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6.6. Heron

Note. Heron of Alexandria, also known as “Hero,” is important for his contri-

butions to geometry and mechanics. There is a surprising amount of uncertainty

over the time in which he lived. Estimates range from about 150 bce to 250 ce.

The MacTutor biography page for Heron (accessed 5/7/2024) gives his dates as 10

ce–75 ce, but this is largely speculative. Thomas Heath in his A History of Greek

Mathematics, Volume II: From Aristarchus to Diophantus (Clarendon Press, Ox-

ford, 1921) devotes nine pages (pages 298 to 306) to the controversies over Heron’s

dates; this work is our main reference for these section of notes and we refer to it

simply as “Heath’s History, Volume 2.”

From the MacTutor biography page for heron of Alexandria (accessed 5/7/2024);

this is credited to a 1688 German translation of Heron’s Pneumatics

Note 6.6.A. Heron concentrated more on practical applications of mathematical

ideas the he did on mathematical completeness. His list of work includes the follow-

ing (given in no particular order), which are known in Greek, and were translated

https://mathshistory.st-andrews.ac.uk/Biographies/Heron/
https://mathshistory.st-andrews.ac.uk/Biographies/Heron/
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or edited as indicated:

1. The Metrica, which was discovered in 1896 in an 11th or 12th century manuscript

found in Constantinople.

2. On the Dioptra came out in an Italian version in 1814. It includes a description

of a wheeled device to measure distance.

3. The Pneumatica (in two books) appeared in a Latin translation around 1575.

This is available in English on the Library of Congress webpage (accessed

5/9/2024). It is The Pneumatics of Hero of Alexandria, From the Original

Greek, translated by Bennet Woodcroft (London: Taylor Walton and Makerly,

1851).

4. The automaton-theatre, appeared in a 1589 Italian version. This is available

on the Internet Archive webpage (accessed 5/9/2024) in Greek and German

as Herons von Alexandria, Druckwerk und Automatentheater, by Wilhelm

Schmidt (Leipzig: Druck und Verlag von B. G. Teubner, 1899).

5. Belopoëıca (on the construction of engines of war) was edited in 1616.

6. Geometrical works titles are Definitions, Geometria, Geodaesia, Stereometrica,

Mensurae, Liber Geeponicus. Heiberg has translated these into German.

7. Mechanics in three books survives in fragments. This is available in French on

the Internet Archives webpage as Baron Carra de Vaux’s Les Mècaniques ou

L’Élévateur de Héron D’Alexandrie (Paris: Imprimerie Nationale, 1894).

8. Commentary on Euclid’s Elements in known from fragments of Greek work, but

also from an Arabic commentary by an-Nair̄iz̄i (circa 865–circa 922).

https://www.loc.gov/resource/rbc0001.2009gen41532/
https://archive.org/details/heronsvonalexandhero/mode/2up
https://archive.org/details/lesmcaniquesoul00vauxgoog
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More work by Heron is available in German in Heronis Alexandrini Opera quae

supersunt omnia [All the surviving works of Hero of Alexandria] , a five volume

collection. It includes work in Latin, with German translations throughout. Editors

are Johan Heiberg, Herman Schöne, Ludwig Nix, and Wilhelm Schmidt. This was

published in Leipzig by B. G. Teubner between 1899 and 1914. Links to images

of these volumes are available on the HathiTrust.org website (accessed 5/9/2024).

Volume 1 contains Pneumatica and The automaton-theater translated by Schmidt.

Volume 2 contains the fragments of Mechanics translated by Nix and Schmidt.

Volume 3 contains Metrica and On the Dioptra translated by Schöne. Volumes 4

and 5 contain the geometrical works translated by Heiberg. It is surprising that

more of this work has not been translated into English. These volumes are likely

the main source for Heath’s History, Volume 2 material on Heron. We now turn

our attention to the works of Heron of a mathematical content.

Note 6.6.B. Heron’s Commentary on Euclid’s Elements is known to go at least

as far as Proposition VIII.27. Heath states that (page 310): “Speaking generally,

Heron’s comments do not appear to have contained much that can be called im-

portant.” Heron adds cases to several proofs due to the way a referenced figure

might be drawn (such as locating chords of a circle on the same or opposite sides

of a given diameter). He also gives a number of alternative proofs, particularly in

Book III. For example, Euclid’s Proposition III.13 states “A circle does not touch

another circle at more than one point whether it touches it internally or externally.”

