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3.7. Geometric Solution of Quadratic Equations

Note. In this section, we consider compass and straight edge constructions of

solutions to certain quadratic equations. We use similar triangles, circles, and

parallelograms to construct solutions to quadratics of the form x2 = ab, x2 − ax +

b2 = 0, and x2 − ax− b2 = 0, and x2 + ax + b2 = 0 where a and b are constructible

lengths. We regularly appeal to Euclid’s Elements Book I for needed constructions.

Note. If line segments of lengths a, b, and c are constructible, then by the “method

of proportions” a line segment of length x can be constructed satisfying a : b = c : x

(using colons to represent ratios). That is, the equation a/b = c/x or ax = bc

can be “solved.” The construction is given in Figure 20 (left) and it is based

on the construction of a line parallel to a given line through a point not on the

line (such a construction is given in Euclid Book I as Proposition 31). The fact

that the resulting x satisfies the desired equation follows by considering similar

triangles. A modern algebra compass and straight edge construction of a solution

to ax = bc is given in Introduction to Modern Algebra 2 (MATH 4127/5127) in

Section VI.32. Geometric Constructions (see Theorem 32.1); a video containing

this material is posted on my YouTube channel as well: Compass and Straight

Edge Constructions (see Theorem 32.1 in the video; accessed 3/4/2023). A line

segment of length x can also be constructed satisfying a : x = x : b. That is,

the equation a/x = x/b or x2 = ab can be “solved.” The construction requires a

circle with diameter a + b, as given in Figure 20 (right). With line segments of

length a and b, it is easy enough to construct a segment of length a + b. This

https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://www.youtube.com/watch?v=S24GYj1rWGs
https://www.youtube.com/watch?v=S24GYj1rWGs
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segment can be bisected (Euclid’s Proposition 10 in Book I gives the construction),

and then the center and radius of the circle is known so that the circle can be

constructed. A perpendicular to the radius at the point where the two line segments

meet can be constructed by Euclid Book I Proposition 11. This then determines the

segment of length x. We now give a “modern” argument that Figure 20 gives the

correct value of x. If center of the circle is at the origin of the Cartesian (X, Y )-

plane with the given radius along the X-axis, then the equation of the circle is

X2 + Y 2 = ((a + b)/2)2. We denote the distance of the desired line segment from

the origin as X. Assuming, as in Figure 20, that it lies to the right of the center

and that a > b, then we have X = (a+ b)/2− b = (a− b)/2. With the length of the

segment denoted Y = x in Figure 20, we have the relationship X2+Y 2 = ((a+b)/2)2

or ((a − b)/2)2 + x2 = ((a + b)/2)2 or (a2 − 2ab − b2)/4 + x2 = (a2 + 2ab + b2)/4

or x2 = 2ab/4 + 2ab/4 = ab, as desired. For the geometric purist, this can also be

shown using similar triangles. This argument is in the above-mentioned YouTube

video (see Theorem 32.6′).

Note/Definition. Before we address quadratics as presented by Euclid, we need

to translate his wording into pictures to better understand his claims. We are

interested in “applying parallelograms to segments.” Consider Figure 21.
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We apply parallelogram AQRS to segment AB in three cases (as given in Figure 21

from left to right): (1) when Q is between A and B, (2) when Q and B coincide, and

(3) when B is between A and Q. We start with segment AB and extend the segment

beyond point B (if necessary) and take point Q on the resulting ray. We are then

interested in parallelogram AQRS and its relation to the parallelogram QBCR.

When Q is between A and B, parallelogram AQRS is applied to segment AB,

falling short by Parallelogram QBCR. When A coincides with B, parallelogram

AQRS is applied to segment AB. When B lies between A and Q, parallelogram

AQRS is applied to segment AB, exceeding by parallelogram QBCR. We will apply

parallelogram AQRS of given area to line segment AB of known length. In this

way, we introduce a quadratic equation concerning the equality of areas of the given

parallelogram and the new parallelogram with AB as once side. For simplicity, the

examples given below involve special cases where the parallelograms are rectangles.

Note 3.7.A. Euclid’s Book I Proposition 44 solves the construction: To apply to

a given line segment AB a parallelogram of given area and given base. (Heath’s

translation of the Euclid’s Elements states Proposition 44 as: “To a given straight

line to apply, in a given rectilinear angle, a parallelogram equal to a given triangle.”)

Here we consider the special case in which the base angles are right angles, so
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that both parallelograms are rectangles. Let the dimensions of the parallelogram

(rectangle in our case) AQRS of given area be b and c, so that the given area is bc.

