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4.6. Trisection of an Angle

Note. In this section we discuss the impossibility of a straight edge and compass

construction that allows us to break any angle into three equal parts. Of course,

some angles can be trisected with Euclidean tools; a 90◦ angle can be trisected

because a 60◦ angle can be constructed (Euclid’s Proposition I.1 is the construction

of an equiliateral triangle) and an angle can be bisected with Euclidean tools. But

there are angles that cannot be trisected with straight edge and compass. A 60◦

angle cannot be trisected because a 20◦ angle is not constructible. We will give some

history of the problem and consider some additional tools that allow a solution to

the problem.

Note. Eves states (see pages 112 and 113): “Of the three famous problems of

Greek antiquity, the trisection of an angle is pre-eminently the most popular among

the mathematically uninitiated in America today. . . . The problem is certainly the

simplest one of the three famous problems to comprehend, and since the bisection of

an angle is so very easy, it is natural to wonder why trisection is not equally easy.”

I, “your humble instructor,” was taken in by this problem when, in 10th grade,

I took high school geometry (during the 1978-79 academic year; for sentimental
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reasons, I have a few online notes based on the book we used). Having been told

that an angle could not be trisected with a straight edge and compass, I skeptically

set off to work on it! My reasoning went (as I recall, now 45 years on): Bisection

of an angle, as Eves mentions, is straightforward (it is Euclid’s Proposition I.9 in

the Elements; it can be accomplished by bisecting a cord associated with an arc

along the angle) and a line segment can easily be trisected (or, for that matter,

cut into any number of equal-length parts), so some adaptation of the trisecting

a line segment should be applicable to the trisecting of an angle. I did not spend

endlessly hours on it, but I did eat up several evenings on it. (Spoiler Alert: I did

not find a successful trisection construction!)

Note 4.6.A. As with doubling the cube, angle trisection cannot (in general) be

done with only a straight edge and compass. Again, recall that the constructible

numbers are precisely the real numbers that can be obtain from Q by taking square

roots of positive numbers a finite number of times and applying a finite number

of field operations (see Note 3.7.F of Section 3.7. Geometric Solution of Quadratic

Equations). This is Theorem 32.6 in my online notes for Introduction to Mod-

ern Algebra 2 (MATH 4137/5137) on Section VI.32. Geometric Constructions. As

shown in those notes (see the proof of Theorem 32.11, “Trisecting the Angle is

Impossible”), a 60◦ cannot be trisected because the construction of a 20◦ is equiv-

alent to the construction of the number cos(20◦), and this number satisfies the

polynomial equation 8x3 − 6x − 1 = 0 where x = cos(20◦). However, this poly-

nomial is irreducible over the rationals, which implies that the solution involves a

nonconstructible number involving cube roots (the history of this algebraic argu-

https://faculty.etsu.edu/gardnerr/Geometry/Geometry-notes-JDD.htm
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-7.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-3-7.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
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ment by Pierre Wantzel in 1837 is given in Section 14.2. Impossibility of Solving

the Three Famous Problems with Euclidean Tools). In fact, the online computer

algebra system Wolfram Alpha gives the exact value as
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This value is real, even though there are imaginary units present in this version;

we’ll see more of this when we study solutions to third and fourth degree polynomial

equations in Section 8.8. Cubic and Quartic Equations.

Note. With the impossibility of a straight edge and compass trisection construction

established in the 1800s as a result of the introduction of modern algebra and field

theory, there is now no need to work on the problem! None-the-less, there are

still occasional attempts to find such a construction (and even claims of success).

Underwood Dudley (January 6, 1937– ) refers to those who make such attempts

in the face of the impossibility of success as “cranks.” He has a book devoted

to those who continue to make such attempts. In his A Budget of Trisections

(Springer, 1987), he describes his attempts to address this: “What follows, then, is

something which has never been done before: it is an effort to do something which

may be as impossible as trisecting the angle, namely to put an end to trisections

and trisectors.” See his page xv. The cover of his book has an amusing Don

Quixote-motivated take on the “trisectors”:

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-14-2.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-14-2.pdf
https://www.wolframalpha.com/
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-8-8.pdf
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Image from the Spinger.com website (accessed 3/18/2023)