Heron gives an alternative proof of this based on a lemma he proved concerning

the fact that a straight line cannot meet a circle in more than two points. In

https://catalog.hathitrust.org/Record/000664007
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his commentary on Book I, Heron avoids extending a straight line, where Euclid

does not. This addresses potential objections that might arise as to whether the

needed space is available to make the extension of the line. This type of concern

is dealt with in a modern axiomatic approach to geometry by giving a “Ruler Pos-

tulate” which implies a one-to-one correspondence between the real numbers and

the points on any given line, so that there is “always room for more!” See my

online notes for Introduction to Modern Geometry (MATH 4157/5157) on Section

2.4. The Measurement of Distance and notice Postulate 11. Heron gives converses

of some of Euclid’s propositions and extensions of others. An important extension

is of Euclid’s Proposition III.20: “In a circle the angle at the center is double the

angle at the circumference when the angles have the same circumference as base.”

In other words, in a circle, a central angle has a measure twice that of an inscribed

angle when the angles are subtended by the same arc. Euclid gives a proof for

the inscribed angle at most a right angle, and Heron gives a proof allowing the

inscribed angle to be bigger than a right angle. This results in an easier proof

of Proposition III.22: “The sum of the opposite angles of quadrilaterals in circles

[that is, quadrilaterals inscribed in circles] equals two right angles.” In fact, this

proposition is used in Problem Study 6.11(d) part (3) which gives Heron’s formula

for the area of a triangle in terms of the lengths of the three sides.

Note 6.6.C. In the preface to Definitions, Heron explains that he bases his ap-

proach on Euclid and that he is giving material for a good understanding of Euclid

and other works of geometry. Heath describes the historical significance of this work

as (page 316): “The Definitions are very valuable from the point of view of the

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-4.pdf
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historian of mathematics, for they give the difference alternative definitions of the

fundamental conceptions. . . ” He gives 132 definitions in total. He starts with def-

initions of point, straight line, circular line, spiral shape (that is, the Archimedean

spiral), surfaces, solid body, and angles (plane and solid). Rectilinear figure, vari-

ous kinds of triangles and quadrilaterals, polygons, perpendiculars, and parallels are

next. Then sphere, cone, acute-angled cone, obtuse cone, right-angled cone, ellipse,

parabola, and hyperbola are defined. He defines several special solids, including

rectilinear sold figures, pyramids, the five regular solids, prisms, parallelepipeds,

and the semi-regular Archimedean solids. Equality and similarity of these objects

are defined. Heron concludes with ratios of magnitudes, and commensurable and

incommensurable magnitudes.

Note 6.6.D. Heron’s work Metrica involves measurement (or “mensuration”) and

is the most historically important, since it is the most complete in its original

form. It is also more theoretical than much of Heron’s other work. It is mentioned

in Eutocius’ (circa 480–circa 540) commentary on Archimedes’ Measurement of a

Circle and this was the only evidence for it, until it was discovered by R. Schöne in

Constantinople. Eutocius mentions that Heron has a technique for approximating

the square root of a non-square number. We’ll see more of this below, including why

one would connect this to the work of Archimedes. Metrica consists of three books.

In Book I, areas are considered for triangles, trapezoids, rhombi, quadrilaterals with

one right angle, regular polygons up to those of 12 sides, segments of circles, ellipses,

parabolic segments, and surfaces of cylinders, cones, and segments of spheres. In

Book II, volumes are considered for parallelepiped, prism, pyramid and a frustum,
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frustum of a cone, segment of a sphere, the solid “hoof” of Archimedes’ Method (see

Note AM2.F of Supplement. Archimedes’ Method, Part 2), and the intersection of

two cylinders as considered in Archimedes’ Method (see Note AW.B of Supplement.

The Content of Archimedes’ Work, Part 1). Book III considers the division of

figures into two parts that are in a given ratio; the figures considered are plane

figures, pyramids, a cone and frustum, and a sphere. We next consider this content

in more detail.

Note 6.6.E. Book I of Metrica gives two methods for finding the area of a triangle.

The first method is based on results from Euclid’s Elements Book II, appears in

Chapter 4 of Heron’s Book I, and gives the area as 1
2 of the base times height

of the triangle. The second method is in Chapter 8 and is known as “Heron’s

Formula.” This states that triangle ABC with sides of lengths a, b, c (so that

the perimeter is the perimeter is a + b + c, which we set equal to 2s) has area

∆ =
√

s(s− a)(s− b)(s− c). That is, the area is given in terms of the lengths

of the sides of the triangle. A proof of Heron’s Formula is to be given in Eves’

Problem Study 6-11(d). The steps of the proof are given, and justification is to be

provided. In the setting of the Pythagorean Theorem, Book I Chapter 9 includes

a method of approximation of square roots. If A is a non-square number and a2 is

the nearest square (whole) number to it (so that A = a2 +b or A = a2−b; we could

also take a as a fraction that produces a value a2 close to A) then Heron takes

as a first approximation to
√

A the value a1 =
1 + A/a

2
. A second approximation

is a2 =
1 + A/a1

2
, and the process can be iterated from there. In Eves’ Problem

Study 6.11(f), Heron’s method is to be used to approximate
√

3. If we take a1 = 5/3

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Archimedes-Method2.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Archimedes-Work.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Archimedes-Work.pdf
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then we have a2
1 = (5/3)2 = 25/9 = 27

9 , and we find that a2 = 1351/780; in fact,

(1351/780)2 ≈ 3.0000016. This is the upper bound on
√

3 used by Archimedes in his

approximation of π as 310
71 < π < 31

7 in his Measurement of a Circle; see Note 4.8.B

in Section 4.8. A Chronology of π. WOW! In Chapters 11–16, areas of quadrilaterals

are given. In all cases here, the measurements reduce to that of rectangles and

triangles. In Chapter 17 it is shown for an equilateral triangle with base a and

altitude p, that a2 : p2 = 4 : 3. From this he derives that an equilateral triangle has

area
√

3a2/4, where a is the length of a side (as we well know, from the Pythagorean

Theorem). Heron is interested in useful numerical values, and tends to approximate

“awkward” quantities like
√

3 and π in his presentations. He illustrates many of his

formulas with specific numbers, in which case he will approximate such quantities.

In Chapter 18, the area of a regular pentagon is considered. The actual formula for

the area of a regular pentagon with side of length a is A = 1
4

√
5(5 + 2

√
5)a2. So

this involves
√

5 which, in some examples, he estimates as 9/4 (we have (9/4)2 =

5.0625). Chapter 19 covers the regular hexagon. With a side of length a, a regular

hexagon simply consists of 6 equilateral triangles with sides of length a. Since

the the area of such a triangle is
√

3a2/4, then the area of the regular hexagon is

A = 6
√

3a2/4 = 3
√

3a2/2, or as Heron expressed it, A2 = 27a2/4. In Chapter 20,

Heron explores a heptagon (i.e., 7-sided polygon) inscribed in a circle of radius r.

For the length of the side of the heptagon, he takes the apothem (that is, a line

segment from the center of the circle that intersects a side of the polygon at a right

angle) of a regular hexagon inscribed in the same circle. From properties of an

equilateral triangle, is is know that the apothem of such a hexagon is
√

3r/2, so he

is approximating the length of the side of the heptgon with a =
√

3r/2 (or, using

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-4-8.pdf
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7/8 as an approximation of
√

3/2, a = 7a/8). Heron then (ultimately) estimates

the area of the heptagon as 43
12a

2. In Eves’ Study Problem 6.11(a), the accuracy of

this idea is addressed. In Chapters 21, 23, 25 of Book I, Heron finds formulas for

the area of a regular octagon, decagon, and dodecagon. These involve
√

2 and
√

3,

which he approximates and gives formulas A8 = 29
6 a2, A10 = 15

2 a2, and A12 = 45
4 a2,

respectively. Regular 9-gons and 11-gons (i.e., “enneagons” and “hendecagons”) are

addressed in Chapter 22 and 24. This requires the use of a Table of Chords (and

hence approximations), “presumably Hipparchus’s Table” (according to Heath’s

History, Volume 2, page 329); see Note 6.5.C of Section 6.5. Hipparchus, Menelaus,

Ptolemy, and Greek Trigonometry. Chapter 26 concerns the area of the circle,

and Heron uses Archimedes approximation of 22/7 for π. In Chapters 27–32, the

area of a segment of the circle is addressed. Following Archimedes’ technique

on the quadrature of the parabola (see Note AW.C of Supplement. The Content

of Archimedes’ Work, Part 1 and notice the method of exhaustion argument).

However, as usual, Heron give approximations. Book I of Metrica concludes with

Chapters 34–39 which cover the areas of an ellipse, a parabolic segment, the surface

areas of a cylinder and right cone, surface area of a sphere and a segment of a sphere.

In the last two cases, he borrows from Archimedes. For surface areas of a cylinder

and right cone, he “unrolls” the surface giving a flat region that is a parallelogram

or a sector of a circle, respectively.

Note 6.6.F. Book II addressed volumes of solids. Chapters 1–7 deal with volumes

of a cone, cylinder, parallelepiped, triangular prism, pyramid with any base, and a

frustum of a triangular pyramid. In each case, the solids are allowed to be oblique.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-5.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-5.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Archimedes-Work.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Archimedes-Work.pdf
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Chapter 8 considers a rectilinear solid with base a rectangle ABCD, side opposite

the base a rectangle EFGH where the sides of EFGH are, respectively, parallel to

the sides of rectangle ABCD, the sides of the rectangles need not be proportional to

each other. The lateral surfaces are trapezoids joining the corresponding parallel

sides of the upper and lower triangle. See the figure below. Such a solid is an

example of a prismatoid. Heron finds the volume of the solid by partitioning it into

a parallelepiped, two prisms, and a pyramid; a parallelepiped is produced with the

same volume as Heron’s solid. Introduce point K such that AK equals EF (in this

derivation, it is assumed that AB ≥ EF ) and point L such that BL equals FG

(again, is is assumed that BC ≥ FG). Bisect BK and CL at points V and W ,

then draw KRPU and V QOM parallel to AD. Draw LQRN and WOPT parallel

to AB. Introduce line segments FK, GR, LG, GU , and HN . These are used to

partition the solid and create a new parallelepiped. In the figure, the parallelepiped

is given in blue, the prisms are given in red, and the pyramid is given in green.
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We build a parallelepiped from these which has the same volume as Heron’s solid.

(1) With h as the altitude of the solid, the parallelepiped has volume equal to the

area of the base AKRN and height h. The base has area (AK)(KR). (2) The

volume of the prism with lower face KBLR is the same as half of the parallelepiped

with this lower base and the upper base of the same size and shape (recall that

FG = BL). We use KV QR as the lower base of such a parallelepiped. (3)

The volume of the prism with lower face NRUD is similarly equal to half the

parallelepiped with this lower base and the upper base the same size and shape.

We use NRPT and the lower base of such a parallelepiped. (4) The pyramid

in green has volume 1/3 the area of the base times the altitude; this is 1/3 the

volume of the parallelepiped with the same base and upper base of the same size

and shape. The rectangle RQOP contains 1/4 of the area of the base. To this,

we add three more copies of RQOP to get a total area of the base of 4(RQ)(RP ).

Then the volume of the parallelepiped with lower base RLCU and the upper base

of the same size and shape is 4(RQ)(RP )h. The volume of the pyramid is then

(4/3)(RQ)(RP ) = (RQ)(RP ) + (1/3)(RQ)(RP ). So if we create a parallelepiped

of base equal to (AV )(AT ) + (1/3)(RQ)(RP ) and altitude h, this parallelepiped

will have volume equal to Heron’s solid.

We have a = AB, b = BC, c = EF , and d = FG (so that the base rectangle
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has sides of lengths a and b, and the upper rectangle has sides of lengths c and d).

From this, RQ = 1
2(a − c), RP = 1

2(b − d), AV = (AB) − (V B) = a − (RQ) =

a− 1
2(a−c) = 1

2(a+c), and AT = (AD)−(TD) = b−(RP ) = b− 1
2(b−d) = 1

2(b+d).

The volume is then:

V =

(
(AV )(AT ) +

1

3
(RQ)(RP )

)
h

=

((
1

2
(a + c)

) (
1

2
(b + d

)
+

1

3

(
1

2
(a− c)

) (
1

2
(b− d)

))
h

=

(
1

4
(a + c)(b + d) +

1

12
(a− c)(b− d)

)
.

In Eves’ Problem Study 6.11(g) a general prismatoid is defined which is similar to

the solid considered by Heron. In the general case, the upper and lower surfaces are

allowed to be any polygon, with vertices of the upper joined to the lower to form

a rectilinear solid with lateral surfaces that are either triangles or trapezoids. It is

to be shown in 6.11(g) that Heron’s formula is equivalent to the volume formula

for a prismatoid given in 6.11(g). In Chapters 9 and 10 the volume of the frustum

of a cone is given (that is, a cone with the upper pointed part cut off) is given,

computed based on volumes of cones in terms of circumscribing pyramids, and as a

difference of two cones. Again, Heron approximates π with 22/7. In Chapter 11 he

considers volumes of sphere, and in Chapter 12 the volume of a segment of a sphere;

he bases both on work of Archimedes. Chapter 13 considers the volume of a torus.

Heron uses a formula from Dionysodorus (circa 250 sc bce–circa 190 bce) which

he illustrates with specific numbers and approximations. Chapters 14 and 15 cover

solids based on Archimedes’ Method. Chapters 16, 17, and 18 give the volumes of

he regular solids tetrahedron, octahedron, icosaheron, and dodecahedron (the cube

being obvious).
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Note 6.6.G. Book III of Metrica concerns divisions of figures. The most common

agenda is to divide a plane figure by a line, or divide a solid by a plane in such

a way that the resulting two parts are in a given ratio. Chapters 1–3 involve

dividing a triangle with a line (1) through a vertex, (2) parallel to a side, and (3)

through any point on a side. Chapters 5–8 consider a similar problem as applied

to a trapezoid. Chapter 9 considers dividing a circle into a given ration using

smaller circle with the same center. Chapters 11–13 consider problems similar to

those concerning triangles and trapezoids, but for general quadrilaterals. The same

problems are solved for any polygon in Chapters 14 and 15. Chapter 17 relates to

cutting a sphere with a plane such that the resulting surface areas are in a given

ratio. Chapter 18 concerns cutting a circle into three equal (area) parts with two

lines. The last problem (in Chapter 20) concerning division of an area, is to find a

single point in a triangle that, when joined to each of the vertices of the triangle,

results in three sub-triangles of equal area. Moving on to solid figures, Chapters 20,

21, and 22 concern dividing the solid into two parts in a given ratio. These chapters

cover a pyramid with any base, a cone, and a frustum of a cone, respectively. Each

of these require the cube root of a number that is not, in general, a perfect cube.

Consider, for example, the problem of cutting off the top of a cone of altitude h

and base radius r in such a way that the top is to the rest of the cone as m to n.

The volume of the whole cone is 1
3πr2h. We want the fractional part m/(m + n) of

the volume of the whole cone to equal the volume of the upper (“pointed”) part.

Let r′ and h′ be the (unknown) radius and altitude of the top part. The top part of

the cone has the same ratio of radius to altitude as the whole cone, so r/h = r′/h′.
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Now we want

m

m + n

1

3
πr2h =

1

3
π(r′)2h′ =

1

3
π

(
rh′

h

)2

h′ or
m

m + n
=

(
h′

h

)3

.

So in terms of h, the desired value of h′ is then h 3
√

m/(m + n) and a cube root

is needed. We now consider Heron’s approximation of cube roots. In a numerical

example of the cone problem, Heron computes a cube root of 100 as 4 9
14 . In fact(

4 9
14

)3 ≈ 100.0820. G. Wertheim proposes the following algorithm that Heron used.

Let A be a given (positive) non-cube. For a with a3 < A < (a+1)3, let d1 = A−a3

and d2 = (a + 1)3 − A. Then an approximation of 3
√

A is

3
√

A ≈ a +
(a + 1)d1

(a + 1)d1 + ad2
.

Wertheim’s results appear in “Herons Ausziehung der irrationalen Kubikwurzeln

[Heron’s extraction of the irrational cube roots],” Zeitschrift für Mathematik und

Physik [Journal for Mathematics and Physics], 44 (1899), Historisch-litterarische

Abteilun, 1–3. This is available online (in German) on the Göttingen Digitization

Center (go to page 395 in the pull-down “pages” menu to see Wertheim’s work;

accessed 5/13/2024). With a = 4 we have a3 = 43 = 64 < 100 < 125 = 53 =

(a + 1)3, as needed. The d1 = 100 − 64 = 36 and d2 = 125 − 100 = 25. Heron

would then get

3
√

100 ≈ a +
(a + 1)d1

(a + 1)d1 + ad2
= 4 +

(5)(36)

(5)(36) + (4)(25)
= 4 +

180

180 + 100
= 4

9

14
.

This formula can be derived from elementary algebraic manipulations, that would

have been known in Heron’s time. This was shown by Gustav Eneström in “Kleine

Mitteilungen [Small Messages],” Bibliotheca Mathematica, 8 (1907–08), 412–413.

This is available online (also in German) on the Internet Archive website (accessed

https://gdz.sub.uni-goettingen.de/id/PPN599415665_0044
https://gdz.sub.uni-goettingen.de/id/PPN599415665_0044
https://archive.org/details/sim_bibliotheca-mathematica_1907-1908_8_contents/page/412/mode/2up
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5/13/2024). Heath give an explanation of the elementary derivation of the formula

in English in History, Volume 2, pages 341–342. In Chapter 22, a similar problem

is considered, but it is the frustum of a cone (instead of a cone itself) that is cut to

produce two parts with volumes in a given ratio. Heath says that, with this result,

we “shall end our account of the Metrica” (page 342). It is unclear if this is the

last result in Metrica, or simply the last result discussed by Heath.

Note 6.6.H. Geometria if based on Heron’s work, but it has seen some edited and

additions have been made. The measurements of areas involves the same figures as

considered in Book I of Metrica, only there is no explanation of the formulas but

they are illustrated with several specific examples. Chapters 1–4 are introductory

and include definitions. Chapters 5–99 are related to the content of Metrica just

mentioned. Johan Hieberg includes in his translation of Geometria material from

Liber Geeponicus (“a badly ordered collection consisting to a large extent of extracts

from the other [Heron] works,” Heath History, Volume 2, page 318). This material

includes definitions from Definitiones. Heiberg also adds eleven sections from the

Constantinople manuscript of Metrica, mostly related to areas of squares, circles,

segments of circles, and triangles inscribed in other such figures. Heiberg also

includes material involving Heron’s solving of quadratic equations; Heron completes

the square in his examples. In addition, he includes some indeterminate problems;

these will be discussed later in Section 6.7. Ancient Greek Algebra.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-7.pdf
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Note 6.6.I. Stereometrica is in two books. Chapters 1–40 of Book I consider

measurements of solid figures, including the sphere, cone, frustum of a cone, obelisk

with a circular base, and pyramids. Chapters 41–54 apply these results to certain

buildings and other structures. Book II contains similar material, and includes the

use of lengths of shadows to find heights of objects (similar to some of the work of

Thales). Geodaesia contains extracts from Geometria, with the first 16 chapters of

Geodaesia containing the material of Chapters 5–31 of Geometria. Chapters 17–19

give Heron’s Formula, thus reproducing material from Book I of Metrica (Chapters

5–8; see Note 6.6.E.). Mensurae is attributed to Heron in an Archimedes manuscript

dating to the 9th century, but the extant manuscript cannot be Heron’s original

version. Sections 2–27 measure a large variety of real-world objects (eg., a pillar,

a tower, and a vault). Chapters 28–48 measure geometric figures and segments of

them, repeating material from Metrica Books I and II, and Steroemetrica. Sections

49–59 concern measurements of other plane and solid figures.

