num-

bers are countable, as shown by Georg Cantor (March 3, 1845–January 6, 1918) in

1874 (you might see this result in Analysis 1 [MATH 4217/5217]; it follows from

Exercise 1.3.14 of James Kirkwood’s An Introduction to Analysis, Third Edition,

CRC Press [2021] and I have online notes for Kirkwood’s Section 1.3. The Com-

pleteness Axiom). Since the real numbers are uncountable, then it follows that

the transcendental numbers are uncountable. More on the cardinalities of infinites

sets can be found in my online notes for Mathematical Reasoning (MATH 3000)

on Section 4.3. Countable and Uncountable Sets and Section 4.4. More on Infinity.
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