Note 4.6.B. Consider the acute angle ∠ABC taken as the angle between a diagonal

BA and a side BC of rectangle BCAD (see Figure 31). Consider a line segment

starting at point B which intersects AC at, say E, intersects segment DA extended

at a point F , and such that EF = 2(BA). Think of segment BF as rotating about

the point B as point F moves along DA extended; when point F is close to point

A then length BF is close to the length BA (and slightly bigger when F is to the

right of A). As point F moves farther to the right, the length of BF gets larger

and larger without bound. So there exists some point F where the length of BF

is twice the length of BA; this is a continuity argument and not a construction

argument based on the use of Euclidean tools. The Greeks called this a verging

problem because the line segment FE “verges” toward point B.

https://link.springer.com/book/10.1007/978-1-4419-8538-5
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Figure 31 (Modified)

Next, let G be the midpoint of EF and insert segment AG. By the choice of points

E, F , and G we have the lengths EG = GF = BA. By inserting point H, FH,

and EH to create rectangle AFHE and extending AG to give diagonal AH of the

rectangle (in red in Figure 31 above), we see AG = GF . Therefore EG = GF =

GA = BA. So triangle ABG is isosceles and the measure of its angles satisfy

]ABG = ]AGB. Now angles ∠AGB and ∠AGF are supplements, and ]GAF +

]GFA + ]AGF = 180◦, so we have ]ABG = ]AGB = ]GAF + ]GFA. Since

triangle AFG is isosceles, then ]GAF = ]GFA, and hence ]ABG = ]GAF +

]GFA = 2]GFA. By construction, we have ]ABC = ]ABG + ]GBC, or

]ABC = 2]GFA + ]GBC (since ]ABG = 2]GFA). Now ]GFA = ]GBC

since these are alternate interior angles of parallel lines cut by a transversal), so

the last equation implies or ]ABC = 3]GBC. That is, line segment BG trisects

∠ABC. Thomas Heath in his A History of Greek Mathematics, Volume I. From

Thales to Euclid (Clarendon Press, Oxford, 1921) shows that the construction above

can be produced using a hyperbola (a construction which he credits to Pappus) and

that it is equivalent to solving a cubic equation (see his pages 236–238).
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Note 4.6.C. In Problem 4.6(b), the following trisection of an angle is described.

Let ∠AOB be any central angle in a given circle. Through point B, draw a line

BCD, cutting the circle again in C, and cutting AO extended at point D, such that

CD = OA (the radius of the circle). Then ]ADB =
1

3
]AOB. The configuration

described here is:

Just as in Note 4.6.B, this construction requires the placement of a line segment

of a given length on a line through a given point (think of the straight edge as

rotating around the given point until the desired length is attained). The ability to

do this requires a ruler to measure the desired distance, and the act of “rotating”

the straight edge is not permitted in the use of Euclidean tools. So this component

of the constructions do not adhere to the straight edge and compass constructions

using Euclidean tools. This new manipulation is called the insertion principle.

Note. Nicomedes (circa 280 bce–circa 210 bce) is known only from references

to his work by others. It is known that he criticized work of Erathosthenes (276

bce–194 bce) on the duplication of the cube, and that Apollonius (262 bce–190

bce) named a curve the “sister of the conchoid [of Nicomedes].” These references
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are the sources of the estimated dates of Nicomedes. Second-hand references to his

work reveal that he wrote On Conchoid Lines.

Image from the MacTutor History of Mathematics Archive biography of

Nicomedes (accessed 4/25/2023)

The conchoid of Nicomedes is described in a major work of Pappus of Alexandria

(circa 290 ce–circa 350 ce). Pappus (who we discuss in Section 6.9. Pappus) wrote

Synagoge or the Mathematical Collection as a work covering practically the whole

field of classical Greek geometry. Book 4 of this work is still in print in English

as Pappus of Alexandria: Book 4 of the Collection: Edited With Translation and

Commentary by Heike Sefrin-Weis (Springer, Sources and Studies in the History

of Mathematics and Physical Sciences, 2010). The conchoid of Nicomedes is de-

scribed in Book 4, Chapters 26 and 27 (in Chapters 28 and 29 Pappus shows how

the conchoid can be used to double the cube); see page 379 of Thomas Heath’s A

History of Greek Mathematics, Volume II: From Aristarchus to Diophantus, Claren-

don Press, Oxford, 1921 (reprinted by Dover Publications, 1981). We now turn to

Eves’ description of the conchoid.

