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6.8. Diophantus

Note. Like Heron, the dates of Diophantus are uncertain. The MacTutor biog-

raphy page (accessed 5/17/2024) gives the birth and death years of circa 200 ce

and circa 284 ce. In this section, we concentrate on his two partially surviving

works, Arithmetica and On Polygonal Numbers. Arithmetica plays a central role

in the development of algebra and number theory, including the introduction of

symbols to mathematics (and the beginning of the Syncopated Algebra stage; see

Note 6.7.A of Section 6.7. Ancient Greek Algebra).

An imaged appearance of Diophantus, from the Greatest Greeks webpage on

Diophantus (accessed 5/17/2024)

Note 6.8.A. Diophantus’ age is the topic of one of the problems in the Greek

Anthology (for information on the Greek Anthology, see Note 6.7.B of Section 6.7.

Ancient Greek Algebra). This problem is given by Eves as Problem Study 6.15(a)

(the solution gives an age of 84 when Diophantus died). The known works of

Diophantus are the Arithmetica, On Polygonal Numbers, and possibly Porisms

(or “Corollaries”; this would include results implies by previously known results).

Arithmetica was originally in thirteen books, but only six of the books survive.

https://mathshistory.st-andrews.ac.uk/Biographies/Diophantus/
https://mathshistory.st-andrews.ac.uk/Biographies/Diophantus/
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-7.pdf
https://greatestgreeks.wordpress.com/2017/04/04/diophantus/
https://greatestgreeks.wordpress.com/2017/04/04/diophantus/
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-7.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-7.pdf
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We’ll explore its content in detail below. Only a fragment of On Polygonal Lines

survives. In Book V of Arithmetica, Diophantus refers to “the Porisms” in his

proofs of Propositions 3, 5, and 16. It seems that this could be a separate collection

of propositions that has not survived. We now turn our attention to Arithmetica.

Note 6.8.B. Johann Regiomontanus (June 6, 1436–July 6, 1476) was the first of

the Renaissance-era to call attention to the work of Diophantus by observing that

there was no translation from Greek into Latin of “Diofantus, a Greek arithmeti-

cian.” Rafael Bombelli (January 1526–1572) was the first to find a manuscript

of Arithmetica in the Vatican. Around 1570, he and Antonio Maria Pazzi trans-

lated five books out of the seven, but did not publish this translation. However,

Bombelli took all of the problems from the first four Books ans some of the fifth

and published them, along with some of his own problems, in his 1572 Algebra. In

1575, Wilhelm Holzmann (commonly known as “Xylander”; December 26, 1532–

February 10, 1576) produced a carefully-prepared Latin translation of Diophantus,

along with commentary. For some 200-odd years, the standard edition of Dio-

phantus was Claude Gaspar Bachet’s (October 9, 1581–February 26, 1638) version

which included the Greek text along with the Latin translation and supplemental

notes in 1621. A second edition was printed in 1670 which, unfortunately, was

carelessly printed and contained errors in the test, but which contained notes made

by Pierre de Fermat (August 17, 1601–January 12, 1665). In one of these notes,

Fermat wrote: “It is impossible for a cube to be written as a sum of two cubes or a

fourth power to be written as the sum of two fourth powers or, in general, for any

number which is a power greater than the second to be written as a sum of two
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like powers. I have a truly marvelous demonstration of this proposition which this

margin is too narrow to contain.” That is, there are no natural number solutions

a, b, c to the equation an + bn = cn where n is a natural number (i.e., positive inte-

ger), except in the case where n = 2 (in this case, the solutions form Pythagorean

triples). This unproved conjecture stood for about 350 years, until it was proved

true in the 1990s. More information on this can be found in Supplement. Fermat’s

Last Theorem—History, a supplement to our Section 10.3, “Fermat.” Simon Stevin

(1548–February 1620) published a French version of the first four Books in 1585,

based on Xylander’s earlier work. Albert Girard (1595–December 8, 1632) added

Books V and VI to this and published the complete edition in 1625. Several other

translations based on Bachet’s version include:

1. Otto Schulz gave a German translation in 1822.

2. Gustav Wertheim (June 9, 1843–August 31, 1902) published another German

version in 1890.

