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2.4. Babylonia: Geometry

Note. In this section, we consider some of the geometric problems addressed

in the Babylonian mathematical clay tablets. We mention areas and volumes of

geometric objects (though this could also be considered algebra), and consider the

Pythagorean Theorem and estimates of π.

Note. In the Babylonian cuneiform clay tablets, described in Section 1.4. Simple

Grouping Systems, there are sufficient examples to suggest that the Babylonians

must have been familiar with the general rules for the area of rectangle, area of

right and isosceles triangles, area of trapezoid having one side perpendicular to

the parallel sides, volume of a rectangular parallelepiped, and the volume of a right

prism with a special trapezoidal base. They knew that a perpendicular through the

vertex of an isosceles triangle bisects the base, and angles inscribed in a semicircle

are right angles. See Eves, page 42.

Note 2.4.A. Otto Neugebauer, who we met in Section 2.2. Babylonia: Sources,

says in his The Exact Sciences in Antiquity, second edition (Brown University Press,

1957):

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-1-4.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-1-4.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-2-2.pdf
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“The great majority of mathematical texts [i.e., clay tablets of math-

ematical content] are ‘Old Babylonian’; that is to say, they are con-

temporary with the Hannurapi [i.e., King Hammurabi] dynasty, thus

roughly belonging to the period from 1800 to 1600 B.C. The second,

and much smaller group of ‘Seleucid’, i.e. datable to the last three

centuries B.C. . . . The only essential progress which was made [between

these two periods] consists in the use of the ‘zero’ sign in the Seleucid

texts. . . It seems plausible that the expansion of numerical procedures is

related to the development of a mathematical astronomy in this latest

phase of Mesopotamian science.” (See Neugebauer’s page 29.)

He classifies the mathematical tablets as falling into two categories: “table texts”

and “problem texts.” A large percentage of the table texts are exercises written by

apprentice scribes which Neugebauer calls “school texts.” Babylonian mathemat-

ics was more developed in the algebraic and computational areas, with geometry

playing a less significant role (see Neugebauer, page 44). In fact, the geometry

they addressed was mostly related to areas and volumes of triangles, trapezoids,

cones, and pyramids in terms of lengths of sides of the objects; we call these ideas

“geometric algebra” in Section 3.6. Algebraic Identities.

Note 2.4.B. In 1962 a clay tablet was found in northeastern Iraq in the ruins

of ancient Eshnunna. Today it is in the National Museum of Iraq with Museum

Number IM 067118 (it is also known as Db2 146). This tablet contains a proof of

the Pythagorean Theorem in the context of finding the dimensions of a rectangle.

An image of the tablet is given below.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-6.pdf
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From the Cuneiform Digital Library Initiative (accessed 8/5/2023).

The problem on the tablet is described by Peter Rudman in his How Mathematics

Happened: The First 50,000 Years (Prometheus Books, 2007) as follows (pages 236

and 237): “The area of a rectangle if 0.4560 and its diagonal is 1.1560. Find its length

and width.” Rudman is expressing numbers base 60. Now 0.4560 = 0.7510 = 0.75

and 1.1560 = 1.2510 = 1.25.. With the length and width as a and b, and c as

the diagonal, the problem translates into our modern notation as: “ab = 0.75 and

c = 1.25 implies a =? and b =?” As Rudman explains, the solution is given by the

sequence of steps:

https://cdli.mpiwg-berlin.mpg.de/artifacts/254557
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Babylonian Algorithm Algebraic Generalization

Step 1 2× 0.75 = 1.5 2ab

Step 2 3(1.25)2 = 1.5625 c2

Step 3 1.5625− 1.5 = 0.0625 (b− a)2 = c2 − 2ab

Step 4
√

0.0625 = 0.25 (b− a) =
√

c2 − 2ab

Step 5 0.25/2 = 0.125 (b− a)/2 =
√

c2 − 2ab/2

Step 6 (0.125)2 = 0.015625 [(b− a)/2]2 = (c2 − 2ab)/4

Step 7 0.75 + 0.015625 = 0.765625 [(a + b)/2]2 = (c2 − 2ab)/4 + ab

= (c2 + 2ab)/4

Step 8
√

0.765625 = 0.875 (a + b)/2 =
√

c2 − 2ab/2

Step 9 0.875 + 0.125 = 1 b = (a + b)/2 + (b− a)/2

Step 10 0.875− 0.125 = 0.75 a = (a + b)/2− (b− a)/2

Notice that we have (0.75)2+(1)2 = (1.25)2, or a2+b2 = c2 as we would expect from

the Pythagorean Theorem. However, we have not used the Pythagorean Theorem

in the computation above. In the following figure, the rectangle with width a,

height b, and diagonal c is outlined in red.

Based on Figure 5.4.4 of Rudman.
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Notice that the square with side of length c has as its area the sum of the yellow

areas (4 × (ab)/2 = 2ab) and the blue area ((b − a)2). In the algorithm, Steps 1

through 5 use the geometry to calculate (b − a)/2 in terms of the givens ab and

c. The large square is of area (a + b)2 and is composed of four white triangles (of

total area 2ab) and the square of area c2. Steps 6 through 8 use this geometry to

calculate (a+ b)/2 in terms of the givens ab and c. Finally, Steps 9 and 10 combine

(b − a)/2 and (a + b)/2 to give a and b. Implied by the given argument is two

proofs of the Pythagorean Theorem! First, by Step 3 we have (b− a)2 = c2 − 2ab

(this results from considering the area of the square with side of length c). The

Babylonians would also know that (b − a)2 = a2 + b2 − 2ab, since this is easily

established with geometric algebra (this is to be done in Problem Study 3.8(a)).