https://mathshistory.st-andrews.ac.uk/Biographies/Nicomedes/
https://mathshistory.st-andrews.ac.uk/Biographies/Nicomedes/
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-9.pdf
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Note. Let c be a line and O a point not on c. For each point P on line c, extend

line segment OP a fixed length k to create line segment OQ. Then the locus of

points Q that results is a conchoid of c for the pole O and the constant k (Eves

says this is “one branch” of the conchoid; a second branch results when the fixed

length k to point Q goes in the opposite direction from point P back towards point

O). See the figure below.

A mechanical device (based on an illustration in Eutocius of Ascalon’s [circa 480–

circa 540] commentaries on the works of Archimedes) that generates a conchoid is

illustrated on the Wikipedia page on the Conchoid (accessed 4/26/2023). Recall

that the relationships between rectangular coordinates (x, y) and polar coordinates

(r, θ) are x = r cos θ and y = r sin θ. So with point O as the origin and the distance

from O to line c as `, line c has equation y = ` in rectangular coordinates and

equation r sin θ = `, where θ ∈ (0, π), in polar coordinates. That is, line c is

represented as r = ` csc θ in polar coordinates. Since points on the conchoid are

an additional distance k from line c (where distance is measured from O), then

we simply increase r by k to get the polar coordinate form of the conchoid as

r = k + ` csc θ where θ ∈ (0, π).

https://en.wikipedia.org/wiki/Conchoid_(mathematics)#/media/File:Nicomedes.gif
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Note 4.6.D. Let ∠AOB be any given acute angle. Draw line
←−→
MN perpendicular

to OA and intersecting OA and OB at points D and L, respectively. Introduce the

conchoid of
←−→
MN for pole O and constant k = 2(OL). At point L draw the parallel

to OA and let C be the point at which the parallel intersects the conchoid. See the

figure below (left, which is a modified version of Eves’ Figure 32). In Figure 31 of

Note 4.6.B (reproduced below, right) we have EF = 2(BA) and ]FBC = 1
3]ABC.

Correspondingly we have from the conchoid (below, left) that EC = 2(OL) and

hence, as in Figure 31, ]COA = 1
3]AOB.

Note 4.6.E. Hippias of Elis (circa 460 bce–circa 400 bce) is credited by Proclus

(circa 411–April 17, 485), in his A Commentary on the First Book of Euclid’s

Elements (described in part in Supplement. Proclus’s Commentary on Eudemus’

History of Geometry) with introducing the quadratrix. The quadratrix is defined

in Eves’ Problem 4.10 as follows. Let the radius OX of a circle rotate uniformly

about the center O from OC to OA, where OA is at a right angle to OC. At the

same time, let a line segment MN parallel to OA move uniformly parallel to itself

from CB to OA. The locus of the intersection P of OX and MN is the quadratrix.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Supplement-Proclus-History-Geometry.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Supplement-Proclus-History-Geometry.pdf
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(The image on the right gives a mechanical device that generates a drawing of a

quadratrix. It is from the Wikipedia page on the Quadratrix of Hippias; accessed

4/29/2023.) Since OA rotate uniformly and MN moves uniformly (at the same

time), then the distance OM is proportional to ]AOX. This makes it straight-

forward to trisect an angle (or “multisect,” or even to create any multiple m of a

given angle where m is constructible and 0 < m < 1); this is to be done in Prob-

lem 4.10(b). Pappus of Alexandria (circa 290 ce–circa 350 ce) gives a detailed

description of the quadratrix in Book 4 of his Mathematical Collection (mentioned

above in connection with the conchoid of Nicomedes); see also pages 226–230 of

Thomas Heath’s A History of Greek Mathematics, Volume I: From Thales to Euclid,

Clarendon Press, Oxford, 1921. Though the quadratrix is commonly attributed to

Hippias, there is not a consensus that Hippias used it to trisect and angle (see

Heath’s page 226 for references). The quadratrix can also be used to square a

circle (“quadrature of the circle”), as is to be shown in Problem 4.10(c). It is also

unclear whether or not this result can be attributed to Hippias.