3. Friedrich Poselger (1771–1838) translated a fragment of Polygonal Numbers in

1810.

Another German version is that of Paul Tannery, Diophantus alexandrus. Opera

omnia [Diophantus of Alexandria, Complete Works], 2 volumes, Liepzig: B.G.

Teubner (1893, 1895). This version is “much superior to that of Bachet” (as Heath

states on page v of his translation of this). This is the version referenced by Thomas

Heath in his work (in English) Diophantus of Alexandria: A Study in the History of

Greek Algebra, 2nd Edition, Cambridge: Cambridge University Press (1910). This

note is based on Heath’s History, Volume 2, pages 453–455.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-Fermats-Last-Theorem-History.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-Fermats-Last-Theorem-History.pdf
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Note 6.8.C. Perhaps unsurprisingly, Diophantus’ Arithmetica is another work

translated into English by Thomas Heath (see Note 5.3.K. of Section 5.3. Euclid’s

“Elements” for more on him). He published Diophantus of Alexandria: A Study

in the History of Greek Algebra, 2nd Edition, Cambridge: Cambridge University

Press (1910). It is still in print by Martino Publishing (2009) and Heath Press

(2008).

In print versions of Heath’s work on Diophantus,

from Amazon.com (accessed 5/17/2024)

A PDF copy is available online on Archive.org (accessed 5/17/2024). There is a new

translation of Arithmetica by Jean Christianidis and Jeffrey Oaks: The Arithmetica

of Diophantus: A Complete Translation and Commentary, (Routledge, 2022); see

the figure below. Hypatia of Alexandria (circa 370 ce–March 415 ce) wrote the first

commentary on Arithmetica Books I–VI, but wrote noting on the remaining books.

Arabic commentaries and similar studies (some of which reproduce problems from

Arithmetica) dating around 1000 ce make no mention of the other books, implying

that Books VII–XIII were lost before the 10th century.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-3.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-3.pdf
https://www.amazon.com/
https://dn790004.ca.archive.org/0/items/diophantusofalex00heatiala/diophantusofalex00heatiala.pdf
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A new translation of Arithmetica, from Amazon.com (accessed 5/17/2024)

These commentaries include ones by (using the spelling and dates given in Heath’s

History, Volume 2, page 453) Abū’l Wafā al-Būsjān̄ı (940–998), Qustt.ā al-Ba‘labakk̄ı

(circa 900), and Ibn al-Haitham (circa 965–1039). We saw Abū’l Wafā al-Būsjān̄ı

and Ibn al-Haitham in Section 5.3. Euclid’s “Elements” in reference to translations

of the Elements.

Note 6.8.D. Our word “arithmetic,” as well as the title of Diophantus work,

comes from the Greek words arithmos (meaning “number”) and techne (meaning

“science”). Diophantus introduces the beginnings of symbolic algebraic notation,

usually by taking the first two letters of a relevant word. The symbol used for an

unknown is a lowercase sigma, ς (In LATEX, this is “\varsigma”). Heath argues (in

History, Volume 2, page 457) that this symbol evolved from the contraction of the

first two letters of arithmos (or αριθµoς), alpha and rho. Powers of the unknown

are represented similarly. The “unknown squared” is denoted ∆Υ, derived from

https://www.amazon.com/
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-5-3.pdf
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dunamis (or ∆ΥNAMIΣ for “power”). The “unknown cubed” is denoted KΥ,

derived from kubos (or KΥBOΣ for “cube”). The “unknown square-square” is

denoted ∆Υ∆, the “unknown square-cube” is denoted ∆KΥ, and the “unknown

cube-cube” is denoted KΥK. The following table summarizes this.

