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4.4. The Euclidean Tools

Note. In this section we give the properties of the compass and straight edge,

as endowed to them by the first postulates of Euclid’s Elements. We consider

both a “Euclidean compass” and a “modern compass.” Some general history of

constructions is given, and we explore the implications of using only a compass and

straight edge in geometry.

Note. The straight edge allows us to construct (“draw”) a straight line of any

length through any two (distinct) given points. This is built into Euclid’s postulates

of Book I in Postulate 1 and Postulate 2:

Postulate 1. To draw a straight line from any point to any point.

Postulate 2. To produce a finite straight line continuously in a straight line.

Postulate 1 tells us that given any two points A and B, the line segment AB can

be constructed (an assumption of uniqueness should be added). Postulate 2 tells

us that any line segment can be extended indefinitely. A subtlety of Postulate 1 is

that the two points A and B must already be determined (for example, a point is

determined by the intersection of two nonparallel lines); that is, the points must

be constructed before the line or line segment can be created.

Note. The compass allows us to construct (“draw”) a circle with any given point

as center and passing through any given second point (this is Eves’ statement of

the use of the compass; see page 110). This is built into Euclid’s third postulate of
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Book I:

Postulate 3. To describe a circle with any center [i.e., given point] and distance

[i.e., radius as determined by a second given point].

Again, we must already have the center of the circle determined (or “constructed”)

and we must already have the radius constructed in the sense that we have con-

structed a line segment with length equal to the desired radius (or the second point

must already be constructed). Uniqueness should be assumed in Postulate 3 also.

Note/Definition. A compass and straight edge used in a way as to satisfy Pos-

tulates 1, 2, and 3, make up the Euclidean tools. The straight edge is unmarked

and only used to create lines or line segments through already-constructed points;

it is not used like a ruler to measure distance.

From the Geometric Constructions webpage of MATH.net (accessed 3/11/2023)

A Euclidean compass cannot be used to (directly) transfer a given distance AB to

the given center C; it “may be supposed to collapse if either leg is lifted from the

paper” (as Eves says on page 110). The points of a modern compass can be places

at given points A and B, and then “locked” into place so that the distance AB can

be translated to point C. So a modern compass has more abilities than a Euclidean

https://www.math.net/geometric-construction
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compass. However, any construction that can be performed with a modern compass

and straight edge can also be performed with a Euclidean compass and straight

edge. This can be shown using Proposition I.2 (“To place at a given point (as an

extremity [i.e., as an endpoint]) a straight line equal to a given straight line”), as

is to be done in Problem 4.1.

Note. As observed in Supplement. Proclus’s Commentary on Eudemus History of

Geometry, Thomas Heath in his A History of Greek Mathematics, Volume I. From

Thales to Euclid (Clarendon Press, Oxford, 1921) speculates that Oenopides made

compass and straight-edge constructions central to geometry: “It may therefore be

that Oenopides’s significance lay in improvements of method from the point of view

of theory; he may, for example, have been the first to lay down the restriction of

the means permissible in constructions to the ruler and compasses which became a

canon of Greek geometry for all ‘plane’ constructions, i.e. for all problems involving

the equivalent of the solution of algebraical equations of degree not higher than the

second.” See Heath’s pages 175 and 176. Although the first three postulates of

the Elements clearly do lay out an approach motivated by compass and straight

edge constructions, Heath also comments in his translation of Euclid’s Elements,

Volume 1 (see his page 124): “There is of course no foundation for the idea, which

has found its way into many text-books, that ‘the object of the postulates is to

declare that the only instruments [emphasis added] of the use of which are permitted

in geometry are the rule and compass.’ ”

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Supplement-Proclus-History-Geometry.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Supplement-Proclus-History-Geometry.pdf
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Note 4.4.A. As a quick illustration of a compass and straight edge proof, we

consider Euclid’s Proposition I.1: “On a given finite straight line [segment] to

construct an equilateral triangle.” We start with line segment AB (see the figure

below, upper left). First, we use the compass to draw a circle centered at A

with radius AB (so that the stationary point of the compass is placed at A and

the drawing point of the compass is placed at B; see the figure, upper center and

upper right). Second, we use the compass to draw a circle centered at B with radius