With segment AB of length, say a, Proposition 44 tells us that applying rectangle

AQRS to AB yields a rectangle with base AB of the same area. Let x denote

the altitude of this rectangle. Since the areas are the same, we have ax = bc or

x = bc/a. So for given line segments of lengths a, b, and c, Proposition 44 gives

the existence of a line segment of length bc/a.

Note. If we think in terms of constructible numbers, then constructing x = bc/a

is addressed in Introduction to Modern Algebra 2 (MATH 4137/5137) in Section

VI.32. Geometric Constructions (notice Theorem 32.1); we also mentioned this in

Section 3.5. Discovery of Irrational Magnitudes.

Note 3.7.B. Proposition 28 of Euclid’s Book VI solves the construction: To ap-

ply to a given line segment AB a parallelogram AQRS equal in area to a given

rectilinear figure F , and falling short by a parallelogram QBCR similar to a given

parallelogram, the area of F not exceeding that of the parallelogram described on

half of AB and similar to the defect QBCR. This is pretty much Heath’s trans-

lation as given in his Elements (Volume 2), except that the letters are not given

in the translation. Consider the special case where the given rectilinear figure F

is a square, and the base angles are right angles. To clarify what is being claimed,

we turn to Heath’s translation of Euclid’s Elements, Volume 2 which includes com-

mentary on this proposition in the special case. He states (see his page 265): “This

https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-5.pdf
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is the problem of applying to a given straight line a rectangle equal to a given area

and falling short by a square. . . .” So we consider Figure 21 (left) where parallelo-

gram QBCR is a square and rectangle AQRS has the area of rectilinear figure F

(see the figure below). Denote the length of AB as a, and the length of a side of F

as b (so that the area of F is b2). Denote the length of segment AQ as x. Then the

length of QB is the length of AB minus the length of AQ: a− x. Since QBCR is

a square, then the length of BC (and also of AS) is a−x; by giving us a square for

the part by which we “fall short,” this determines the height of rectangle AQRS.

Therefore, the area of rectangle AQRS is x(a− x).

Propositions 28 of Book VI tells us that this area equals the area of rectilinear figure

F . That is, x(a− x) = b2. This allows us to geometrically solve the quadratic:

x(a−x) = b2 or x2−ax+b2 = 0. (1)

Note 3.7.C. Proposition 29 of Euclid’s Book VI solves the construction: To ap-

ply to a given line segment AB a parallelogram AQRS equal in area to a given

rectilinear figure F , and exceeding by a parallelogram BQRC similar to a given

parallelogram. Consider the special case in which the base angles are right angles



3.7. Geometric Solution of Quadratic Equations 6

and the excess is a square. To clarify, we again turn to Heath’s translation of

Euclid’s Elements, Volume 2 in which he states (see his page 267): “This is the

problem of applying to a given straight line a rectangle equal to a given area and

extending it by a square.” So we consider Figure 21 (right) where parallelogram

BQRC is a square and rectangle AQRS has the area of rectilinear figure F (see

the figure below). Denote the length of AB as a, and the length of a side of F as

b (so that the area of F is b2). Denote the length of segment AQ as x. Then the

length of BQ is the length of AQ minus the length of BQ: x−a. Since BQRC is a

square, then the length of BC, x− a, is the height of rectangle AQRS. Therefore,

the area of rectangle AQRS is x(x− a).

Propositions 29 of Book VI tells us that this area equals the area of rectilinear figure

F . That is, x(x− a) = b2. This allows us to geometrically solve the quadratic:

x(x−a) = b2 or x2−ax−b2 = 0. (2)

Note 3.7.D. Eves mentions (as does Heath in his comments; Eves’ main source

in this section is probably Heath’s translation of the Elements, Volume 2) that the

special case of Proposition 28 of Book VI (which we denote as “Proposition VI.28”)



3.7. Geometric Solution of Quadratic Equations 7

as stated in Note 3.7.B, can be addressed with a more elementary approach than

that given in Book VI. Euclid’s Proposition II.5 states: “If a straight line segment

AB is cut into equal and unequal segments, then the rectangle contained by the

unequal segments of the whole together with the square on the straight line between

the points of section is equal to the square on the half.” Eves clarifies this as (page

89, slightly paraphrasing): ‘Let AB be a line segment and consider a line segment

of length b where b not greater than half the length of AB. We are to divide AB

by a point Q such that (AQ)(QB) = b2.’ (Eves does not distinguish between a line

segment AB and its length (AB), but we are more conscientious in these notes.)

