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3.5. Discovery of Irrational Magnitudes

Note. In this section we give the history of the “discovery” of the irrational

numbers (or “incommensurable lengths,” as it would be stated at the time), as it

is understood. The Pythagoreans are center to the study, though the historical

record is incomplete.

Note. The positive integers (or “natural numbers,” N) have their roots in the

simple act of counting. Fractions follow naturally from this when measuring certain

things (or weighing things). This leads to the positive rational numbers. Rational

because they are ratios; the positive rational numbers are of the form p/q where

p, q ∈ N. The integer zero enters as a number concept sometime around 500 ce

(we will explore this in detail later). The wide acceptance of negative numbers

comes about with the growth of the theory of equations comes about in the 1500s,

which we’ll discuss in Section 8.8. Cubic and Quartic Equations. Combining these

ideas, we get the mathematical structures of the integers (both positive, negative,

and zero) Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} and the rational numbers Q = {p/q |

p, q ∈ Z, q 6= 0}. We use the symbol Z for the integers from the German word for

“count,” zalen. We use the symbol Q for the rationals because they are quotients

of integers.

Note. Eves describes (on page 82) a geometric interpretation of rational numbers.

Starting with a given line segment which we take to define a unit of length, we

mark out repeated copies of this length on a line to produce line segments of any

length n where n ∈ N. Using a compass and straight edge, we can then subdivide

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-8-8.pdf
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a unit length segment into n pieces of equal length, yielding a line segment of

length 1/n for each n ∈ N. By taking m repeated copies of such a segment, we

can construct a line segment of length m/n for any m, n ∈ N. That is, we can

construct a segment of and length q > 0 where q ∈ Q. These ideas are addressed

in Introduction to Modern Algebra 2 (MATH 4137/5137). See my online notes

for this class on Section VI.32. Geometric Constructions (notice Theorem 32.1). I

also have a PowerPoint presentation (with a transcript) and a 24-minute YouTube

video on this material (‘Compass and Straight Edge Constructions”).

Note 3.5.A. The geometric construction of rational numbers was thought to be

a way to describe all points on the number line (though the number line is a

much later idea, introduced by Descartes in the early 1600s). The Pythagore-

ans are credited with the discovery that there are, in fact, numbers that can

be constructed that are not rational. That is, the Pythagoreans proved the ex-

istence of irrational numbers. They did so by showing that the length of the

diagonal of a square with sides of length one, is not rational. That is,
√

2 is ir-

rational. A quick comment about rational and irrational numbers is appropriate

here. We have by definition, that the integers are the natural numbers, their neg-

atives, and 0: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. The rational numbers are then

Q = {p/q | p, q ∈ Z, q 6= 0}. Denoting the real numbers as R, the irrational num-

bers are R \ Q where “\” represents set subtraction). Of course without a clear

definition of the real numbers, the irrational numbers remain nebulous! You may

have heard that a rational number is one for which the decimal expansion either

ends or repeats, and an irrational number is one whose decimal expansion neither

https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/4127/Compass-Straightedge/Compass-Straightedge-Constructions.pptx
https://faculty.etsu.edu/gardnerr/4127/Compass-Straightedge/Compass-Straightedge.pdf
https://www.youtube.com/watch?v=S24GYj1rWGs
https://www.youtube.com/watch?v=S24GYj1rWGs
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terminates nor repeats. Though true, the definition in terms of ratios is more to

the point; the decimal expansion approach likely stems from the ubiquitous use

of electronic calculators starting in the 1970s. The topic of repeating decimals is

covered in Elementary to Number Theory (MATH 3120) in Section 15. Decimals

(see, in particular, Theorem 15.3).

Note 3.5.B. We know by the Pythagorean Theorem that the diagonal of a unit

square has length s =
√

2 (so that
√

2 is “constructible” with a straight edge and

compass). ASSUME
√

2 is rational, say
√

2 = a/b for some a, b ∈ N. Choose such a

and b so that they are relatively prime; that is, they have no common factors (and

the expression a/b is in “lowest terms”). This can be done by the Fundamental

Theorem of Arithmetic, also covered in Elementary to Number Theory (MATH

3120); see Section 2. Unique Factorization and notice Theorem 2.2. Then a = b
√

2

or, squaring both sides (we take a and b positive, and of course
√

2 is positive

because that is what the square root notation means, so we have no concerns

over extraneous roots as we proceed) then a2 = 2b2. We now see that a2 is even

and, since 2 is prime, we must have that a itself is even, say a = 2c. This gives

a2 = 4c2 = 2b2 or 2c2 = b2. But now we have that b2 is even and so b itself is

even. But this is a CONTRADICTION to the fact that we chose a and b to be

relatively prime. So the assumption that
√

2 is rational must be false, and hence
√

2 is irrational. A similar argument can by used to show that
√

p is irrational for

any prime p (see Problem 3.7(c)).

Note 3.5.C. A geometric interpretation of these ideas can be viewed by considering

two given line segments, `1 and `2. We might search for a third line segment `3 such

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-15.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
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that both `1 and `2 have lengths that are a natural number multiple of the length of

`3. Such line segments `1 and `2 were called by the Greeks commensurable. If there

is no such third line segment `3, the line segments `1 and `2 are incommensurable.

We now have that the diagonal of unit square is incommensurable with the unit

length side of the square, as just argued. Sir Thomas Heath in his translation into

English of Euclid’s work, The Thirteen Books of Euclid’s Elements (Cambridge

University Press, 1908), Volume III (containing Books X–XIII), states (see page

2):

“The actual method by which the Pythagoreans proved the incommen-

surability of
√

2 with unity was no doubt that referred to be Aristotle

(Anal. prior. I.23, 41 a 25–7), a reductio ad absurdum by which it is

proved that, if the diagonal is commensurable with the side, it will

follow that the same number is both odd and even.”

Heath then presents the exact same argument as given above. In this, a colon ‘:’

represents division (i.e., a quotient or ratio):
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Note. According to Thomas Heath’s A History of Greek Mathematics, Volume

I: From Thales to Euclid (Oxford University Press, 1921; see Page 155), Plato

states in Theaetetus (a dialogue between Socrates and mathematician Theaetetus,

considered a founding work on epistemology) that Theodorus of Cyrene (around

425 bce) showed that
√

3,
√

5,
√

6,
√

7,
√

8,
√

10,
√

11,
√

12,
√

13,
√

14
√

15, and
√

17 are irrational. This is explored in Problem 3.15(b), where it is stated that

Theodorus constructed
√

n for 2 ≤ n ≤ 17 and it is suggested that he may have

used a spiral shape to recursively construct these. The spiral appears on the cover

of Julian Havil’s book The Irrationals: A Story of the Numbers You Can’t Count

On (Princeton University Press, 2012):

Havil’s book gives a thorough popular-level history of the irrational and transcen-

dental numbers (though it contains LOTS of equations, and includes the use of

series). The first chapter covers the topic of this section of notes. Appendix A
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deals with “the spiral of Theodorus” and illustrates how it can be represented

in the complex plane C (going beyond n = 17). It is also shown that the func-

tion T : R → C defined as T (α) =
√

α + 1eiθ produces all of these points and

has as its graph a spiral in C (the Theodorus spiral asymptotically approaches an

Archimedean spiral). The parameter α is related to the argument of the complex

number z = T (α).

Note 3.5.D. In The Irrationals: A Story of the Numbers You Can’t Count On,

Havil relays the story that the member of the Pythagorean school Hippasus is the

one who discovered irrational numbers and that he was punished for it (see Havil’s

paged 20 and 21):

Not only is [Hippasus of Metapontum] accused of destroying the con-

cept of commensurability, he is meant to have spoken of the horror out-

side the secretive Pythagorean community—and he is meant to have

done the same with his discovery that a dodecahedron can be inscribed

within a sphere. With the authority of Iamblichus of Chalcis [in his

The Life of Pythagoras]: . . . they cast him out of the community; they

built a shrine for him as if he were dead, he who had once been their

friend. Others add that even the gods became angry with him who had

divulged Pythagoras’ doctrine; that he who showed how the dodeca-

hedron can be inscribed within a sphere died at sea like an evil man.

Others still say that the same misfortune happened on him who spoke

to others of irrational numbers and incommensurability.”

This story is briefly mentioned by Eves on page 84). Hippasus’ connection to
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pentagons, the dodecahedron, and irrational numbers is also mentioned in my online

notes for Introduction to Modern Geometry (MATH 4157/5157) on Section 1.4.

The Regular Pentagon. However, the fate of Hippasus is not well-documented

in the historical record. Concerning this, Charles Kahn in Pythagoras and the

Pythagoreans: A Brief History (Hackett Publishing, 2001) states (see his page

35): “The many stories about him [Hippasus] and his punishment for revealing

Pythagorean secrets, or for claiming them as his own, sound more like legend than

history.”

Hippasus engraving by Girolamo Olgiati (1580) from the

Wikipedia page on Hippasus

Note. As discussed in Section 3.2. Pythagoras and the Pythagoreans, the Pythagore-

ans assigned mystical powers to numbers. They assumed that the everything de-

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-4.pdf
https://en.wikipedia.org/wiki/Hippasus
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-2.pdf
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pends on the whole numbers (as Eves puts it on page 84). They had developed an

idea of proportions that depended on commensurable magnitudes. The discovery

of incommensurable magnitudes (and hence irrational numbers) would have been

a significant blow to the philosophical and religious views of the Pythagoreans. A

new theory of proportions was needed.

Note 3.5.E. This new theory is due to Eudoxus (408 bce–355 bce) and is largely

the content of Euclid’s Book V. Thomas Heath in The Thirteen Books of Euclid’s

Elements Volume II, in his Introductory Note to Book V he lays out the history as

follows (see his pages 112 and 113):

“The anonymous author of a scholium [a scholium is an annotated

written work with marginal comments or explanations made by a com-

mentator who has studied, but did not author, the work] to Book V . . . ,

who is perhaps Proclus, tells us that ‘some say’ this Book containing the

general theory of proportion. . . ‘is the discovery of Eudoxus, the teacher

of Plato.’ Not that there had been no theory of proportion developed

before his time; on the contrary it is certain that the Pythagoreans had

worked out such a theory with regard to numbers, by which must be

understood commensurable and even whole numbers. . . The discovery

of [the theory of proportion independent of commensurability] belongs

then most probably to Eudoxus.”
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