AB (see the figure, lower left and lower center). The resulting circles intersect at

two points. Label one of the points as C. Use the straight edge to introduce line

segments AC and BC (see the figure, lower right). Since distances AB, AC, and

BC are all radii of circles of radius AB, then AB = AC = BC and the triangle

ABC is an equilateral triangle, as claimed.
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Note 4.4.B. As we will discuss in the next three sections, if we restrict our tools

to a compass and straight edge, then there are certain constructions that cannot

be performed (in particular, the “Three Famous Problems”). In terms of numbers

(i.e., distances), we start with some line segment which we use to designate the unit

length. Then, based on that unit length, other length segments can be constructed.

For example, if line segment AB in our proof of Proposition I.1 is of length 1 and

we construct the line segment from point C to the midpoint of AB (line segments

are bisected in Proposition I.10), then we have constructed a line segment of length
√

3/2 (by the Pythagorean Theorem). We have already observed (in Section 3.7.

Geometric Solution of Quadratic Equations; see Note 3.7.F) that the constructible

numbers are precisely the real numbers that can be obtain from Q by taking square

roots of positive numbers a finite number of times and applying a finite number

of field operations. This is Theorem 32.6 in my online notes for Introduction to

Modern Algebra 2 (MATH 4137/5137) on Section VI.32. Geometric Constructions.

It is this modern algebra result from the 1800s that will give the unsolvability of

the three famous problems. A very interesting geometry paper by Wendell Strong

titled “Is Continuity of Space Necessary to Euclid’s Geometry?” was published

in the Bulletin of the American Mathematical Society, 4(9), 443–448 (June 1898),

and is available on the AMS webpage In this paper, Strong considers (see his page

444) “the least space in which the constructions of Euclid are possible; it contains

the points which can be obtained by a finite number of these constructions and

no others.” He effectively introduces Cartesian coordinates to the plane R2, and

then eliminates all point with at least one coordinate a nonconstructible number.

Due to the nature of constructible numbers in terms of the taking of square roots,

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-7.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-7.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://www.ams.org/journals/bull/1898-04-09/S0002-9904-1898-00536-0/S0002-9904-1898-00536-0.pdf
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Strong uses the term “quadratic number” instead of “constructible number.” He

then defines what he calls quadratic space consisting of all points in R2 such that

the first and second coordinates are quadratic numbers. Strong considers a three

dimensional space, but our purposes are served by a two dimensional “quadratic

plane.” He claims the following two results:

Theorem 1. Any two points of the quadratic space are at a quadratic distance

from each other.

Theorem 2. A point of continuous space at quadratic distances from three points

of the quadratic space is a point of the quadratic space.

The surprising result of all of this, is that continuity is not needed to do the com-

-pass and straight edge geometry of Euclid! Strong’s space is shot full of holes! Not

to go too far astray, but there are only countably many quadratic numbers (they

are special cases of algebraic number—an algebraic real number is a real number

that is the root of some polynomial with integer coefficients—and there are only

countably many algebraic numbers). There are uncountably many real numbers.

The implication of these facts is that there are only countably many points in in

the quadratic plane (or in quadratic space), but there are uncountably many points

in R2. Think of it as the quadratic plane has infinitely many points, but it’s a small

infinity! The Cartesian plane R2 has in infinite number of points as well, but it is a

bigger kind of infinity! Cardinalities of infinite sets are possibly discussed in Math-

ematical Reasoning (MATH 3000) and definitely in Analysis 1 (MATH 4127/5127).

See my online notes for these classes, respectively, on Section 4.3. Countable and

Uncountable Sets and Section 1.3. The Completeness Axiom. The quadratic plane

and quadratic space have an uncountable infinities of holes in them!
Revised: 4/30/2023

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf

