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6.5. Hipparchus, Menelaus, Ptolemy, and

Greek Trigonometry

Note. In this section, we consider the beginnings of Greek trigonometry, mostly

as it grew out of measurements of the sky and the beginnings of mathematical

astronomy. In addition to the three people mentioned in the title of the section,

we consider Theodosius.

Note 6.5.A. Theodosius of Bithynia (circa 160 bce–circa 90 bce) was a Greek

mathematician and astronomer born in Bithynia, Anatolia (in modern day northern

Turkey).

An (imagined) image of Theodosius from the

Ancient Greece Reloaded website (accessed 9/1/2023)

The sky appears as a sphere around the Earth on which the stars and planets move

(the “celestial sphere”), so the study of the geometry of the sphere is an early part

of the study of astronomy. The subject was developed before Euclid (circa 325

https://www.ancientgreecereloaded.com/files/ancient_greece_reloaded_website/great_persons/theodosius_of_bithynia.php
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bce–circa 265 bce) and there were books in existence on great and small circles

on the sphere, from which Euclid (and others) quoted. The propositions on this

topic, along with other propositions of a purely astronomical interest (as opposed

to a more general geometric interest) were collected in three books by Thodosius

titled Sphaerica (or Spherics). This work survives and Johan Ludvig Heiberg (see

Note 5.3.J of Section 5.3. Euclid’s “Elements”) published Theodosius. Sphaerica,

Greek and Latin Text (Berlin: Weidmannsche Buchhandlung, 1927). There is also

a French translation: Paul ver Ecke, Theodosius. Les sphériques de Theodose de

Tripoli, translation with introduction and notes (Paris: Blanchard, 1959). How-

ever, there does not seem to be an English version of Sphaerica. There are two

nice descriptions in English of the contents, with illustrations. Both are by R.S.D.

Thomas. One is “The Definitions and Theorems of the Spherics of Theodosios,” In:

Zack, M., Schlimm, D. (eds.) Research in History and Philosophy of Mathematics,

Proceedings of the Canadian Society for History and Philosophy of Mathemat-

ics/Société canadienne d’histoire et de philosophie des mat’ematiques. Birkhäuser,

Cham (2018). A version of this paper is online at the Waseda University Homepage

of Nathan Camillo Sidoli. Another work of R.S.D. Thomas, concerning the con-

tents of Book I, is “An Appreciation of the First Book of Spherics,” Mathematics

Magazine, 91(1), 3–15 (February 2018). This is not readily available online, but

you can access it through the ETSU Sherrod Library catalog using JSTOR. Eu-

clid’s Elements largely exclude the geometry of the sphere, probably because such

results are viewed as part of astronomy rather than of geometry. The beginning

Theodosius’ Sphaerica includes these definitions (quoting from Thomas’ “An Ap-

preciation of the First Book of Spherics”):

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-3.pdf
http://www.f.waseda.jp/sidoli/Thomas_2017_Theodosios_I.pdf
http://www.f.waseda.jp/sidoli/Thomas_2017_Theodosios_I.pdf
https://libraries.etsu.edu/home
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Definition 1. A sphere is a solid figure contained by a single surface, all lines

to which, falling from a single point that lies within the figure, are equal to one

another.

Definition 2. Center of the sphere is the point.

Definition 5. Pole of a circle in a sphere names a point on the surface of the

sphere all lines from which, falling on the circumference of the circle, are equal to

one another.

In Proposition 1 it is shown that any plane section (i.e., the intersection of a plane

and) of a sphere is a circle. Such a plane intersection can be used to find a diameter

of the sphere and then to find the center of the sphere (Proposition 2). Proposition

20 concerns the construction of the great circle through any two given points (not

opposite each other on the sphere) on the sphere. Proposition 21 gives a way to

find the pole of any given circular section. There are 22 propositions in Book I.

Book II begins with a definition of circles on a sphere which touch one another (i.e.,

to tangent circles). In Propositions 1 and 2 of Book II, parallel circular sections are

shown to have the same poles, and the converse of this. Proposition 9 shows that if

two circles on a sphere cut one another, then the great circle drawn through their

poles bisects the intercepted segments of the circles. Book III contains propositions

of purely astronomical interest, but stated as propositions in pure geometry. Theo-

dosius’ results in Sphaerica concern comparing certain arcs and determining which

is greater. However, actual numerical values are not associated with the arcs, mak-

ing them useless for astronomical measurements (such as describing the location

of a star in the night sky at different times). In order to quantify these quantities,

trigonometry is needed. Sphaerica contains no trigonometry (though it is a “pre-
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lude”) to trigonometry. In addition to Sphaerica, Theodosius wrote On Habitations

and On Days and Nights, which have survived in Greek. In On Habitations there

are 12 propositions related to the different observed phenomena due to the daily

rotation of the Earth (or, as it was more likely interpreted, the daily rotation of

the celestial sphere). In On Days and Nights, there are 32 propositions (over two

books) concerning the movement of the sun around the ecliptic (a great circle on

the celestial sphere that is at an angle of 23.4◦ to the celestial equator, reflecting

the tilt of the Earth’s axis by 23.4◦ to the plane of the solar system), the solstices,

and the equinoxes. Theodosius is also thought to have written a commentary on

Archimedes’ Method, but this commentary does not survive. It seems that the work

of Theodorius does not contain new results, but instead his works are compilations

of previously known results. The source for this note is Thomas Heath’s A History

of Greek Mathematics, Volume 2 (Oxford: Clarendon Press, 1921), pages 245–252.