Note 6.6.J. The Dioptra includes “heights and distances” problems, areas of plane

figures, and some measurements related to solids. However, the mission of this work

is to solve applied engineering problems. The first five chapters describe the instru-

ment called a dipotra, which is an ancient theodolite (a device used in surveying

to measure angles). Some of the height and distance problems are: Determine the

difference of level between two given points (Chapter 6), draw a straight line con-

necting two points the one of which is not visible from the other (Chapter 7), the

distance of two inaccessible points (Chapter 9), and the height of an inaccessible

point (Chapter 12). Problems that specifically might be categorized as “engineer-
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ing” (though they are more closely related to surveying) are: Find the depth of a

ditch (Chapter 13), to bore a tunnel through a mountain going straight through

from one given point to another (Chapter 15), and to construct a ceiling that has

a surface of a given segment of a sphere. Measurement problems include dividing

a given area into two parts by a straight line that produces parts with areas in a

given ratio, and another statement of Heron’s Formula for the area of a triangle

in terms of the lengths of the three sides (see Note 6.6.E). Chapter 34 (there seem

to be 38 chapters total) describes a device referred to as a “hodometer,” which is

an arrangement of gears and rotating screws, and is designed to measure distance.

In Chapter 35 it is shown how to find the distance between Rome and Alexandria

along a great circle by observing the same eclipse at these two locations. For this,

Eratosthenes’ estimate of the Earth’s circumference from his On the Measurement

of the Earth is used (see Section 6.3. Eratosthenes) and it is stated that Eratos-

thenes’ estimate is the most accurate of that time. It is speculated that Chapters

34 and 35 (along with some other of the last few chapters) were added over the

years by editors trying to make the work more complete.

Note 6.6.K. Mechanics in three books survives in fragments. It survives in Arabic

and seems to be heavily edited from its original form. Book I starts with the

problem of moving a given weight with a given force by transferring the force

through a sequence of gears. Chapters 2–7 consider motion of wheels moving on

different axes. For example, Chapter 7 discusses Aristotle’s Wheel.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-3.pdf
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Consider two circles with the same center, one of radius (OB) and the larger one of

radius (OA). Let AC and BD be 1/4 of the circumference of each respective circle.

Suppose the larger circle rolls along line AE until OCcoincides with O′E. At this

time, point D on the smaller circle will be at point F . In this movement, arc AC

is mapped to segment AE while arc BD is mapped to BF . Now (BF ) = (AE) so

the “paradox” is how to explain that, in the rotation, the smaller wheel and the

larger wheel can trace out the same distance. Heath in History, Volume 2 (page

348) states:

“Heron’s explanation is that, e.g. in the case where the larger circle

rolls on AE, the lesser circle maintains the same speed as the greater

because it has two motions; for if we regard the smaller circle as merely

fastened to the larger, and not rolling at all, its centre O will move to

O′ traversing a distance OO′ equal to AE and BF ; hence the greater

circle will take the lesser with it over an equal distance, the rolling of

the lesser circle having no effect upon this.”

The quicker explanation is that the smaller circle slips on BF as the larger circle

rolls over AE. An animation illustrating the slipping of the smaller circle is given on
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the Wikipedia page on Aristotle’s wheel paradox (accessed 5/15/2024). In Chapter

8, Heron gives the parallelogram law of addition of velocity vectors. You see this for

vectors in Rn in Linear Algebra (MATH 2010) in Section 1.1. Vectors in Euclidean

Space.

Suppose a point moves with uniform velocity along a straight line AB from A to

B. At the same time, AB moves with uniform velocity always remaining horizontal

with point A moving along line AC and point B moving along line BD. Suppose

that the point arrives at B when the line AB reaches line CD. For EF any

intermediate position of AB, let G the position of the point when AB coincides

with EF . The uniform motions imply that AE : AC = EG : EF and hence

AE : EG = AC : EF = AC : CD. So G lies on the diagonal AD and this

represents the path of the moving point. Chapters 9–19 concern the construction

of plane and solid figures which are similar to given figures and, in terms of area

and volume respectively, in a given ratio. Heron accurately saw the addition of

vector quantities (well, as least velocity vectors) in his Chapter 8. In Chapter 23

he considers another physics problem: motion on an inclined plane. It is actually

force instead of motion that he considers, which he introduces by considering the

force that would be needed to hold a cylinder of a given weight stationary when

placed on an incline plane. See the figure below which gives a cross section of

the physical situation. This is covered in a standard introduction to physics class.