Variable Symbol Greek Letters

unknown, x ς sigma

unknown squared, x2 ∆Υ Delta Upsilon

unknown cubed, x3 KΥ Kappa Upsilon

unknown square-square, x4 ∆Υ∆ Delta Upsilon Delta

unknown square-cube, x5 ∆KΥ Delta Kappa Upsilon

unknown cube-cube, x6 KΥK Kappa Upsilon Kappa

The symbol for subtraction is . This is thought of an inverted capital lambda,

Λ, with a superimposed capital iota, I. The Greek word for “lacking” is leipis (or

ΛEIΨIΣ). There is no symbol for addition; it is represented by juxtaposition. That

is, “terms” that are next to each other are assumed to be added together. To add

and subtract several terms, by convention, the terms added appear first (i.e., on

the left), then the symbol for subtraction is given, and on the right the terms to

be subtracted. For example, if we wish to represent the operations

51− 1− 28 + 624 + 71− 537

as Diophantus would, then we have (see the table in Section 1.6. Ciphered Numeral

Systems for the representation of numbers using the Greek alphabet)

ναχκδoα ακηφγζ.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-1-6.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-1-6.pdf
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That is,

51− 1− 28 + 624 + 71− 537⇐⇒ ναχκδoα ακηφγζ.

The Greek representation is unambiguous, but difficult (I think!) to process without

any spacing or punctuation. Lets decipher this by introducing some spaces and

parentheses:

(να) (χκδ) (oα) (α) (κη) (φγζ)⇐⇒ (51 + 624 + 71)− (1 + 28 + 537).

Of course, we could also just sum all of the added symbols (with disregard to the

order of appearance) and then subtract the sum of all of the subtracted symbols.

To express a polynomial, the power of the variable appears first and then the

coefficient. The rules for sums and differences are otherwise as just discussed.

For constant terms in a polynomial, the symbol M̊ is placed before the constant,

where this is symbol motivated by the Greek word monades (or MONA∆EΣ for

“units”). With this notation, we have the following examples of representation of

polynomials:

x3 + 13x2 + 5x⇐⇒ KΥα∆Υιγςε and x3 − 5x2 + 8x− 1⇐⇒ KΥαςη ∆ΥεM̊α.

Let’s also analyze this by introducing some parentheses and spaces:

KΥα ∆Υιγ ςε

1x3 + 13x2 + 5x
and

KΥα ςη ∆Υε M̊α

( 1x3 + 8x ) − ( 5x2 + 1 )

In Rhetorical Algebra, these would be literally

unknown cubed 1, unknown squared 13, unknown 5

and
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(unknown cubed 1, unknown 8) minus (unknown squared 5, units 1).

So Diophantus has introduced the Syncopated Algebra stage (see Section 6.7. An-

cient Greek Algebra for more on this terminology). This note is primarily based on

Eves text book, pages 181 and 182 (though the polynomial examples also appear

in Heath’s History, Volume 2, pages 458–460).

Note 6.8.E. Diophantus does not present a symbol for division, but he does present

one for reciprocal. With the unknown as ς, he represents the reciprocal of the

unknown as ς We then predictably have:

Variable Symbol

reciprocal of the unknown, 1/x ς

reciprocal of the unknown squared, 1/x2 ∆Υ

reciprocal of the unknown cubed, 1/x3 KΥ

reciprocal of the unknown square-square, 1/x4 ∆Υ∆

reciprocal of the unknown square-cube, 1/x5 ∆KΥ

reciprocal of the unknown cube-cube, 1/x6 KΥK

As before, coefficients come after the unknowns, so that

250/x2 ⇐⇒ ∆Υ σν.

As opposed to having a symbol for division, Diophantus writes the numerator,

followed by έν µoρίω or µoρίυ, meaning “divided by,” according to Heath’s Index

of Greek Words in History, Volume 2. We now have, for example, the rational

expression

60x2 + 520

x4 + 900− 60x2 ⇐⇒ ∆Υξ M̊φκ έν µoρίω ∆Υ∆α M̊ ∆υξ.

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-7.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-7.pdf
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A shortcoming of Diophantus’ notation is that it only allows the use of one unknown

at a time. So a problem involving two unknowns has to somehow be manipulated

to produce two equations in one unknown (an elimination of one variable for each,

if possible). Diophantus deals with indeterminate equations (i.e., those without

unique solutions) by choosing some values for all but one of the unknowns, and

then solving for the final unknown. Since the choosing could be done arbitrarily,

there is some underlying generality of the solutions produced. . . This notes is based

on Heath’s History, Volume 2, pages 458, 460, and 461.

Revised: 5/18/2024