https://en.wikipedia.org/wiki/Quadratrix_of_Hippias
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Note. We have seen the use of “mechanical devices” to duplicate the cube (in

Note 4.5.C) and to trisect an angle with a mechanically constructed conchoid (in

Note 4.5.E; the conchoid also allows for the squaring of the circle as shown in

Problem 4.10(c)). A number of such mechanical devices that allow for constructive

solutions of the “Three Famous Problems.” A survey of such devices is given by

Robert Yates in “The Trisection Problem: Chapter III Mechanical Trisectors,”

National Mathematics Magazine, 15(6), 278–293 (1941). This source includes the

use of a cone to trisect an angle, as described in Problem 4.8(c) (see Yates’ Figure

31). Eves mentions the “so-called tomahawk,” which is given in Yates’ Section 7

and Figure 21. It is not known who came up with the idea of the tomahawk, but

the oldest known reference is in the third edition of Bergery’s Geométrie appliquée

a l’industrie, Metz (1835). Eves gives an image of the tomahawk in his Figure 33

(below, left). His image includes some unnecessary parts (likely, because he bases

his Figure 33 on Yates’ Figure 21), which makes the structure look more like a

tomahawk (a tomahawk is a small axe). Below center is a more schematic image

of the tomahawk which only includes the necessary parts.

The construction of a tomahawk starts with line segment RU , which is trisected

at points S and T . Introduce a semicircle centered at T with diameter SU , and

SV perpendicular to RU , as shown above. The tomahawk is used to trisect angle
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∠ABC by placing point R of the tomahawk on BA, arranging SV such that it

contains vertex B, and adjusting the tomahawk until the semicircle is tangent to

BC at point D, as shown above (left and right). We now have three right triangles,

4RSB, 4TSB, and 4TDB. Now 4RSB and 4TSB are congruent (by SAS)

since they share edge SB and RS = ST (because of the trisection of RU). Next,

4TSB and 4TDB are congruent (by SSS) since they are right triangles which

share their hypotenuses and ST = TD (because both ST and TD are radii of the

semicircle; the length of the third sides follow from the Pythagorean Theorem).

Therefore, ]RBS = ]SBT = ]TBD. Since ]RBS + ]SBT + ]TBD = ]ABC,

then ∠ABC is trisected by each of ∠RBS, ∠SBT , and ∠TBD. Eves claims (see

his page 115) that with two tomahawks, we can quintisect an angle.

Note. We’ll see in the next section, Section 4.7. Quadrature of the Circle, that the

Archimedean spiral can also be used to trisect an angle (or, as with the quadratrix

of Hippias, to multisect an angle).

Note 4.6.F. Since we cannot precisely trisect and angle with a compass and

straight edge (in a finite number of steps), then attention turns to approxima-

tions to a trisection. We know that an angle can be bisected with a compass and

straight edge (Euclid’s Proposition I.9), so we can simply use a sequence of bisec-

tions to approximate the trisection (in fact, we can precisely trisect an angle with a

compass and straight edge in the limit; that is, by performing an infinite number of

bisections). We can write 1/3 in binary and use the sequence of 0’s and 1’s to deter-

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-4-7.pdf
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mine the angles to be bisected. This idea is given in Nikolais Fialkowski’s Teilung

des Winkels und des Kreises [“Division of the Angle and the Circle”] (1860); see

page 11. It is mentioned in Robert Yates’ “The Trisection Problem: Chapter IV

Approximations,” National Mathematics Magazine, 16(1), 20–28 (1941), where the

following figure appears:

We have base 2 that 1/3 = (0.01010101 · · · )2. Interpret the figure above as: bisect

∠AOB with (1), bisect ∠(1)OB with (2) (because the first digit of 1/3 base 2 is 0),

bisect ∠(1)O(2) with (3) (because the second digit of 1/3 base 2 is 1), and bisect

∠(3)O(2) with (4) (because the third digit of 1/3 base 2 is 0). Since the digits

of 1/3 base 2 alternate between 0 and 1, we continue to bisect angles alternately

“lower angle” and “upper angle” resulting, in the limit, in the trisection of ∠AOB.

