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2.5. Babylonia: Algebra

Note. In the previous section, we mentioned that Babylonian algebra was more

developed than Babylonian geometry (see Notes 2.4.A). In this section we con-

sider applications of algebra, summations, the use of table texts and polynomial

equations, and an estimation of
√

2.

Note 2.5.A. The image at the right is from

the Yale Peabody Museum, Babylonian Collec-

tion website (accessed 8/5/2023) and gives pho-

tos of all sides of the problem text with cata-

log number YBC 6967 (“YBC” for “Yale Baby-

lon Collection”). The content as described by

Peter Rudman in his How Mathematics Hap-

pened: The First 50,000 Years (Prometheus

Books, 2007) as follows (page 231): “The length

of a rectangle exceeds its width by 760. Its area

is 1:060. Find its length and width.” Rudman is

expressing numbers base 60. Now 760 = 710 = 7

and 1:060 = 6010 = 60. so with the width repre-

sented by a and the length represented by b,

the problem translates into our modern notation as: “b − a = 7 implies ab = 60

a =? and b =?” As Rudman explains, the solution is given by the sequence of steps:

https://collections.peabody.yale.edu/search/Record/YPM-BC-021031
https://collections.peabody.yale.edu/search/Record/YPM-BC-021031
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Babylonian Algorithm Algebraic Generalization

Step 1 7/2 = 3.5 (b− a)/2

Step 2 3.5× 3.5 = 12.25 [(b− a)/2]2

Step 3 12.25 + 60 = 72.25 [(b + a)/2]2 = [(b− a)/2]2 + ab

Step 4
√

72.25 = 8.5 (b + a)/2 =
√

[(b− a)/2]2 + ab

Step 5 8.5− 3.5 = 5 = width a = (b + a)/2− (b− a)/2

Step 6 8.5 + 3.5 = 12 = length b = (b + a)/2 + (b− a)/2

In the following figure, Step 1 gives the width of the smaller square, Step 2 gives

its area, Step 3 relates the known area of the big square to the (now known) area

of the little square plus the areas of the four rectangles, and Step 4 computes the

width of the larger square (though taking square roots, in general, is problematic

for the Babylonians). Then Steps 5 and 6 give the desired width and length.

Based on Figure 5.4.1 of Rudman.

Note 2.5.B. Tablet AO 6484 of the Louvre Museum is a “Seleucid” tablet of

about 300 bce (see the image below). According to Raymond Archibald’s “Baby-
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lonian Mathematics,” Isis, 26(1), 63–81 (1936) (available on the JSTOR webpage,

accessed 8/7/2023), the partial sum of a geometric series is given as (in modern

notation, of course):

9∑
i=0

2i = (29 − 1) + 29 = 1023 =
(2)10 − 1

(2)− 1
.

This leads Archibald to speculate that the Babylonians of this time may have known

the sum of a geometric progression,
n∑

i=0

ari = a
rn+1 − 1

r − 1
; this is given in Euclid’s

Elements in Book IX as Proposition 36.

Image of AO 6484 from the Louvre Museum.

On the same tablet, a sum of squares is given:

10∑
i=1

=

(
1

(
1

3

)
+ 10

(
2

3

))
55 =

(
2(10) + 1

3

)
55 = 385.

Archibald then wonders if the Babylonians of 30 bce knew the formula
n∑

i=1

i2 =
2n + 1

3

n∑
i=1

i =
2n + 1

3

n(n + 1)

2
=

n(n + 1)(2n + 1)

6
.

https://www.jstor.org/stable/225054
https://collections.louvre.fr/en/ark:/53355/cl010167127
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This sum was known to Archimedes (287 bce–212 bce), and the sum
∑n

i=1 i was

known to the Pythagoreans (in the form of triangular numbers; see Figure 7 of

Section 3.3. Pythagorean Arithmetic). These two examples are also stated by Eves

(Eves and Archibald both credit Neugebauer with these observations) on his page

43.

Note 2.5.C. A tablet in the Berlin Museum, with catalog number VAT 8492, lists

the values of n2, n3, and n2 + n3 for n = 1, 2, 3, . . . , 20, 30, 40, 50. According to

Archibald in his “Babylonian Mathematics,” Otto Neugebauer (for a brief biogra-

phy, see Section 2.2. Babylonia: Sources) surmised that this table was used to solve

general cubic equations, ax3+bx2+cx+d = 0, which had been reduced to a “normal

form” n3 +n2 = C. This is to be shown in Problem Study 2.6(d); knowledge of the

quadratic formula is necessary to solve Problem Study 2.6(d) but, as we’ll see in the

next note (Note 2.5.D), the Babylonians knew the quadratic formula. The British

Museum has tablets of about 1800 bce which contain six problems which lead to

one-term, three-term, and four-term cubic equations, but only three of these fit

Neugebauer’s theory (presumably, due to the presence of complex numbers). One

of the three-term cases (of which there are two) lead to an equation of the form

(µx)3+(µx)2 = 252. From the Berlin tablet VAT 8492, one would find that µx = 6.

There is also a large group of table texts which give reciprocals. This type of table

allows division problems to be converted to multiplication problems. The source

for this note is pages 68 and 69 of Archibald’s “Babylonian Mathematics.”