The proof is as follows (see Figure 22 below). Bisect AB at point P . Construct PE

perpendicular to AB at point P . Construct a circle with E as its center and PB

as its radius. Let Q be the point of intersection of the circle with AB, as shown in

Figure 22 (each of these constructions follow from results in Book I).

In the terminology of Proposition II.5, the “unequal segments” are segments AQ

and QB (so that the “rectangle contained by the unequal segments” has area

(AQ)(QB)). The “straight line between the points of section” is PQ (so that

“square on the straight line between the points of section” has area (PQ)2). The

“square on the half” is the square on AP or on PB, so that it has area (PB)2.

Proposition II.5 then implies that (AQ)(QB) + (PQ)2 = (PB)2. To verify this,

we introduce Cartesian coordinates (X, Y ) and consider the equation of a circle
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centered at the origin (which we take to be point E) with radius (PB), then we

have X2 + Y 2 = (PB)2. With Q identified with the point (X, Y ) = (PQ,−b), we

have (PQ)2 + (−b)2 = (PB)2, or

b2 = (PB)2 − (PQ)2 = ((PB) + (PQ))((PB)− (PQ))

= ((AP ) + (PQ))((PB)− (PQ)) = (AQ)(QB).

Rearranging, we have (AQ)(QB)+(PQ)2 = (PB)2, as claimed in Proposition II.5.

With the length of AB as AB = a and the (“unknown”) length of AQ as AQ = x

(so that (QB) = a − x), we can change b2 = (AQ)(QB) into b2 = x(a − x) or

x2 − ax + b2 = 0. Notice that if the solutions of x2 − ax + b2 = 0 are x = r and

x = s, then (by the Factor Theorem) we have x2−ax+b2 = (x−r)(x−s) = x2−(r+

s)x+(rs), so that r + s = a and rs = b2. We know that (AQ)+ (QB) = (AB) = a

and (A)(QB) = b2, we the solutions to x2 − ax + b2 = 0 must be (AQ) and (QB).

Notice that in Note 3.7.B, only one solution of x2−ax+b2 = 0 was constructed. In

modern notation, we also have that −(AQ)− (QB) = −((AQ) + (QB)) = −a and

(−(AQ))(−(QB)) = (AQ)(QB) = b2, so we similarly have that the solutions to

x2 + ax + b2 = 0 are −(AQ) and −(QB), if one “believes in” or “accepts” negative

numbers; but this is an idea hundreds of years into the future from the time of

Euclid.

Note 3.7.E. Similarly, the special case of Proposition VI.29 given in Note 3.7.C

can be addressed with a more elementary approach than that given in Book VI

(as mentioned by both Eves and Heath). Euclid’s Proposition II.6 states: “If a

straight line segment AB is bisected and a straight line is added to it in a straight
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line, then the rectangle contained by the whole with the added straight line and the

added straight line together with the square on the half equals the square on the

straight line made up of the half and the added straight line.” Eves again clarifies

(we paraphrase): ‘Let AB be a line segment and consider a line segment of length

b. We are to extend AB to a point Q such that (AQ)(BQ) = b2.’ The proof is

as follows (see Figure 23 below). Construct BE of length b perpendicular to A at

point B. Bisect AB and denote its midpoint as P . Construct a circle centered at P

with radius PQ. Let Q be the point of intersection of the circle with the extension

of AB, as shown in Figure 23 (each of these constructions follow from results in

Book I).

In the terminology of Proposition II.6, “the rectangle contained by the whole and

the added straight line” is the rectangle with area (AQ)(BQ), “the square on the

half” has area (AP )2 = (PB)2, and “the square on the straight line made up of the

half and the added straight line” has area (PQ)2. Proposition II.6 then implies that

(AQ)(BQ) + (PB)2 = (PQ)2. To verify this, we introduce Cartesian coordinates

(X, Y ) and consider the equation of a circle centered at the origin (where we take

to be point P ) with radius (PQ), then we have X2 + Y 2 = (PQ)2. With point E

identified with the point (X, Y ) = (PB, BE), we have (PB)2 + (BE)2 = (PQ)2 or

(PB)2+b2 = (PQ)2 or b2 = (PQ)2−(PB)2. Hence b2 = (BE)2 = (PQ)2−(PB)2 =
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((PQ) + (PB))(PQ) − (PB)) = ((PQ) + (AP ))((PQ) − (PB)) = (AQ)(BQ).

Therefore b2 = (BE)2 = (PQ)2−(PB)2 = (AQ)(BQ), or rearranging (AQ)(BQ)+

(PB)2 = (PQ)2, as claimed in Proposition II.6. Again with a as the length of AB,

we have (AQ) + (−BQ) = (AB) = a and (AQ)(−BQ) = −b2, so we have the

solutions of the quadratic x2 + ax− b2 = 0 are (AQ) and −(BQ) (as discussed in

Note 3.7.D). Similarly (changing the signs of (AQ) and −(BQ)), the solutions of

x2 − ax− b2 = 0 are −(AQ) and (BQ).

Note. To summarize, we have addressed the types of quadratic equations (where

a > 0 and b > 0) and produced the types of solutions as follows:

Type of quadratic Solved in Solutions

x2 − ax + b2 = 0 Note 3.7.B one + solution

x2 − ax− b2 = 0 Note 3.7.C one + solution

x2 − ax + b2 = 0 Note 3.7.D two + solutions

x2 + ax + b2 = 0 Note 3.7.D two − solutions

x2 + ax− b2 = 0 Note 3.7.E one +, one − solution

x2 − ax− b2 = 0 Note 3.7.E one +, one − solution

Notice that in the last four cases, we have constructed all solutions of a quadratic

equation (when two real solutions exist) in the case where the coefficients a and

b2 are constructible. If we disallow negative numbers, then the negative solutions

are not of interest. In fact, to avoid the use of negatives we need to rearrange the

quadratics equations as:
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Quadratic equation Rearranged equation

x2 − ax + b2 = 0 x2 + b2 = ax

x2 + ax + b2 = 0 x2 + ax + b2 = 0

x2 + ax− b2 = 0 x2 + ax = b2

x2 − ax− b2 = 0 x2 = ax + b2

We’ll see this need to rearrange equations to avoid negative coefficients again when

we consider cubic equations and Girolamo Cardano’s Ars magna of 1545 in Section

8.8. Cubic and Quartic Equations.

Note 3.7.F. In terms of compass and straight edge constructions, we show in In-

troduction to Modern Algebra 2 (MATH 4137/5137) that if c ≥ 0 is constructible

the
√

c is constructible. The algebraic proof is given in my online notes for this class

on Section VI.32. Geometric Constructions (see Corollary 32.8). A more geometric

proof of this (using the Pythagorean Theorem) is given in the video supplement

to those notes. My supplemental presentation “Compass and Straight Edge Con-

structions” is available as a YouTube video(accessed 3/10/2023) and a PowerPoint

presentation with a written transcript (see Theorem 32.6′). The constructible num-

bers (that is, those real numbers c for which one can use a compass and straight

edge to construct a line segment of length c) are classified in Theorem 32.6 of

Section VI.32. Geometric Constructions as follows:

Theorem 32.6. The field of constructible real numbers consists pre-

cisely of all real numbers that we can obtain from Q by taking square

roots of positive numbers a finite number of times and applying a finite

number of field operations.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-8-8.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-8-8.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
http://www.youtube.com/watch?v=S24GYj1rWGs
http://faculty.etsu.edu/gardnerr/4127/Compass-Straightedge/Compass-Straightedge-Constructions.pptx
http://faculty.etsu.edu/gardnerr/4127/Compass-Straightedge/Compass-Straightedge-Constructions.pptx
http://faculty.etsu.edu/gardnerr/4127/Compass-Straightedge/Compass-Straightedge.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
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The “field operations” mentioned here are addition and multiplication (which, using

inverses, includes subtraction and division, but subtraction and division are not

legitimate field operations!). The operations and the taking of square roots can be

iterated so that, for example, 15 ×

√√√√ 1 +
√

3√
22/7− 4

√
7/3

is constructible. Examples

of a non-constructible numbers include 3
√

2, 5
√

3/2, and all transcendental numbers

such as π and e. The history of constructible numbers, algebraic numbers, and

transcendental numbers is given in Section 14.2. Impossibility of Solving the Three

Famous Problems with Euclidean Tools. These ideas also play a role in the next

chapter.

Note. Since this chapter is about “Pythagorean Mathematics,” we look for con-

nections of these ideas (which we found in Euclid’s Elements) to the Pythagoreans.

We rely again on Thomas Heath’s A History of Greek Mathematics, Volume I: From

Thales to Euclid (Oxford University Press, 1921) which states (see Page 153):

“[Some of Euclid’s Book II results] were also employed by the

Pythagoreans for the specific purpose of proving the property of ‘side-;

and ‘diameter-’ numbers. . . . The geometrical algebra. . . as we find it in

Euclid Books I and II was Pythagorean. It was of course confined to

problems not involving expressions above the second degree. Subject

to this, it was an effective substitute for modern algebra.”
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https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-14-2.pdf
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