https://upload.wikimedia.org/wikipedia/commons/f/f0/Aristotle_wheel_paradox.svg
https://faculty.etsu.edu/gardnerr/2010/c1s1.pdf
https://faculty.etsu.edu/gardnerr/2010/c1s1.pdf


6.6. Heron 19

For example, see my online notes for Technical Physics 1 (PHYS 2110) (a work in

progress, as of summer 2024) on Chapter 5, “Force and Motion—I.”

Heron argues that the vertical plane passing through the line of contact of the

cylinder with the inclined plane partitions the cylinder into two parts (represented

in red and blue in the figure). He claims that the force along the incline plane

that will hold the cylinder in place is the difference of the larger downhill part

(in blue) and the smaller uphill part (in red). It seems that he thinks of the red

part as “wanting” to fall uphill and the blue part “wanting” to fall downhill; this

he takes a difference. In Exercise 6.6.A it to be shown that the force given by

Heron’s approach is 2(sin θ cos θ + θ)/π times the weight of the cylinder, where θ

(in radians) is the angle of inclination of the inclined plane, as indicated in the

figure. This is not accurate, since we know from elementary physics that the force

applied along the inclined plane that will hold a cylinder of weight w in place is

w sin θ. So Heron had some accurate ideas about vectors (e.g., adding velocity

vectors), but he did not have a modern understanding of forces and force vectors.

Chapter 24 of Mechanics Book I concerns the center of gravity, and Chapter 25–31

cover supporting a heavy beam or a wall by a number of pillars. Chapters 32 and 33

concern levers, and Heron credits Archimedes as giving authoritative foundational

https://faculty.etsu.edu/gardnerr/Physics/Physics1.htm
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material.

Note. 6.6.L. Book II of Mechanics is related to mechanical “powers” (that is,

machines that allow a small force to be applied to a heavy weight). Heron includes

wheels and axles, levers, pulleys, the wedge, the screw, and combinations of these.

The first six chapters give descriptions of the machines. These are followed by

several chapters giving specific illustration of the use of the machines. Chapter

32 discusses the effect of friction on the machines power. Chapter 34 discusses

questions raised by Aristotle. Examples of such questions are: (1) “Why do great

weights fall to the ground in a shorter time than lighter ones?” and (2) “Why

does a stick break sooner when one puts one’s knee against it in the middle?” Of

course Aristotelean physics was not entirely correct, and the assumption that heavy

objects fall faster than light ones in (1) is false (it is a question of air resistance).

Heron returns to centers of gravity in Chapters 35, 36, and 37 and finds the center of

gravity of triangles, quadrilaterals, and pentagons. In the remaining four chapters

of Book II, centers of mass of such figures (and polygons in general) are considered

when additional weights are put on the angles of the figures. Book III deals with

the actual construction of machines which use pulleys (Heath, History, Volume 2

only devotes one sentence to Book III).

Note. 6.6.M. Heron’s work Catoptrica contains several theoretical propositions

that are also in Euclid’s work titled Catoptrica (or Optics, as it was called in Section

5.2. Euclid and Section 5.8. Euclid’s Other Works; see Note 5.8.D). Heron’s work

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-2.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-2.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-8.pdf
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also addresses the problem of configuring mirrors in a certain way so that objects

are reflected in a certain way. For example, the construction of a system of mirrors

that makes the right side appear on the right, instead of reversed; in this way,

a written page would be reflected in such a way that it appears in its original

orientation. Heron includes concave and cylindrical mirrors in his collection of

arrangements of mirrors. All of this work is based on the property that the angle

in incidence equals the angle of reflection for any reflecting surface. This is shown

in Propositions 4 and 5 of Catoptrica and is also to be shown in Eves’ Problem

Study 6.11(b) based on the fact that light follows the shortest path between its

source and the point where it is ultimately detected (i.e., the eye that sees it). See

the figure below, in which the claim is that α = β.
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