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4.5. Duplication of the Cube

Note. In this section we discuss the classical compass and straight edge problem

of constructing a cube of twice the volume of a given cube. This problem is called

“duplication of the cube” or (better) “doubling the cube.” This is equivalent to

constructing the number 3
√

2. We give some history of the problem and discuss

constructions that involve more than just a compass and straight edge.

Note. Let’s start with the punch-line. Recall that the constructible numbers are

precisely the real numbers that can be obtain from Q by taking square roots of

positive numbers a finite number of times and applying a finite number of field

operations (see Note 3.7.F of Section 3.7. Geometric Solution of Quadratic Equa-

tions). This is Theorem 32.6 in my online notes for Introduction to Modern Algebra

2 (MATH 4137/5137) on Section VI.32. Geometric Constructions. So, the num-

ber 3
√

2 is not constructible and the cube cannot be doubled with a compass and

straight edge! This was not known until the development of modern algebra in the

1800s, so there is a rich history to the problem (the history of algebraic solution by

Pierre Wantzel in 1837 is given in Section 14.2. Impossibility of Solving the Three

Famous Problems with Euclidean Tools). Additional tools (other than a compass

and straight edge) have been proposed to solve the construction problem.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-7.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-7.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-14-2.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-14-2.pdf
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Note. Thomas Heath in his A History of Greek Mathematics, Volume I: From

Thales to Euclid (Oxford University Press, 1921) credits Eutocius’s (480 ce–540

ce) commentary on Archimedes, On the Sphere and Cylinder, II. 1, as “a pre-

cious collection of solutions of this famous problem.” See Heath’s page 244; Heath

gives a detailed history of the problem on his pages 244–270 and this is likely the

source of Eves’ presentation. The story (told by an unknown ancient poet) tells

of the mythical King Minos’ dissatisfaction with a tomb erected to his son Glau-

cus. He demanded that it be made twice the size (i.e., twice the volume) and

that this could be accomplished by doubling the linear dimensions of the tomb.

Of course, doubling the linear dimensions results in increasing the volume by a

factor of eight. In a purported letter from Eratosthenes of Cyrene (276 bce–194

bce) to Ptolemy Euergetes (the pharaoh of Egypt from 246 bce to 222 bce; not

be confused with second century Roman astronomer and mathematician Claudius

Ptolemy) it is stated: “Geometers took up the question and sought to find out how

one could double a given solid while keeping the same shape; the problem took the

name of ‘the duplication of the cube’ because they started from a cube and sought

to double it.” Progress was minimal until Hippocrates of addressed the problem

by considering two mean proportionals (discussed below), but this simply trans-

lated the problem into one concerning proportionals. The story continues that the

Delians (that is, people of Greek island of Delos) were commanded by their oracle

to double a certain altar and, trying to apply Hippocrates solution, came across the

same difficulties as in the original construction problem. It seems that the prob-

lem was attacked at Plato’s Academy, some of the stories say (“though probably

erroneously,” Eves page 111) that Plato himself gave a solution. Heath also states
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(see his page 246): “After Hippocrates had discovered that the duplication of the

cube was equivalent to finding two mean proportionals. . . , the problem seems to

have been attached in [this] form exclusively.” Heath goes on to describe solutions

by Archytas (circa 400 bce solution based on intersections not in the place, but

of surfaces in space), Eudoxus, Menaechmus (two solutions), Pluto (attributed to

Plato), Eratosthenes, Nicomedes, Appolonius, Heron, Philon (these three giving

similar solutions), Diocles (using the cissoid), Sporus, and Pappus (these last two

gave the same solution as Diocles). In these notes, we concentrate on the solutions

of Hippocrates, (attributed to) Plato, and Menaechmus.

Note 4.5.A. Hippocrates of Chios (circa 470 sc bce–circa 410 bce) addressed the

problem around 440 bce by reducing it to the construction of two mean proportion-

als between two given line segments of lengths s and 2s. Stated in terms of propor-

tions with the two mean proportions as x and y, he considers s : x = x : y = y : 2s.

With these “proportions” written as quotients we have
s

x
=

x

y
=

y

2s
, or sy = x2

and y2 = 2sx. This then gives y2 =

(
x2

s

)2

=
x4

s2 and hence y2 =
x4

s2 = 2sx or

x3 = 2s3. Then with s as the length of a side of a given cube (that is, a cube of

given volume s3) the x is the “unknown” length of a side of a cube of twice the

volume of the given cube: x3 = 2(s3).

Note 4.5.B. Menaechmus (circa 380 bce–circe 320 bce) gave two solutions to

Hippocrates’ two mean proportionals problem. His results are described by Euto-

cius in his commentary on Archimedes’ On the Sphere and Circle. Both solutions
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involve finding a point of intersection of two conic sections. In one solution he

considers the solution of two parabolas, and in the other he consideres the inter-

section of a parabola and a hyperbola. Based on these solutions “it is inferred

that Menaechmus was the discoverer of the conic sections.” See Heath, page 251.

The first solution follows from the two mean proportionals problem of Note 4.5.A:
s

x
=

x

y
=

y

2s
. This implies y =

x2

s
and x =

y2

2s
. In the Cartesian plane, both of

these curves are parabolas (one opening upward and the other opening rightward).

These intersect, as shown in Note 4.5.A, when x = 3
√

2s (and hence x3 = 2s3, as

desired). The second solution is considered in the history component of Introduc-

tion to Modern Geometry (MATH 4157/5157) on Chapter 3. Conic Sections (see

Note 3.A). We now give a slightly modified presentation of the same argument.

The two mean proportionals problem of Note 4.5.A,
s

x
=

x

y
=

y

2s
, implies y =

x2

s

and y =
2s2

x
. In the Cartesian plane, y =

x2

s
is a parabola (opening upward)

and y =
2s2

x
is a hyperbola with the coordinate axes as asymptotes (it is a rota-

tion through π/4 of a hyperbola with a horizontal axis). These also intersect, as

shown in Note 4.5.A, when x = 3
√

2s (and hence x3 = 2s3, as desired). Of course,

Menaechmus did not use the terms “parabola” or “hyperbola,” since this is ter-

minology introduced by Apollonius of Perga (circa 262 bce–circa 190 bce). Now

Meneachmus cannot describe conic sections in terms of Cartesian products (not

can Apollonius), since such things do not appear until René Descartes (March 31,

1596–February 11, 1650) introduces them in his 1637 La Géométrie. Instead, he

introduces these curves using the definitions giving the curves as the locus of all

points whose distance from a fixed point (called the focus) is a constant multiple

(called the eccentricity) of the distance to a fixed line (called the directrix). When

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-Chapter-3.pdf
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0 < e < 1 the conic is an ellipse, when e = 1 is is a parabola, and when e > 1 is is

a hyperbola. Heath gives a description of Menaechmus’ solution (see his pages 254

and 255), where the semi latus rectum plays a prominent role.

Note 4.5.C. To illustrate the use of idealized mechanical devices in the solution of a

construction problem, we consider the solution credited to Plato. We follow Eves’

presentation on this, who comments (see page 112): “. . . it is known that Plato

objected to such methods [i.e., mechanical methods], it is felt that the ascription

to Plato is erroneous.”

Consider the two triangles of Figure 30 left. We take triangles CBA and DAB

as right triangles with the right angles as B and A, respectively. The triangles

share leg AB. Let the hypotenuses AC and BD intersect perpendicularly at point

P , as shown. Now triangles CPB and BPA are similar because: the angle at

B in CPB is the complement of the angle at B in BPA, and the angle at C is

the complement of the angle at B in CPB, so the angle at C equals the angle

at B in BPA. Therefore corresponding angles in CPB and BPA are equal, and

these triangles are similar. Also triangles APD and CPB are similar: the angle
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at C equals the angle at A in APD since they are alternating interior angles

resulting from a transversal which cuts parallel lines, and similarly the angle at

D equals the angle at B in CPB. Therefore corresponding angles in CPB and

APD are equal, and these triangles are similar (and also similar to BPA). So

corresponding edges of these three triangles are in equal proportions and we have

PC : PB = PB : PA = PA : PD. So, in the terminology of Menaechmus, PB

and PA are the two mean proportional between PC and PD. If the figure can be

constructed whee PD = 2(PC), then we have a doubling of the cube (because we

will then have constructed 3
√

2, as argued in Notes 4.5.A and 4.5.B).