Note 6.5.B. Hipparchus of Rhodes (also “Hipparchus of Nicaea”; 190 bce–120

bce) is known to have made astronomical observations from Rhodes between 161

bce and 126 bce (according to Ptolemy [circa 85 ce–165 ce). He cataloged the

positions of over 850 stars (using only naked eye observations. . . telescopes were

not invented for another 1700 years). His precise measurements of the location of

these stars in the night sky inspired the European Space Agency to name a satellite

it launched in 1989 “Hipparcos.” The satellite was designed to make very precise

measurements of positions, proper motions, and parallaxes of stars. The name

“Hipparcos” is an acronym for HIgh Precision PARallax COllecting Satellite (see

the figure below, right). Sadly, very little of his work survives, so we only know
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him from references by others.

Image of Hipparchus (left) form the the MacTutor biography webpage of

Hipparchus, and image of European Space Agency satellite Hipparcos (right) from

the Wikipedia webpage on Hipparcos (both accessed 9/1/2023).

According to Thomas Heath, “[Hipparchus’] greatest [accomplishment] is perhaps

his discovery of the precession of the equinoxes” (page 254 of A History of Greek

Mathematics, Volume 2). By measuring the location of the bright star Spica in

Virgo relative to the location of the point of the autumnal equinox, and comparing

this to observations made 154 years earlier by Timocharis (circa 320 bce–260 bce).

Based on this, he calculated that the angle between Spica and the point of the

autumnal equinox had changed by around 2◦ during that time. We know today

that this is the result of the “wobble” (or “precession”) of the Earth’s axis of

rotation. As a result of this, the coordinates used by astronomers to describe

locations in the sky have to be periodically revised. In his work On the Length

of the Year, Hipparchus compared observations he made of the summer solstice

to those made by Aristarchus 145 years earlier, to deduce that the length of the

https://mathshistory.st-andrews.ac.uk/Biographies/Hipparchus/
https://mathshistory.st-andrews.ac.uk/Biographies/Hipparchus/
https://en.wikipedia.org/wiki/Hipparcos
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day is 1/300th of a day shorter than the accepted value at the time of 365 1/4

days. The Gregorian calendar of 1582 is based on a year-length of 365.2425 which

is 1/0.0075th ≈ 1/133th of a day shorter than 365 1/4 days. Hipparchus similarly

estimated the mean lunar month as 29 days 12 hours 44 minutes 2 1/2 seconds in

length, which is with one second of the currently accepted value. Aristarchus of

Samos (circa 310 bce–circa 230 bce), who proposed a heliocentric solar system

almost 1800 years before Copernicus, estimated the ratio of the distance dS from

the Earth to the Sun, to the distance dM from the Earth to the Moon is is between

18 and 20, 18 ≤ dS/dM ≤ 20 (see Problem Study 6.1(a)). Hipparchus improved

this estimate based on the their apparent diameters and changes in them. With

D as the diameter of the Earth, he estimated the Sun was at a mean distance of

1245D and the moon at a mean distance of 332
3D, so that the Hipparchus estimates

the ratio of the distances as dS/dM = 1245D/(332
3D) ≈ 40. The average distance

from the Earth to the Sun is today known to be 93,803,000 miles, and he average

distance from the Earth to the Moon is 238,855 miles. So an accurate value of

the ratio is dS/dM = 93, 803, 000/238, 855 ≈ 393 (less impressive than Hipparchus’

estimate of the lunar month, eh?). Hipparchus was an advocate of using latitude

and longitude to measure locations on the Earth (similar to the coordinates used

to measure locations on the celestial sphere). The source for this note is Thomas

Heath’s A History of Greek Mathematics, Volume 2 (Oxford: Clarendon Press,

1921), pages 253–256.

Note 6.5.C. We now address Hipparchus’ contribution to trigonometry. Hip-

parchus is the earliest one for whom there is documentary evidence of the system-
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atic use of trigonometry. The evidence is given by Theon of Alexandria (circa 335

ce–circa 405 ce) says that Hipparcus wrote a treatise in twelve books on straight

lines (i.e., chords) in a circle (and also that Menelaus [circa 70 ce–circa 130 ce]

wrote a similar work in six books). Also, Pappus of Alexandria (circa 290 ce–circa

350 ce) observes that in his book On the Rising of the Twelve Signs of the Zodiac,

Hipparchus showed that equal arcs of the zodiac have setting times in a certain

that varies with location (i.e., latitude). With this result, Hipparchus has actually

quantified amounts of time, unlike his predecessors such as Theodosius (see Note

6.5.A above). In Hipparchus’ only surviving work, Commentary on the Phaenom-

ena of Eudoxus and Aratus, he considers numerical lengths of arcs that stars trace

out in the sky as seen from certain latitudes. In the twelve book treatise on chords

mentioned by Theon included a table of chords. Hipparchus’ tables of chords are

known from the work of Ptolemy (circa 85 ce–circa 165 ce), which we describe be-

low. A circle is considered and the radius of the circle is divided into 60 equal parts

(so we take the radius to be 60 and the diameter to be 120). Ptolemy, believed to

be adopting work of Hipparchus’ (Eves, page 175) considers central angles of the

circle at halg-degree intervals from 1/2◦ to 180◦.
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Base on Figure 48 above, we desire a relationship between the length of the chord

AB and the central angle α. We define the chord function that gives the length of

AB in terms of angle 2α, crd(2α), as

sin α =
AM

OA
=

AB

diameter of circle
=

crd(2α)

120
.

What Ptolemy gives in his table is then (effectively) a table of the sine function

as the angle varies from 0◦ to 90◦ in 1/4◦ = 15′ increments. In term of the work

of Ptolemy, this is also discussed in my online notes for the history component

of Introduction to Modern Geometry (MATH 4157/5157) on Section 5.1. Ptolemy

and the Chord Function. The source for this note is Thomas Heath’s A History of

Greek Mathematics, Volume 2 (Oxford: Clarendon Press, 1921), pages 257–260.

Note 6.5.D. We stated above in Note 6.5.C that Theon of Alexandria (circa 335

ce–circa 405 ce) mentions that Menelaus (circa 70 ce–circa 130 ce) wrote a work

on chords in a circle in six books, titled Chords in a Circle. Pappus (circa 290

ce–circa 350 ce) in Book VI of his Collection says that Menelaus wrote a treatise

on the rising and setting times of different arcs of the zodiac. Arabian records

indicate three other works of Menelaus. First, he wrote Elements of Geometry in

three books, which was edited by Thābit ibn Qurra (836 ce–February 18, 901 ce);

Qurra is mentioned in the supplement Euclid’s Elements—A 2,500 Year History as

a translator of works by Euclid, Archimedes, and Apollonius. Second, he wrote a

book on triangles. Third, he wrote a work with the title “On the Knowledge of the

Discrete Quantity of Mixed Bodies,” thought to be a book on hydrostatics. The

book of main concern to us is his Sphaerica. This is in three books and is preserved

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-5-1.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-5-1.pdf
https://faculty.etsu.edu/gardnerr/Geometry-History/abstract.htm
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in the Arabic (in several versions which differ if form but give a good idea of the

specific content). A well-known Latin translation from Arabic is due to Gherard of

Cremona (or “Gerard”; 1114–1187), who we will see again as a translator in Section

8.2. The Period of Transmission; see Note 8.2.C. In fact, A modern English version

is still in print: Roshdi Rashed and Athanase Papadopoulos, Menelaus’ ‘Spherics’:

Early Translation and al-Māhāni/al-Haraw̄ı’s Version, Scientia Graeco-Arabica 21

(Berlin; Boston: De Gruyter, 2017).

Note 6.5.E. Book I of Sphaerica gives for the first time the definition of a spherical

triangle in his Definition 1. Menelaus states it in terms of the area included by

arcs of great circles on the surface of a sphere (under the convention that each

of the sides of the triangle is an arc less than a semicircle). The angles of a

spherical triangle are the angles contained by the arcs of great circles on the sphere

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-8-2.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-8-2.pdf
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(Definition 3). We consider here the usual notation of a, b, c for the sides of a

spherical triangle and A, B, C for the opposite angles, respectively. We measure

angles in degrees and, surprisingly perhaps, we measure the lengths of sides in

degrees as well. This is reasonable since we will only compare lengths of sides

and a side is determined by a central angle in the sphere. Comparing lengths

of sides is then equivalent to comparing central angles, since the length equals

(circumference)(central angle)/360◦. Book I mostly concerns proving results for

spherical triangles which correspond to Euclid’s propositions for plane triangles.

Some exceptions are Euclid’s Propositions I.16 (“In any triangle, if one of the

sides is produced, then the exterior angle is greater than either of the interior and

opposite angles.”) and I.32 (“In any triangle, if one of the sides is produced, then

the exterior angle equals the sum of the two interior and opposite angles, and the

sum of the three interior angles of the triangle equals two right angles [i.e., 180◦].”),

which do not hold for spherical triangles. Euclid’s Proposition I.16 is replaced with

Proposition I.10 of Sphaerica, which states:

Proposition I.10. For spherical triangle ABC, the exterior angle at C (i.e., angle

180◦−C) is less than or equal to A (i.e., ∠A ≥ 180◦−C) if and only if c+a ≥ 180◦,

and exterior angle at C (i.e., angle 180◦−C) is greater than A (i.e., ∠A < 180◦−C)

if and only if c + a < 180◦.

Proof. Consider triangle ABC in the figure below (where the edges are represented

by arcs of a circle). Let D be the pole opposite to A (so that AD = 180◦). Suppose

c + a ≥ 180◦. Since AB + BD = AD = 180◦, then c + a ≥ AB + BD or (since

a = BC and c = AB) c + a = AB + BC ≥ AB + BD or BC ≥ BD. Therefore in

triangle BCD we have ∠D ≥ ∠BCD (as in Euclid I.18, here we have greater angles
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opposite greater sides). Since ∠A = ∠D (by symmetry), and ∠BCD = 180◦ − C

(here C denotes ∠BCA in triangle ABC), then ∠A ≥ 180◦ − C, as claimed.

Menelaus takes the converse as granted. If we suppose c+a ≥ 180◦, then the same

argument produces ∠A < 180◦ − C, as claimed.

Euclid’s Proposition I.32 is replaced with Proposition I.11 of Sphaerica, which

states:

Proposition I.11. For spherical triangle ABC, A + B + C > 180◦.

Proof. Consider again triangle ABC in the figure above and let D be the pole

opposite to A. Extend AB to AD and extend AC to AD, as in the figure. Intro-

duce point E on CD as shown, so that ∠DBE = ∠BDE. Then ED = EB since

triangle BDE is isosceles. Hence CE + EB = CE + ED = CD < AD = 180◦.

So by Proposition I.10 (with c = CE a = EB, in the notation of Proposition I.10,

so that c + a = CE + EB < 180◦), exterior angle ∠ACB to triangle BCE at

point C is greater than ∠CBE. That is, C > ∠CBE (here C denotes ∠BCA

in triangle ABC). Since D = ∠EBD (recall that triangle EBD is isosceles

by construction, so these angles are equal) and A and D are equal angles (by

symmetry), then C + A > ∠CBE + ∠EBD = ∠CBD. Adding angle B (here

B denotes ∠CBA in triangle ABC) to both sides of this last inequality gives

A + B + C > ∠CBD + B = ∠CBD + ∠CBA = 180◦ or A + B + C > 180◦, as

claimed.
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Proposition I.11 is not particularly surprising; we would not expect spherical tri-

angles to behave exactly like plane triangles. However, Menelaus, his predecessors,

and his successors would not think of this result as a clue to the existence of options

to geometries other than Euclid’s. It would be another 1700 or so years before the

mathematical community would start to explore non-Euclidean geometry. Much

of the delay is the result of there not being any known model of non-Euclidean

geometry. “Hyperbolic geometry” would be the first type of non-Euclidean geom-

etry to appear (a model for which is the Poincare disk which, in a sense, cannot

be built as a surface in our three-dimensional space). In hyperbolic geometry, the

angle sum of a triangle is less than 180◦. The second type is “elliptic geometry.” In

elliptic geometry, the angle sum of a triangle is great than 180◦, like in Proposition

I.11. A model of one type of elliptic geometry is based on spherical geometry. . . the

surface on which this geometry is done is not the full sphere, but half of the sphere

to which some complicated connections have been imposed. This surface cannot

by built in our three-dimensional space either! This will be explored more in Sec-

tion 13.8. Non-Euclidean Geometry. See also my online supplements on Hyperbolic

Geometry and A Quick Introduction to Non-Euclidean Geometry. The source for

this note is Thomas Heath’s A History of Greek Mathematics, Volume 2 (Oxford:

Clarendon Press, 1921), pages 260–265.

Note 6.5.F. Book II of Menelaus’ Sphaerica established propositions of astronom-

ical interest only. These were generalizations or extensions of propositions already

presented in Book III of Theodosius’ Sphaerica. Neither Book I nor Book II of

Menelaus’ work contains any trigonometry. His trigonometric results appear in

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-13-8.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-13-8.pdf
https://faculty.etsu.edu/gardnerr/noneuclidean/hyperbolic.pdf
https://faculty.etsu.edu/gardnerr/noneuclidean/hyperbolic.pdf
https://faculty.etsu.edu/gardnerr/noneuclidean/non-Euclid-highschool.pdf
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Book III. The Greeks did not use the terminology that we associate with trigonom-

etry (i.e., sine, cosine, and tangent), but instead express things in terms of the chord

function which we met in Note 6.5.C. Recall that we related the sine function and

the chord function in that note as sin α = crd(2α)/120, because we considered

(as Ptolemy does) a circle of radius 60. If we consider a circle of radius 1, then

the since function and chord function are related as sin α = crd(2α)/2. With this

convention, we then have cos α = sin(90◦ − α) = crd(180◦ − 2α)/2. Similarly,

tan α =
sin α

cos α
=

crd(2α)

crd(180◦ − 2α)
.

Book III starts with what today is known as Menelaus’ Theorem. There is both

a plane version and a spherical version of the result. Menelaus assumed the plane

version as well-known and used it to prove the spherical version. Eves states the

plane version (on his page 176), but we need some preliminary explanation. Con-

sider a triangle with a transversal (a line) which intersects each side (extending the

sides as needed, and not allowing the intersections to coincide with vertices of the

triangle). One possible configuration is the following:

We consider quotients of the lengths of collinear line segments, but assign a sign

to this quotient. In the configuration above, we have the quotient AN/NB is
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negative because N is not between A and B. The quotients BL/LC and CM/MA

are positive because L is between B and C, and M is between A and C. With this

convention, Eves states (see his page 176):

Menelaus’ Theorem (Plane Version). If a transversal intersects the sides of

BC, CA, AB of a triangle ABC in the points L, M , N , respectively, then(
AN

NB

) (
BL

LC

) (
CM

MA

)
= −1.

Notice that the negative sign in this theorem implies that a transversal can only

intersect (internally) either two edges of the triangle (as in the figure above) or

no edges of the triangle. As described in Note 6.5.E, we can measure segments of

great circles on a sphere in terms of degrees (namely, the measure of the central

angle in the sphere determined by the segment). Hence, we can apply the sine

function or the chord function to such a segment. On possible configuration of a

spherical triangle cut be a great circle transversal (similar to the plane case given

in the above figure) is:

The version of Menelaus’ Theorem in the spherical setting is stated by Eves as

follows (see his page 177):
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Menelaus’ Theorem (Spherical Version). If a great circle transversal inter-

sects the sides of BC, CA, AB of a spherical triangle ABC in the points L, M , N ,

respectively, then (
sin AN

sin NB

) (
sin BL

sin LC

) (
sin CM

sin MA

)
= −1.

Much of Book III involves applications of the spherical version of Menelaus’ The-

orem, “Proposition III.1.” Many of the results are analogous to Euclid’s results

for plane triangles. For example, Proposition III.9 demonstrates that that for a

spherical triangle, the great circles bisecting the three angles meet at a point (in

fact, they must also meet at a second point, which is opposite the first). Proposi-

tions III.11 to III.15 relate to the same sort of astronomical problems addressed in

Euclid’s Phaenomena, Theodosius’ Sphaerica, and Book II of Menelaus’ Sphaerica.

Note 6.5.G. Claudius Ptolemy (circa 85 ce–165 ce) was a Greek astronomer and

geographer whose geocentric theory as explained in his Almagest dominated astron-

omy for 1400 years (when it was replaced by heliocentrism, as given by Copernicus).

Claudius Ptolemy is not to be confused with the members of the Ptolemaic Empire

in Egypt (305 bce to 30 bce) mentioned in Section 5.1. Alexandria; see Note 5.1.C.

Oddly, Ptolemy would not recognize the title Almagest. It was originally the Math-

ematical Collection (or the Mathematical Syntaxis). It came to be called “Great

Collection.” In Arabic, the article “Al” was added to the superlative “magestic”

to give Al-majisti, which became Almagest. You may see it referred to by any of

these, but in these notes we use the most common of these, the “Almagest.” The

Almagest is in print in English as Ptolemy’s Almagest, Revised Edited Edition,

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-1.pdf


6.5. Hipparchus, Menelaus, Ptolemy, and Greek Trigonometry 16

translated and annotated by G. J. Toomer, Princeton University Press (1998), and

also as The Almagest: Introduction to the Mathematics of the Heavens, Selections

translated by Bruce M. Perry, Edited with Notes by William H. Donahue, Green

Lion Press (2014).

Almagest consists of thirteen books. It contains observations and investigations of

Hipparchus (190 bce–120 bce), and Ptolemy’s Table of Chords is largely based

on Hipparchus. “[I]t is questionable whether he himself contributed anything of

grreat value except a definite theory of the motion of the five planets. . . ” (Heath’s A

History of Greek Mathematics, Volume II, page 275). Book I includes preliminaries,

explanations of the motions of the heavenly bodies, some spherical geometry, and

his Tables of Chords. Book II continues Book I, giving consideration to observations

at different latitudes such as the length of the day. Book III considers the length

of the year and the motion of the sun as given by the epicycle hypothesis. Book

IV covers the length of the month and the movement of the moon. Book V gives
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constructions of the astrolabe, and estimates the diameters of the sun and moon.

Book VI continues the study of the motion of the sun and moon by considering

solar and lunar eclipses and their periods. Books VII and VIII are about the fixed

stars and the precession of the equinoxes. Books IX to XIII concentrate on the

movements of the planets.

Note 6.5.H. The trigonometry Ptolemy presents in the Almagest is not new, but

what is new is that he gives the minimum propositions necessary to establish what

is given. Ptolemy divides the circle into 360 equal parts (or “degrees”) and divides

the diameter of the circle into 120 equal parts (requiring an adjustment to translate

the chord function into the sine function). In Book I Section 10, “On the Size of

Chords in a Circle,” first the chord function is found for 36◦ and 72◦. This is

equivalent to finding sin 18◦ and sin 36◦, as Note 6.5.F above. Second, in terms of

the chord function, it is shown that sin2 θ + cos2 θ = 1. The next result is known

as “Ptolemy’s Theorem.” Eves states this as (see page 177):

Ptolemy’s Theorem. In a cyclic quadrilateral [that is, a quadrilateral inscribed

in a circle], the product of the diagonals is equal to the sum of the products of the

two pairs of opposite sides.

Ptolemy’s Theorem is considered in Problem Study 6.9. It is to be shown there

that the theorem implies the sum and difference formulas for the sine function and

the half angle formula for sine. We now give a restatement and proof a Ptolemy’s

Theorem, as given in Heath’s A History of Greek Mathematics, Volume II (see page

279).
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Ptolemy’s Theorem. Given a quadrilateral ABCD inscribed in a circle, the

diagonals being AC, BD, to prove that (AC)(BD) = (AB)(DC) + (AD)(BC).

Proof. Introduce BE so that the angle ABE is equal to the angle DBC, and let

BE meet AC at point E.

Adding angle EBD to angle ABE gives angle ABD, and adding angle EBD to

angle DBC gives angle EBC. Since angles ABE and DBC are equal, then angles

ABD and EBC are equal. By Euclid’s Proposition III.21, angle BDA equals angle

BCE (since both angles subtend arc AB). Therefore, triangle ABD is equiangular

(i.e., “similar”) to triangle EBC. Hence

BC : CE = BD : AD or (BC)(AD) = (BD)(CE). (1)

Since angles ABE and DBC are equal by construction, and angles BAE and CBD

are equal, then triangle ABE is equiangular with triangle BCD. Hence

AB : AE = BD : DC or (AB)(DC) = (BD)(AE). (2)

Adding (1) and (2) gives (AB)(DC) + (BC)(AD) = (BD)(AE) + (BD)(CE) or

(since (AE) + (CE) = (AC)): (AB)(DC) + (AD)(BC) = (AC)(BD), as claimed.
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Ptolemy estimates crd(1/2◦) and then uses his addition formula to get estimates of

the chord associated with each angle form 1/2◦ to 180◦ in 1/2◦ increments. This

is how creates his “Table of Chords.” Converting Ptolemy’s chord function to

sines generally yields values accurate to five decimal places. Ptolemy’s results in

on spherical trigonometry follow from Menelaus’ Theorem (see Note 6.5.F above).

For spherical triangle ABC with right angle C, the following relationships between

the angles A, B, C and the lengths of the sides a, b, c (measured in terms of central

angles, as described in Note 6.5.E above):

sin a = sin c sin A, tan a = sin b tan A, cos c = cos a cos b, tan b = tan c cos A.

Note 6.5.I. Another work by Claudius Ptolemy is the Analemma. The goal of

this work is to project points and arcs on the celestial sphere onto three mutually

orthogonal planes (this is called orthogonal projection). The three planes are the

plane containing the horizon, the plane containing the meridian (so that it contains

the zenith point, the pole, the north most point, and the south most point on the

celestial sphere), and the plane containing the zenith point, the east-point (i.e., the

east most point on the celestial sphere), and the west-point.
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In the figure above (left), the intersection of the horizon and the celestial sphere is

in green, the meridian is given in black, and the the curve given in blue determines

the “prime vertical” plane. The zenith is point Z and the pole is point P ; the

celestial sphere rotates through time about P and the North Star is appear very

close to P in the sky). Angle ϕ represents the latitude of an observer (who is located

at the intersection of the three orthogonal planes). Other great circles of interest

are the celestial equator which intersects the green circle at points E and W and is

in a plane perpendicular to the orange line (in grey in the figure above, right(, and

the ecliptic (around which the sun, moon, and planets travel) which intersects the

celestial equator at two points (called the equinoctial points; the sun is located at

these points at the equinoxes, the celestial equator is given in red above and one of

the equinocial points is labeled O with the other below the horizon) and is at an

angle of 23.4◦ to the celestial equator (this angle results from the tilt of the Earth’s

axis). The Analemma is meant to be applied to the construction of sun dials, so

that local time can be determined from the location of a shadow on the face of

the sun dial. You may be familiar with the term “analemma” from astronomy or

geography. In those settings it is a diagram showing the position of the sun in the

sky as viewed from a specific position on the Earth at the same mean solar time
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(that is, the time given by a clock) every day. An analemma has the shape of a

figure eight due to the fact that results from the sun’s motion around the ecliptic

(resulting in a north-south motion over the course of a year) and the east-west

movement due to the eccentricity of Earth’s orbit.

An image illustrating the analemma taken in Erechtheion, Athens, Greece

during the year 2003, from the Stanford Solar Center (left). An analemma

on an old globe (right) from the MathBabe.org webpage on the analemma

(both pages accessed 9/11/2023).

The displacement of the sun from the centerline of the analemma indicates how far

ahead or behind the time given by a sundial is from the time given by a clock. This

allows the conversion of the time of day given by a sundial to the time as given by

a clock.

Note 6.5.J. In Planisphaerium, Ptolemy gives a technique to create a flat map

corresponding to the celestial sphere. The technique was probably known to the

https://www.perseus.gr/Astro-Solar-Analemma-130000.htm
https://mathbabe.org/2012/06/30/analemma/
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Egyptians, and likely known to Hipparchus (190 bce–120 bce). However, the

earliest known surviving work on the technique is Ptolemy’s. The technique is

called stereographic projection and involves projecting points on the celestial sphere

onto the plane containing the celestial sphere. As illustrated below, the projection

is based on point P on the celestial sphere (taken to be the north pole of the

celestial sphere in the figure for ease of visualization).

For given point p on the celestial sphere, a line through pole P and point p is

used to find a point q in the plane containing the celestial equator. So point p

is projected onto point q. Notice that this maps the lower half of the celestial

sphere to the inside of the circle intersection of the sphere and the plane, maps

the upper half of the celestial sphere to the outside of this circle, and fixes the

circle itself (i.e., it fixes the equator of the celestial sphere). For the pole point P ,

there is no corresponding point in the plane under this projection (sometimes it is

said that point P is “mapped to ∞”; see my online notes for Complex Analysis 1

[MATH 5510] on Section I.6. The Extended Plane and Its Spherical Representation

for more on this). Also, this will lead to a lot of distortion for the stars near the

north celestial pole P . In fact, Ptolemy chose to project through the south pole, so

that the northern hemisphere of the celestial sphere would be less distorted on the

https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
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flat surface. Ptolemy was aware that stereographic projection maps circles on the

sphere to circles or lines in the plane, though he gave no formal proof of this. No

versions in the original Greek survive, and Planisphaerium is only known through

Latin translations of Arabic versions. Ptolemy also wrote Optics in five books. It

too survives only through Latin translations of Arabic versions, though Book I and

the end of Book V are missing. Book III is on the theory of mirrors, Book IV deals

with concave and composite mirrors, and Book V covers refraction. Due to an

underlying false assumption about reflection, there are some incorrect conclusions

drawn.

Image from the MacTutor biography webpage of Claudius Ptolemy

Note 6.5.K. Ptolemy attempted to prove the Parallel Postulate (see Section 5.4.

Content of the “Elements”, Notes 5.4.B and 5.4.C) from the other results in Euclid’s

Elements. Of course, this was unsuccessful! We know about this work because

https://mathshistory.st-andrews.ac.uk/Biographies/Ptolemy/
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-4.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-4.pdf
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Proclus (circa 411 ce–April 17, 485 ce) in his commentary on Book I of Euclid’s

Elements. According to Proclus, Ptolemy first gives a proof of Euclid’s Proposition

I.28 (“If a straight line falling on two straight lines makes the exterior angle equal

to the interior and opposite angle on the same side, or the sum of the interior angles

on the same side equal to two right angles, then the straight lines are parallel to

one another.”) and then a failed proof of Euclid’s Proposition I.29 (“A straight line

falling on parallel straight lines makes the alternate angles equal to one another,

the exterior angle equal to the interior and opposite angle, and the sum of the

interior angles on the same side equal to two right angles.”). However, the proof

of Proposition I.29 requires the Parallel Postulate (which is why Ptolemy’s proof is

wrong). In fact, Proposition I.29 is the first proposition of the Elements to require

the Parallel Postulate. Ptolemy had assumed that, through a point not on a line,

there exists exactly one line parallel to the given line. Today, this is known as

Playfair’s Axiom after John Playfair (March 10, 1748–July 20, 1819), and it is

equivalent to the Parallel Postulate (so this is where Ptolemy’s proof has its flaw).

We’ll see more about Playfair’s Axiom (or, under the assumption of the Parallel

Postulate, Palyfair’s Theorem) in Section 13.8. Non-Euclidean Geometry; see also

Supplement. A Quick Introduction to Non-Euclidean Geometry.

Note 6.5.L. As a final observation about Ptolemy, we consider his contributions

to astrology. In Ptolemy’s time, astrology and astronomy were closely related.

Ptolemy’s Almagest considered the prediction of the location of the planets in the

sky (recall that the sun and moon counted as planets, since they move with respect

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-13-8.pdf
https://faculty.etsu.edu/gardnerr/noneuclidean/non-Euclid-highschool.pdf
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to the “fixed stars”). In a separate work, Tetrabiblos or “Quadrapartite being Four

Books of the Influence of the Stars” meant as a companion book to the Almagest,

he presented his views on the influence of the planets on human affairs. We should

comment that Aristotle (384 bce–322 bce) ascribed changes on Earth to the effects

of the heavens. For example, in his Meteorology he starts with the assumption that

all power of change in nature comes from the heavens. Of course some changes on

Earth are the result of the positions of the “planets”; anyone with a familiarity of

tables of tides knows that high and low tides are affected by location of the sun

and moon. In addition, the seasons are definitely related to the location of the

sun relative to fixed stars (a fact realized and celebrated in prehistory). The idea

of heavenly effects on Earthly matters in terms of the locations of the stars and

planets and their predicted influence is the topic of interest in astrology (sometimes

the five naked-eye planets in the night sky, other than the sun and moon, are called

“wandering stars”). It remained a part of “science” throughout the middle ages up

to the time of Kepler (though today it is taken to be pseudo-science). Kepler and

his views on astrology are considered in Section 9.7. Kepler. So knowing where the

planets would appear in the night sky became something of practical importance

in the minds of many. Most people today know their astrological “sign.” Your

sign is an artifact of the time of Ptolemy. Due to the “wobble” of the Earth’s axis

over time, the location of the sun in a constellation in Ptolemy’s time is different

from what it is today; the constellations of the zodiac appear to drift through time.

The wobble is formally called axial precession; it results in about a 1◦ change over

the span of a human lifetime and so is not really noticeable to the casual observer.

As a result, the old positions of 2000 years ago do not coincide with modern-day

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-9-7.pdf
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positions and are off by roughly one constellation (which corresponds to about one

month). For example, if you were born on Christmas day, December 25 (a few

days after the winter solstice in the northern hemisphere), then the sun is in the

constellation Sagittarius but your “sign” is Capricorn. The solution reached by

astrologers was to simply distinguish between your “sign” and the “constellation”

in which the sun appears at the time of your birth. This is all further complicated

by the fact that the ecliptic passes through the constellation Ophiuchus and the

sun is in this constellation between November 30 and December 17 (give or take a

day). . . Of other significance is the location of the planets in the sky at a particular

time and place. The half of the ecliptic (or zodiac) which is above the horizon

is partitioned into six “houses.” Three of these lie between the eastern horizon

and the meridian (these are the ascendant houses) and the other three lie between

the meridian and the western horizon (these are the descendant houses). The

houses remain in the same locations, but as the Earth rotates the planets and

constellations in the houses change. All of this movement and geometry, required

careful calculation. This is where early mathematical astronomy met the astrology

of the time. In Tetrabiblos Ptolemy acknowledges the uncertainties present in this

work and that scholars should “never compare its perceptions with the sureness of

the first, unvarying science [astronomy as presented in Almagest]” (Falk’s The Light

Ages, page 184). Given the ongoing interest in astrology (an inexplicable interest,

to your instructor), it is not surprising that Tetrabiblos is still in print. One version

(of several) is Tyler Ashmand’s Ptolemy’s Tetrabiblos: Quadripartite, Being Four

Parts of the Influence of the Stars (reprinted by Forgotten Books, 2008):
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It can also be read online on the ForgottenBooks.com website; accessed 10/6/2023).

The source for this note is Seb Falk’s The Light Ages: The Surprising Story of

Medieval Science (W. W. Norton, 2020) pages 183, 184, and 186.

Note 6.5.M. A number of sources for English translations of historically influen-

tial mathematics (and astronomy) works have been given so far. Many of them (in

particular, those currently in print) are available through Dover Publications (such

as Heath’s translation of Euclid’s Elements mentioned in Section 5.3. Euclid’s “El-

ements” in Note 5.3.K). Another widely used source in the 20th century (before the

internet and the presence of online versions) was the Great Books of the Western

World series published by Encyclopædia Britannica, Inc. in 1952.

https://www.forgottenbooks.com/en/readbook/PtolemysTetrabiblosorQuadripartite_10441537#0
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-3.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-3.pdf
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This image is from an E-Bay auction (accessed 9/8/2023).

This was a 54 volume set of books that eventually sold a million sets. Anecdotally,

it seems that many public libraries had copies of the set. Of particular interest to

this section of notes is the fact that Volume 16 included translations of Ptolemy’s

Almagest, Copernicus’ on the Revolutions of Heavenly Spheres, and Kepler’s Epit-

ome of Copernican Astronomy (Books IV and V) and his The Harmonies of the

World (Book V). In addition, the following volumes are relevant to the history of

mathematics:

Volume 11. This presents Euclid’s Elements (it gives the Heath translation, but

with no commentary), several works of Archimedes (including On the Sphere

and Cylinder, The Quadrature of the Parabola, and The Method), Apollonius’

On Conic Sections, and Nichomachus; Introduction to Arithmetic).

https://www.ebay.com/itm/404360971523
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Volume 28. This includes Galileo’s Dialogues Concerning the Two New Sciences.

Volume 31. This has several works of Descartes, including The Geometry.

Volume 34. This gives two of Newton’s works, The Mathematical Principles of

Natural Philosophy and Optics.

Volume 45. This includes Lavoisier’s Elements of Chemistry, Fourier’s Analytical

Theory of Heat, and Faraday’s Experimental Researches in Electricity.

Also included are works by Homer (Volume 4), Plato (volume 7), Aristotle (Volumes

8 and 9), Hippocrates (Volume 10), Chaucer (Volume 22), Shakespeare (Volumes

26 and 27), Milton (Volume 32), Kant (Volume 42), Darwin (Volume 49), and

Freud (Volume 54). Criticism of the series has called it “a celebration of European

men, ignoring contributions of women and non-European authors.” This quote

(with references) and the other information of this note is from the Wikipedia

webpage on the Great Books of the Western World (accessed 9/8/2023). A second

edition was released in 1990, with the addition of Volumes 54 through 60. Some

of the criticism was addressed by the addition of work by Jane Austin (Emma),

Willa Cather (A Lost Lady), and Virginia Woolf (To the Lighthouse). The second

edition also included work by philosopher/mathematician Alfred North Whitehead

(An Introduction to Mathematics) and G. H. Hardy (A Mathematician’s Apology)

in Volume 56 (along with work by Poincaré, Plank, Einstein, Heisenberg, and

Schrödinger) .
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