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-3.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-2-2.pdf


2.5. Babylonia: Algebra 5

Note 2.5.D. An Old Babylonian tablet ex-

cavated from Uruk (on the Euphrates River;

today it is known as Warka, Iraq), cata-

logued as Strasbourg tablet number 363, has

problems leading to quadratic equations and

their solution. The image here is from the

Cuneiform Digital Library Initiative website

(accessed 8/8/2023). One of these problems is:

The sums of the areas of two squares is equal to

A = 2225. (In modern notation, we let x and y

denote the lengths of the sides of the squares,

were x > y.) The side x of the larger square

is equal to a certain quantity u + d1 (where

d1 = 10) and the side y of the smaller is equal

to
α

β
u + d2 where α/β = 2/3 and d2 = 5. That

is, we have the system of equations (systems of equations are another common

topic of the Babylonian tablets):

x2 + y2 = A, x = u + d1, y =
α

β
+ d2,

where the unknowns are x, y, and u. We eliminate x and y, and perform a change

of variables on u. Let u = Wβ so that

x2 = (u + d1)
2 = (Wβ + d1)

2 = W 2β2 + 2Wβd1 + d2
1 and

y2 = (uα/β + d2)
2 = (Wβα/β + d2)

2 = (Wα + d2)
2 = Wα2 + 2Wαd2 + d2

2.

https://cdli.mpiwg-berlin.mpg.de/artifacts/414660
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Then

A = x2 + y2 = (W 2β2 + 2Wβd1 + d2
1) + (Wα2 + 2Wαd2 + d2

2)

= W 2(α2 + β2) + 2(d1β + d2α)W + (d2
1 + d2

2),

or

W 2 +
2(d1β + d2α)

α2 + β2 W − A− (d2
1 + d2

2)

α2 + β2 = 0.

We now know that we can take

W =
1

2(1)

(
−2(d1β + d2α)

α2 + β2 +

√
4(d1β + d2α)2

(α2 + β2)2 − 4(1)

(
A− (d2

1 + d2
2)

α2 + β2

))

=
1

2

(
−2(d1β + d2α)

α2 + β2 +
2

α2 + β2

√
(d1β + d2α)2 − (A− (d2

1 + d2
2))(α

2 + β2)

)
=

1

α2 + β2

(
−(d1β + d2α) +

√
(d1β + d2α)2 − (A− (d2

1 + d2
2))(α

2 + β2)

)
The solution on Strasbourg tablet 363 contains steps equivalent to substitution of

the given values into this formula. “There are scores of problems which prove the

amazing fact that the Babylonians of 2000 B.C. were familiar with the equivalent of

our formula for the solution of a quadratic equation. Until 1929 no one suspected

that such a result was known before the time of Heron of Alexandria [circa 10

ce–circa 75 ce] two thousand years later.” This quote and the other observations in

this note are based on pages 74 and 75 of Archibald’s “Babylonian Mathematics.”

Note 2.5.E. We now consider a surprisingly accurate Babylonian approximation

of
√

2. Much of the information in this note appears in Section 1.6. A Remarkable

Babylonian Document, which is part of the history component of Introduction to

Modern Geometry (MATH 4157/5157). The approximation is performed by finding

the length of the diagonal of a square. The computation was performed somewhere

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-6.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-6.pdf
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between 1900 to 1600 bce in southern Mesopotamia and is preserved on a clay

tablet about 3 inches in diameter (the tablet is denoted YBC 7289). It is now part

of the Yale Babylonian Collection. It was donated to the collection by J. P. Morgan

(this information is from the Wikipedia webpage on YBC 7289 (accessed 8/8/2023).

Details on attempts (with successes and failures) to use images of the tablet in the

contemporary classroom environment are described in Janet L. Beery and Frank

J. Swetz, “The Best Known Old Babylonian Tablet?,” Convergence (July 2012)

(accessed 8/8/2023).

From the MAA page on “The Best Known Old Babylonian Tablet?”

https://en.wikipedia.org/wiki/YBC_7289
https://www.maa.org/press/periodicals/convergence/the-best-known-old-babylonian-tablet
https://www.maa.org/press/periodicals/convergence/the-best-known-old-babylonian-tablet
https://www.maa.org/press/periodicals/convergence/the-best-known-old-babylonian-tablet
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From Wikipedia page on YBC 7289

A modification of one of the above figures giving the “translation” of the

Babylonian numerals into Arabic numerals.

There are three numbers on the tablet. The square is meant to have sides of length

30, as labeled in the upper left. Written on and somewhat under the horizontal

diagonal of the square is 1 24 51 10. Converting to Babylonian base 60 (with an

implied decimal point after the 1) we have the number :

1× (600) + 24×
(

1

60

)
+ 51×

(
1

602

)
+ 10×

(
1

603

)
≈ 1.414212963.

Now
√

2 ≈ 1.414213562, so the horizontal diagonal seems to be labeled with a very

good approximation of
√

2 (accurate to 6 decimal places). Under the diagonal is

the result of a computation:

42× (600) + 25×
(

1

60

)
+ 35×

(
1

602

)
≈ 42.426389.

We have 30
√

2 ≈ 42.426407, so it is this number that represents the length of

the diagonal, given the length of a side of the square is 30 (accurate to 4 decimal

places).

https://en.wikipedia.org/wiki/YBC_7289
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Note. In the previous section we saw that the Babylonians likely had knowledge

of the Pythagorean Theorem. In this section we saw that they knew how to sum

geometric sequences, they knew the quadratic formula (and considered higher order

equations), and they were capable of detailed computations. Eves summarizes this

as (see Eves’ page 44): “. . . we conclude that the ancient Babylonians were indefati-

gable table makers, computers of high skill, and definitely stronger in algebra than

geometry. One is certainly struck by the depth and the diversity of the problems

that they consider.”
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