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3.6. Algebraic Identities

Note. In this section, we establish three algebraic identities in terms of areas of

rectangles. The results presented appear in Euclid’s Elements, Book II as Propo-

sitions 4, 5, and 6.

Note. The early Greeks were “completely lacking any adequate algebraic notation

[and so] devised ingenious geometrical processes for carrying out algebraic opera-

tions.” (See page of Eves 85.) These processes are part of geometrical algebra (the

topic of this section and the next in these notes). ‘Numbers’ conceptually repre-

sented quantities (or magnitudes), so negative numbers were nonexistent (though

subtraction was allowed, but it was always represented in terms of sums of areas).

In fact, zero was not yet a number!

Note. Thomas Heath in A History of Greek Mathematics, Volume I: From Thales

to Euclid states (see page 150):

“It is certain that the theory of application of areas [to geometrical alge-

bra] originated with the Pythagoreans, if not with Pythagoras himself.

We have this on the authority of Eudemus, quoted in the following

passage of Proclus: ‘These things, says Eudemus, are ancient, being

discoveries of the Must of the Pythagoreans, I mean the application of

areas. . . , their exceeding. . . and their falling short. . . . It was from the

Pythagoreans that later geometers (i.e. Apollonius of Perga) took the

names, which they then transferred to the so-called conic lines (curves),

calling one of these a parabola (application), another a hyperbola (ex-

ceeding), and the third an ellipse (falling short). . . ”
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We’ll explore conic section further in Section 6.4. Apollonius. This is also addressed

in Introduction to Modern Geometry (MATH 4157/5157) in Chapter 3. Conic

Sections.

Note. Euclid’s Elements, Books II contain some results on geometric algebra.

Books I and VI also include such results related to the quadratic equation; these

will be presented in the next section.

Note. The wording of results in Euclid’s Elements are awkward by contemporary

standards. Proposition 4 of Book II states: “If a straight line is divided into any

two parts, the square on the whole line is equal to the sum of the squares on the

two parts together with twice the rectangle contained by the two parts.” With the

lengths of the “two parts” as a and b, the “sum of the squares” is a2 + b2 (literally,

the areas of two squares with sides of lengths a and of length b). The “twice the

rectangle contained by the two parts” quantity is then 2ab. Algebraically, the

proposition is (a + b)2 = a2 + 2ab + b2. Geometrically, it is as given in Figure 16:.

Figure 16

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-Chapter-3.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-Chapter-3.pdf
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Note. Proposition 5 of Book II of Euclid is: “If a straight line is divided equally

and also unequally, the rectangle contained by the unequal parts, together with the

square on the line between the point of section, is equal to the square on half the

line.” Now, “divided equally” means that the segment is bisected (that is, cut into

two equal length pieces), whereas “and also unequally” means that another point

on (and interior to) the line segment is chosen. In Figure 17 below (based on the

argument given by Euclid), the line segment if segment PB, with bisecting point

P and “also unequally” point Q.

Figure 17

As in Eves, we represent lengths of line segments using pairs of endpoints of the

segment, so that we have AP is the length of line segment AP and we have (because

of the bisection) that AP = PB. The figure is to be interpreted as having PQ =

HF = CE = HC = FE, so that points H, C, E, F form a square. Eves represents

the area of this square as HCEF so that (PQ)2 = HCEF . We also have in Figure

17 that QB = FL = QF = BL, AG = PH = QF = BL, FL = ED, FE = LD,

and so PB = PQ + QB = FE + BL = BL + LD = BD (notice that this is

possible if we take all interior angles to be right angles; this follows from the Parallel

Postulate). Next, AP = PB since point P results in a bisection of AB. Therefore,
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we have that AGHP = (AP )(AG) = (PB)(BL) = (BD)(QB) = QEDB (as is

reflected in green in the figure below, right). Hence (AQ)(QB) + (PQ)2 = (PB)2.

Alternatively (as Eves describes) we can decompose the areas into the following

rectangles and squares:

(AQ)(QB) + (PQ)2 = AGFQ + HCEF = AGHP + PHFQ + HCEF

= PHLB + PHFQ + HCEF

= PHLB + FEDL + HCEF = (PB)2.

If we set AQ = 2a and QB = 2b, then AB = AQ + AB = 2a + 2b and so

AB = PB = a + b. Also PQ = PB − QB = (a + b) − (2b) = a − b. Then

(AQ)(QB)+(PQ)2 = (PB)2 becomes (2a)(2b)+(a−b)2 = (a+b)2 or 4ab+(a−b)2 =

(a + b)2. Alternatively, if we set AB = 2a (so that AP = PB = a) and PQ = b,

then QB = PB−PQ = a− b and AQ = AB−QB = (2a)− (a− b) = a + b. Then

(AQ)(QB)+(PQ)2 = (PB)2 becomes (a+b)(a−b)+(b)2 = (a)2 or (a+b)(a−b) =

a2 − b2. So we get the two familiar algebraic identities

4ab + (a− b)2 = (a + b)2 and (a + b)(a− b) = a2 − b2.
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Note. Proposition 6 of Book II of Euclid is: “If a straight line is bisected and

produced to any point, the rectangle contained by the whole line thus produced

and the part of it produced, together with the square on half the line bisected, is

equal to the square on the straight line made up of the half and the part produced.”

Let the “straight line” be line segment AB, let it be bisected at point P , and

extend AB be “produced to” point Q. Then “the rectangle contained by the whole

line thus produced [that is, line segment AQ] and the part of it produced [that

is, line segment BQ]” is the rectangle with area (AQ)(BQ), and the “square on

half the line bisected” is a square with sides of length PB. This gives an area of

(AQ)(BQ)+(PB)2. This is claimed to be equal to “the square on the straight line

made up of the half and the part produced” is the line segment PQ. See Figure 18

below. Proposition is then making the claim that (AQ)(BQ) + (PB)2 = (PQ)2.

This can be justified with the same “dissection” of the areas given in Figure 17

for Proposition, but with B and Q interchanged. Notice that with AQ = 2a and

BQ = 2b, we again have 4ab + (a− b)2 = (a + b)2.
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Note. A easier use of geometric algebra to establish the identity 4ab + (a− b)2 =

(a + b)2 is given by the square in Figure 19 above.
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