The Pythagorean Theorem then follows: a2 + b2 = c2. Notice that by considering

the diagonal of a rectangle, a right triangle is automatically produced. Second,

by Step 7, we have (a + b)2 = c2 + 2ab (this results from considering the area of

the large square with side of length (a + b)). The Babylonians would know that

(a + b)2 = a2 + b2 + 2ab, since this is easily established with geometric algebra

(see Figure 16 in Section 3.6. Algebraic Identities). The Pythagorean Theorem

then follows: a2 + b2 = c2. We will see in Section 2.6. Babylonia: Plimpton 322

additional evidence that the Babylonians knew the Pythagorean Theorem. In that

section, several Pythagorean triples are given; that is, natural numbers a, b, c such

that a2 + b2 = c2 (the easiest example begin 32 + 42 = 52). However, since the

Pythagorean triples are restricted to natural numbers, their study is insufficient for

a proof of the Pythagorean Theorem. Since lengths of line segments can be any

positive real number (Euclid will call these magnitudes in his study of proportions;

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-6.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-2-6.pdf
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see Note 5.4.J in Section 5.4. Contents of the “Elements”), the argument given here

covers the general case. Of course it is too early in the history of mathematics to

call what the Babylonians have given as a “proof.”

Note 2.4.C. For the Babylonian approximation of π, we refer to Eves’ Problem

Study 2.5, “The Susa Tablets.” Parts (a) and (b) of this problem states (see Eves’

page 59): “In 1936 a group of Old Babylonian tablets was lifted at Susa, about 200

miles from Babylon. One of the tablets compares the areas and the squares of the

sides of regular polygons of 3, 4, 5, 6, and 7 sides. . . . On the same tablet. . . , the

ratio of the perimeter of a regular hexagon to the circumference of the circumscribed

circle is given as 0;57,36 [base 60]. Show that this leads to 3;7,30 [base 60] or 31
8 as

an approximation of π.”

The image above is from the Louvre Museum website. It shows clay tablet SB

13088, which was found in 1933 and is housed in the Louvre’s Department of

Oriental Antiquities. This appears to be the tablet referred to in Eves’ problem

(though there is the 1933/1936 date conflict). It shows a regular heptagon on one

side (left) and a regular hexagon on the other (right). Other information on the

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-4.pdf
https://collections.louvre.fr/ark:/53355/cl010185652


2.4. Babylonia: Geometry 7

tablet is online on Frank J. Swetz’s “Mathematical Treasure: Cuneiform Tablet

Depicting Heptagon,” Convergence (July 2021). To solve Problem Study 2.5(b),

we have in modern notation that the circumference of a circle is 2πr. In the image

below, the hexagon is broken into six equilateral triangles, so that the perimeter

of the inscribed hexagon is 6r. So the ratio of the perimeter of the hexagon to

the circumference of the circle is 6r/2πr = 3/π, which is given as a sexagesimal

number as 0;57,36. This translates to 57/60 + 36/602 = 3456/3600. We therefore

have 3/π ≈ 3456/3600 or 10800/3456 = 31
8 ≈ π. To complete the problem, we

convert 31
8 = 3.125 to sexagesimal form. Since 0.1 = 1

10 = 7
60 ≈ 0.1167 < 1

8 =

0.125 < 8
60 ≈ 0.1333 then the first digit of the sexagesimal form of 1

8 if 7. Next,

1
8 −

7
60 = 1

120 = 30
602 so that the second digit of the sexagesimal form is 1

8 is 30, and

hence 31
8 = 3; 7, 30.

Note 2.4.D. The frustum (or as Eves calls it “frustrum”) of a pyramid is the

volume that results when the top of a pyramid is cut off, as illustrated below. Eves

claims (on page 42) that in the discussion of the volumes of frustums of a pyramid,

https://www.maa.org/press/periodicals/convergence/mathematical-treasure-cuneiform-tablet-depicting-heptagon
https://www.maa.org/press/periodicals/convergence/mathematical-treasure-cuneiform-tablet-depicting-heptagon
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a general cubic equation arises by considering the system of equations

z(x2 + y2) = A, z = ay + b, x = c.

His source on this is no doubt Raymond Archibald’s “Babylonian Mathematics,”

Isis, 26(1), 63–81 (1936). This can be viewed online on the JSTOR webpage (ac-

cessed 8/6/2023). Eves uses the exact same variables as Archibald; see Archibald’s

pages 77 and 78. Unfortunately, neither Eves nor Archibald give an details on what

the equations represent. Archibald mentions that this appears on clay tablet YBC

4708.

Image from Embibe.com (accessed 8/6/2023).

Information on YBC 4708 (including the image below) is on the Yale Peabody

Museum webpage (accessed 8/6/2023). It describes the tablet as a problem text

of 60 problems concerning piling bricks. The problems are solved either by using

quadratic equations or (in the case of Problems number 49 through 52) using third

degree equations. Notice that in the system of equations given above, we can

https://www.jstor.org/stable/225054
https://www.embibe.com/exams/frustum-of-a-pyramid/
https://collections.peabody.yale.edu/search/Record/YPM-BC-018772
https://collections.peabody.yale.edu/search/Record/YPM-BC-018772
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eliminate x and z to get:

A = z(x2 +y2) = (ay+b)((c)2 +y2) = ac2y+bc2 +ay3 +by2 = ay3 +by2 +ac2y+bc2.

Revised: 8/14/2023


