Elementary Number Theory

Section 1. Integers—Proofs of Theorems
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Lemma 1.2
Lemma 1.2. If d|a;, d|ap, ..., d|a,, then d|(cra1 + cpaz + - - - + cphan)
for any integers c¢1, ¢, ..., Cn.

Proof. By the definition of divisiblity, there are integers g1, qo, . .., g, such
that a1 = dqg1, a» = dqo, ...,a, = dq,. So (by the distributive property)

c1a1 + cax + -+ + cpan = c1dqr + cdqa + - - - ¢,dq,

=d(caqi+ g+ -+ caqn),

where c1q1 + g2 + - - - + cagn is an integer. Hence, by the definition of
divisibility again, d | (c1a1 + ca2 + - - - + cpan), as claimed. O
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Lemma 1.1

Lemma 1.1. If d|a and d | b, then d|(a+ b).

Proof. By the definition of divisibility, d | a implies that there is integer g
such that dg = a, and d | b implies that there is integer r such that
dr = b. So (by the distributive property)

a+b=dg+db=d(q+ b),

where g + b is an integer. Hence, by the definition of divisibility again,
d|(a+ b), as claimed. O
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Theorem 1.1

Theorem 1.1

Theorem 1.1. If (a, b) = d then (a/d, b/d) = 1.

Proof. Since (a, b) = d then d divides a and so a/d is an integer.
Similarly, since (a, b) = d then d divides b and so b/d is an integer. Let ¢

denote the greatest common divisor ¢ = (a/d, b/d). We want to show
that c = 1.

Since 1 is a divisor of every integer, then every greatest common divisor is
at least 1; that is, ¢ > 1. Since c|(a/d) and c|(b/d) then there are
integers g and r such that a/d = cq and b/d = cr. This is equivalent to
the equations (cd)q = a and (cd)r = b. So, by the definition of
divisibility, cd is a divisor of both a and b. Therefore cd is less than or
equal to the greatest common divisor of a and b, d = (a, b). This cd < d.
Since d is positive (being a greatest common divisor), this gives ¢ < 1.
Hence ¢ = (a/d, b/d) = 1, as claimed. O
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Theorem 1.2. The Division Algorithm

Theorem 1.2

Theorem 1.2. The Division Algorithm.
Given positive integers a and b, there exist unique integers g and r with
0 < r < bsuchthat a=bqg+r.

Proof. Consider the set of integers A= {a,a— b,a—2b,a— 3b,...}. Set
A contains a subset of nonnegative integers which is nonempty (since a is
positive by hypothesis) and bounded below by 0. By the Least-Integer
Principle, A contains a least element, say a — gb where g is an integer.
Now a — gb is nonnegative and it less than b (or else a — (g + 1)b would
be a lesser nonnegative element of A, contradicting the minimality of
a—qgb). Letr=a—bqg. The0<r < band a=bqg+r, as required. We
now need to show that such g and r are unique.

Suppose that q, r, g1, and ry satisfy a = bqg + r = bgy + 1 with
0<r<band 0<r < b;. Then we have

O=a—a=(bg+r)—(bgi+n)=>blq—q1)+(r—nr). (1)
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Lemma 1.3

Lemma 1.3. If a= bq + r, then (a, b) = (b, r).

Proof. Let d be the greatest common divisor of a and b, d = (a, b). Then
d is a divisor of a and d is a divisor of b (that is, d|a and d| b), so by
Lemma 1.3 d is a divisor of a — bq = r (that is, d|r). So d is a common
divisor of b and r.

Suppose that ¢ is any common divisor of b and r, so that c|b (and so
c|bg) and c|r. Then, by Lemma 1.1, c|bg+ r or c|a. Hence c is a
common divisor of a and b. Since d is the greatest common divisor of a
and b, then ¢ < d.

So d is (1) a common divisor of b and r, and (2) if ¢ is a common divisor
of b and r then ¢ < d. Therefore (by definition) d is the greatest common
divisor of b and r (that is, d = (b, r)), as claimed. O
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Theorem 1.2. The Division Algorithm

Theorem 1.2 (continued)

Theorem 1.2. The Division Algorithm.
Given positive integers a and b, there exist unique integers g and r with
0 < r < bsuch that a=bqg+r.

Proof (continued). Then we have
O=a—a=(bg+r)—(bgi+n)=>blq—q1)+(r—r). (1)

Hence rn — r = b(g — q1), so that (by the definition of divisibility)
b|(rn —r). But since 0 < r < b (or, equivalently, —b < r < 0) and
0 < 1 < b then we have

—b<n—r<hb.

But the only multiple of b strictly between —b and b is 0. Hence
rn—r=0orr=nr and from (1) we have g — g1 =0 or ¢ = g1. Hence
the numbers g and r are unique, as claimed. O]
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Theorem 1.3. The Euclidean Algorithm

Theorem 1.3

Theorem 1.3. The Euclidean Algorithm.
If a and b are positive integers, b # 0, and

a=bg+r, 0<r<hb,
b=rg; + n, 0<n<r,

r=ngqg+r, 0<n<n,

Mk = k41942 + Fes2, 0 < rkyo < riga,

the for k large enough, say k = t, we have r;_1 = riqr+1, and (a, b) = r;.

Proof. Since the sequence of nonnegative integers b>r >nrn >mn > ---
is bounded below, then it must contain a least element by the
Least-Integer Principle. Since ri;1 is strictly less than r; (and by The
Division Algorithm [Theorem 1.2], if r; # 0 then we can produce ri11)
then the sequence must have a least element, say r; 1 = 0.
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Theorem 1.3 (continued) Corollary 1.1

Theorem 1.3. The Euclidean Algorithm.
If a and b are positive integers, b # 0, and

a=bqg+r, 0<r<b,
b=rq+n, Osn<r, Corollary 1.1. If d | ab and (d,a) = 1, then d | b.
r=ngqx+nr, 0<n<mn,
: : Proof. Since d and a are relatively prime, then by Theorem 1.4 there are
rk = rke1Gks2 + rao, 0 < reso < rest, integers x and y such that dx + ay = 1. Therefore b(dx + ay) = b or
d(bx) + (ab)y = b. Since d |d(bx) and d | ab (by hypothesis; so we also
the for k large enough, say k = t, we have r;_1 = r, ,and (a, b) = r:. "
& g sy et = el (2,0) = r have d |(ab)y) then by Lemma 1.1 d | (d(bx) + (ab)y). Thatis, d| b, as
Proof (continued). Then we must have claimed. O
rt—1 = reQe41 + 41 = reqe41,
and so r | re—1 or (re—1,r:) = re. Applying Lemma 1.3 repeatedly we have
(aa b) = (ba r) = (ra rl) = (I’]_, r2) == (rt—lyrt) =TI,
as claimed. O
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Corollary 1.2 Corollary 1.3
Corollary 1.2. Let (a,b) = d, and suppose that c|a and c|b. Then c|d. Corollary 1.3. If a|m, b| m, and (a, b) = 1, then ab| m.

That is, every common divisor of integers a and b is a divisor of the

greatest common divisor of a and b. Proof. Since b| m then by the definition of divisibility, there is integer g

such that m = bg. Now a|m, so a| bq. Next, (a, b) =1 so by Corollary
Proof. By Theorem 1.4, there are integers x and y such that ax + by = d. 1.1, a| g. Hence there is integer r such that g = ar, so that

Since c|a and c| b then c|(ax) and c|(by); hence, by Lemma 1.1 m = bqg = bar. By the definition of divisibility, this implies that ab| m, as
c|(ax + by). Since d = ax + by = d, then c|d, as claimed. O claimed. O
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