In this way, we can get any desired level of precision (other than equality) in the

estimation of 1
3]AOB in a finite number of steps. This is explored in Problem

4.9(a).
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Note. Another example of of an approximation technique, but only requiring a

few steps, is due to the painter Albrecht Dürer, appearing in his Unterweysung der

meesung mit dem zierkel und richtscheyt [Instructions for Measuring with Compass

and Straight Edge], Nürnberg (1525). The technique is given in Figure 34 of Eves:

Let ∠AOB be a given central angle in a circle. Let point C be that trisection point

of chord AB that is nearer point B. At point C construct the perpendicular to

AB and let D be the point at which is intersects arc AB
_

in the given circle. With

B as the center and BD as radius, insert an arc to cut AB at point E. Let F be

the trisection point of EC that is nearer to E. Again with B as the center and

BF as the radius, insert a arc to cut AB at point G. Then OG is an approximate

trisecting line of ∠AOB. This approximation technique is explained in Section 3

of Robert Yates’ “The Trisection Problem: Chapter IV Approximations,” National

Mathematics Magazine, 16(1), 20–28 (1941). Yates show that with θ = 1
2]AOB,

the estimate of 1
3]AOB is

2 sin−1

(
1

9
sin θ +

√
2

27

√
2 + cos2 θ − cos θ

√
8 + cos2 θ

)
.

Yates then gives the following table of values of ]AOB and the error of approxi-
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mating 1
3]AOB with θ:

]AOB Error ]AOB Error

60◦ 1′′ 140◦ 5′37′′

90◦ 18′′ 150◦ 9′4′′

120◦ 11′56′′ 180◦ 31′38′′

Note. We now give a modern resolution of the trisection of an angle, and of the

existence of any size angle in general. This is covered in Introduction to Modern

Geometry (MATH 4157/5157). In this discussion we follow my online notes for

Introduction to Modern Geometry on Section 2.6. Angles and Angle Measurement.

First, an angle is defined as the union of two rays which have a common endpoint

and do not lie on the same straight line (notice that this definition does not allow

for “zero angles” nor “straight angles”). Postulates are then given that allow us to

associate a real number with an angle. First, a positive number R is assigned to

a straight angle and this allows us to assign a number to every angle (as defined

here):

Postulate 13. If R is any positive number, there exists a correspon-

dence which associates with each angle in space a unique positive num-

ber between 0 and R.

The number R of Postulate 13 is the scale factor and the number assigned to a

given angle is the measure of the angle relative to the scale factor. We denote the

measure of angle ∠ABC and ]ABC. In the event that the scale factor is R = 180

then we are measuring angles in degrees, and if R = π then we are measuring

angles in radians. In Postulate 14 of the online notes it is given that, for different

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-6.pdf
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scale factors R and S, we can convert the measure of an angle relative to S to the

measure relative to R by multiplying by R/S. In the next postulate, a one-to-one

correspondence between the numbers in [0, R] and the angles between a zero angle

and a straight angle is hypothesized.

Postulate 15. The Protractor Postulate. If H is any halfplane,
−→
V A any ray lying in the edge of H, and R any positive number, there is

a one-to-one correspondence between the set of all numbers x for which

0 ≤ x ≤ R and the set of rays,
−−→
V X which lie in the union of H and its

edge, such that:

(1)
−→
V A corresponds to the number 0,

(2) the ray opposite to
−→
V A corresponds to the number R, and

(3) if X and Y are not collinear with V and if x and y are the numbers

which correspond to
−−→
V X and

−−→
V Y , respectively, then ]XV Y =

|x− y|.

Figure 2.13 from C. R. Wylie’s Foundations of Geometry, McGraw-Hill (1964)

Notice that the Protractor Postulate allows to trisect any angle with measure m ∈

[0, R] (and hence to trisect any measure angle) by finding an angle with measure
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m/3 ∈ [0, R/3]. Of course this hypothesis gives us the more general property

that we can create an obtuse angle of any measure in [0, R]. As in Section 4.5.

Duplication of the Cube, we have introduced a continuum here. By postulating

the one-to-one correspondence between angles and the interval of real numbers

[0, R], we have imposed the existence of a continuum of angles. When restricted

to straight edge and compass constructions, one can only construct points in Rn

which have constructible coordinates (hence can only construct certain angles and

cannot construct a continuum of angles).

Revised: 5/11/2023
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