Now we construct the “mechanism” as given in Figure 30 right. First, draw two

perpendicular line segments PC and PD intersecting at P and with PD = 2(PC).

Second, place a “carpenter’s square” (as Eves says, page 112; we just need two

rays that meet at a right angle) with inner edge RST on the figure so that
−→
SR

passes through D and the vertex S of the right angle lies on CP extended. On
−→
ST , place a right triangle (or another “carpenter’s square”) UV W with leg V W on
−→
ST . Slide triangle UV W along

−→
ST until leg V U passes through C, as in Figure 30

right. Finally, “manipulate” the device until point V falls on DP extended. The
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manipulation is done, in the case given in Figure 30 right, by sliding the carpenter’s

square further along CP extended (i.e., move point S further from point P while

keeping S on CP extended) while keeping fixed point D on
−→
SR. This results in

a sort-of clockwise rotation of the carpenter’s square that will move V closer to S

on
−→
ST with it eventually lying on DP extended. This results in a configuration as

given in Figure 30 left, with A replaced by S, B replaced by V , and PD = 2(PC),

as required.

Note. Some additional constructions are given in the Chapter 4 problems. Prob-

lem 4.2 addresses the solutions of Archytas and Menaechmus, Problem 4.3 covers

solutions of Apollonius and Eratosthenes, and Problem 4.4 gives Diocies solution

using the cissoid.

Note. We now give a modern resolution of the duplication of the cube. Effectively,

this requires establishing the existence of 3
√

2. The approach taken when using only

Euclidean tools is to give a straight edge and compass construction of 3
√

2 which,

as we observed above, does not exist. So how do we really know that this number

exists? The same question holds for any root of a positive real number. We might

observe that there is a number a which, when cubed, is less than 2: a3 < 2 (we

could take a = 1 for example, or a = 5/4; 13 = 1 and (5/4)3 = 125/64 = 1.953125).

There is also a number b which, when cubed, is greater than 2: b3 > 2 (we could

take b = 2 or b = 63/50; 23 = 8 and (63/50)3 = 250047/125000 = 2.000273).

So there must be some number c between a and b, a < c < b, such that c3 = 2.
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But this requires some kind of concept of a continuum (a concept not rigorously

developed until the 19th century). We see in Note 4.5.C that the sliding around of

the second carpenter’s square is equivalent to an assumption of a continuum. The

continuum idea is addressed in Analysis 1 (MATH 4217/5217) with the Axiom of

Completeness for the real numbers R. It states that every set of real numbers

with an upper bound has a least upper bound. For details, see my online notes for

Analysis 1 on Section 1.3. The Completeness Axiom. The cube root of 2 is then

defined as the least upper bound (denoted “lub”) of a set with an upper bound.

The formal definition is: 3
√

2 = lub{x | x3 < 2}. An upper bound is given by b = 2,

for example (or b = 63/50) and the existence of the least upper bound is then given

by the Axiom of Completeness. (It is the Axiom of Completeness that makes the

real numbers a continuum.) More generally, for c > 0 a positive real number and

n a positive integer, we define n
√

c = lub{x | xn < y} (this is Theorem 1-8 in the

Analysis 1 notes on Section 1.2. The Real Numbers, Ordered Fields and a proof is

to be given in Exercise 1.3.9 in that class that ( n
√

c)n = c, as desired). The least

upper bound of a set is unique, so this analytic approach gives the existence of a

unique positive nth root of a positive real number. With this defined, for c > 0 and

for positive rational exponent p/q we now have cp/q = ( q
√

c)p. Least upper bounds

are needed in defining the value of a positive real number to an irrational power

(see the Section 1.3 Analysis 1 notes for details).

Revised: 5/1/2023

https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf

