5.5. The Theory of Proportion

Note. In this section we consider the theory of proportions of (1) the Pythagoreans, (2) Eudoxus, and (3) a modern view. To compare these, we give three proofs of Proposition 1 of Book VI of the Elements.

Note. Recall that Proposition VI. 1 is the basis for thirty-one of the other thirtytwo proofs in Book VI (see Section 5.4. Content of the "Elements", Note 5.4.K). The statement is:

Proposition VI.1. Triangles and parallelograms which are under the same height are to one another as their bases.

The "are to one another as their bases" means that they have areas that are in the same proportion as the lengths of their bases. We take Proposition 38 of Book I as given, which states: "Triangles which are on equal bases and in the same parallels equal one another." That is, if two triangles have equal bases and equal heights (or "parallels") then they have equal areas. From this we can also conclude (by Common Notion 5, "the whole is greater than the part," if you like) that if two triangles have the same height, then the if one has a greater base then it also has a greater area. For the proofs, we let the triangles be $\triangle A B C$ and $\triangle A D E$, with bases $B C$ and $D E$ lying on the same line $M N$, as in the figures below.

Note 5.5.A. The Pythagoreans (before the discovery of irrationals/incommensurables) would assume that the line segments $B C$ and $D E$ are commensurable. Their "proof" would then proceed as follows.
"Proof." With $B C$ and $D E$ assumed to be commensurable, let p and q be positive integers such that p times the length of $B C$ equals q times the length of $D E$ (that is, $B C: D E=p: q$). Mark off these points of division and connect them to point A creating q triangles on line segment $B C$ and p triangles on line segment $D E$, where each triangle has the same length base, namely $B C / q=D E / p$ (see Figure 38 below). By Proposition I.38, each of these triangles have the same area. Therefore $\triangle A B C: \triangle A D E=p: q=B C: D E$, as claimed. Q.E.D.

Note. Since the Pythagorean "proof" assumes that $B C / D E=p / q$ is rational (since the Pythagoreans denied the existence of irrational numbers, at least initially), then the proof is not valid in general. However, the proof given in Book VI uses Eudoxus' theory of proportion and avoids this assumption.

Note 5.5.B. The proof given in the Elements is as follows.
Proof. Let m and n be positive integers. On line $M N$, starting at point B, mark off successively $m-1$ segments equal to $C B$ and connect the points of division, denoted $B_{2}, B_{3}, \ldots, B_{m}$, to vertex A, as shown in Figure 39 below). Similarly, on line $M N$, starting at point E, mark off successively $n-1$ segments equal to $D E$ and connect the points of division, denoted $E_{2}, E_{3}, \ldots, E_{n}$, to vertex A. Then $B_{m} C=m(B C)$, $\triangle A B M C=m(\triangle A B D)$ (by Proposition I.8), $D E_{n}=n(D E)$, and $\triangle A D E_{n}=n(\triangle A D E)$ (also by Proposition I.38). By Proposition I. 38 and Common Notion 5, if $B_{m} C \leq D E_{n}$ (respectively $B_{m} C \geq D E_{n}$) if and only if $\triangle A B_{m} C \leq \triangle A D E_{n}$ (respectively, $\triangle A B_{m} C \geq \triangle A D E_{n}$) and if and only if $m(\triangle A B C) \leq n(\triangle A D E)$ (respectively, $m(\triangle A B C) \geq$ $n(\triangle A D E)$.

FIGURE 39

That is, $m(B C) \leq n(D E)$ (respectively, $m(B C) \geq n(D E)$) if and only if $m(\triangle A B C) \leq n(\triangle A D E)($ respectively, $m(\triangle A B C) \geq n(\triangle A D E)$). Hene, by the Eudoxian definition of proportion (see Definition 5 of Book V and Section 5.4. Content of the "Elements", Note 5.4.J), $\triangle A B C$: $\triangle A D E=B C: D E$, as claimed. Q.E.D.

Note 5.5.C. We now give a proof based on modern analytic techniques. We assume the result holds when $B C / D E=p / q$ is rational, as shown in Note 5.5.A.

Proof. We only need now to consider the case when $B C$ and $D E$ are incommensurable; that is, when $B C / D E$ is irrational. Let n be a positive number that is greater than $B C / D E$. Divide line segment $B C$ into n equal parts, with $B R$ being one of the parts, as shown in Figure 40 below. (Notice that $B R=B C / n<B C /(B C / D E)=D E$.) On line segment $D E$ mark off successively segments of length equal to $B R$, arriving at a point F on $D E$ such that $F E<B R$ (since $B R<D E$, this can be done).

By the commensurable case (in Note 5.5.A), we have $\triangle A B C$: $\triangle A D F=B C: D F$. Since this holds for arbitrary n sufficiently large, then we take a limit as $n \rightarrow \infty$. Now for $n \rightarrow \infty$, we have $D F \rightarrow D E$ and $\triangle A D F \rightarrow \triangle A D E$. Therefore, $\lim _{n \rightarrow \infty}(\triangle A B C: \triangle A D F)=$ $\lim _{n \rightarrow \infty}(B C: D F)$, or $\triangle A B C: \triangle A D E=B C: D E$, as claimed. Q.E.D.

Note. The proof given in Note 5.5.C depends on approximating the irrational $B C / D F$ with a rational number. The approximation in terms of the number n in the proof is n / m where m is the number of segments of length equal to $B R$ that are used in marking off points on line segment $D E$ to find point $F E$. Since the length of $B R$ is $B C / n$, then $m=\lfloor D E /(B C / n)\rfloor=\lfloor n(D E / B C)\rfloor$ (the symbols here mean to round down) and $m n \approx D E / B C$ where the approximation is better when n (and then, necessarily m also) are "big."

