Elementary Number Theory

Section 1. Integers—Proofs of Theorems

Table of contents

- 1 Lemma 1.1
- 2 Lemma 1.2
- 3 Theorem 1.1
- 4 Theorem 1.2. The Division Algorithm
- 5 Lemma 1.3
- 6 Theorem 1.3. The Euclidean Algorithm
- Corollary 1.1
- 8 Corollary 1.2
- 9 Corollary 1.3

Lemma 1.1. If $d \mid a$ and $d \mid b$, then $d \mid (a + b)$.

Proof. By the definition of divisibility, $d \mid a$ implies that there is integer q such that dq = a, and $d \mid b$ implies that there is integer r such that dr = b. So (by the distributive property)

$$a+b=dq+db=d(q+b),$$

where q + b is an integer. Hence, by the definition of divisibility again, $d \mid (a + b)$, as claimed.

Lemma 1.1. If $d \mid a$ and $d \mid b$, then $d \mid (a + b)$.

Proof. By the definition of divisibility, $d \mid a$ implies that there is integer q such that dq = a, and $d \mid b$ implies that there is integer r such that dr = b. So (by the distributive property)

$$a+b=dq+db=d(q+b),$$

where q + b is an integer. Hence, by the definition of divisibility again, $d \mid (a + b)$, as claimed.

Lemma 1.2. If $d | a_1, d | a_2, \ldots, d | a_n$, then $d | (c_1a_1 + c_2a_2 + \cdots + c_na_n)$ for any integers c_1, c_2, \ldots, c_n .

Proof. By the definition of divisibility, there are integers q_1, q_2, \ldots, q_n such that $a_1 = dq_1, a_2 = dq_2, \ldots, a_n = dq_n$. So (by the distributive property)

$$c_1a_1 + c_2a_2 + \cdots + c_na_n = c_1dq_1 + c_2dq_2 + \cdots + c_ndq_n$$

$$= d(c_1q_1+c_2q_2+\cdots+c_nq_n),$$

where $c_1q_1 + c_2q_2 + \cdots + c_nq_n$ is an integer. Hence, by the definition of divisibility again, $d \mid (c_1a_1 + c_2a_2 + \cdots + c_na_n)$, as claimed.

Lemma 1.2. If $d | a_1, d | a_2, \ldots, d | a_n$, then $d | (c_1a_1 + c_2a_2 + \cdots + c_na_n)$ for any integers c_1, c_2, \ldots, c_n .

Proof. By the definition of divisiblity, there are integers q_1, q_2, \ldots, q_n such that $a_1 = dq_1, a_2 = dq_2, \ldots, a_n = dq_n$. So (by the distributive property)

$$c_1a_1+c_2a_2+\cdots+c_na_n=c_1dq_1+c_2dq_2+\cdots+c_ndq_n$$

$$= d(c_1q_1+c_2q_2+\cdots+c_nq_n),$$

where $c_1q_1 + c_2q_2 + \cdots + c_nq_n$ is an integer. Hence, by the definition of divisibility again, $d \mid (c_1a_1 + c_2a_2 + \cdots + c_na_n)$, as claimed.

Theorem 1.1

Theorem 1.1. If (a, b) = d then (a/d, b/d) = 1.

Proof. Since (a, b) = d then d divides a and so a/d is an integer. Similarly, since (a, b) = d then d divides b and so b/d is an integer. Let c denote the greatest common divisor c = (a/d, b/d). We want to show that c = 1.

Theorem 1.1

Theorem 1.1. If (a, b) = d then (a/d, b/d) = 1.

Proof. Since (a, b) = d then d divides a and so a/d is an integer. Similarly, since (a, b) = d then d divides b and so b/d is an integer. Let c denote the greatest common divisor c = (a/d, b/d). We want to show that c = 1.

Since 1 is a divisor of every integer, then every greatest common divisor is at least 1; that is, $c \ge 1$. Since $c \mid (a/d)$ and $c \mid (b/d)$ then there are integers q and r such that a/d = cq and b/d = cr. This is equivalent to the equations (cd)q = a and (cd)r = b. So, by the definition of divisibility, cd is a divisor of both a and b. Therefore cd is less than or equal to the greatest common divisor of a and b, d = (a, b). This $cd \le d$. Since d is positive (being a greatest common divisor), this gives $c \le 1$. Hence c = (a/d, b/d) = 1, as claimed.

Theorem 1.1

Theorem 1.1. If (a, b) = d then (a/d, b/d) = 1.

Proof. Since (a, b) = d then d divides a and so a/d is an integer. Similarly, since (a, b) = d then d divides b and so b/d is an integer. Let c denote the greatest common divisor c = (a/d, b/d). We want to show that c = 1.

Since 1 is a divisor of every integer, then every greatest common divisor is at least 1; that is, $c \ge 1$. Since $c \mid (a/d)$ and $c \mid (b/d)$ then there are integers q and r such that a/d = cq and b/d = cr. This is equivalent to the equations (cd)q = a and (cd)r = b. So, by the definition of divisibility, cd is a divisor of both a and b. Therefore cd is less than or equal to the greatest common divisor of a and b, d = (a, b). This $cd \le d$. Since d is positive (being a greatest common divisor), this gives $c \le 1$. Hence c = (a/d, b/d) = 1, as claimed.

Theorem 1.2. The Division Algorithm.

Given positive integers a and b, there exist unique integers q and r with $0 \le r < b$ such that a = bq + r.

Proof. Consider the set of integers $A = \{a, a - b, a - 2b, a - 3b, ...\}$. Set *A* contains a subset of nonnegative integers which is nonempty (since *a* is positive by hypothesis) and bounded below by 0. By the Least-Integer Principle, *A* contains a least element, say a - qb where *q* is an integer. Now a - qb is nonnegative and it less than *b* (or else a - (q + 1)b would be a lesser nonnegative element of *A*, contradicting the minimality of a - qb). Let r = a - bq. The $0 \le r < b$ and a = bq + r, as required. We now need to show that such *q* and *r* are unique.

Theorem 1.2. The Division Algorithm.

Given positive integers a and b, there exist unique integers q and r with $0 \le r < b$ such that a = bq + r.

Proof. Consider the set of integers $A = \{a, a - b, a - 2b, a - 3b, ...\}$. Set *A* contains a subset of nonnegative integers which is nonempty (since *a* is positive by hypothesis) and bounded below by 0. By the Least-Integer Principle, *A* contains a least element, say a - qb where *q* is an integer. Now a - qb is nonnegative and it less than *b* (or else a - (q + 1)b would be a lesser nonnegative element of *A*, contradicting the minimality of a - qb). Let r = a - bq. The $0 \le r < b$ and a = bq + r, as required. We now need to show that such *q* and *r* are unique.

Suppose that q, r, q₁, and r₁ satisfy $a = bq + r = bq_1 + r_1$ with $0 \le r < b$ and $0 \le r_1 < b_1$. Then we have

$$0 = a - a = (bq + r) - (bq_1 + r_1) = b(q - q_1) + (r - r_1).$$
(1)

Theorem 1.2. The Division Algorithm.

Given positive integers a and b, there exist unique integers q and r with $0 \le r < b$ such that a = bq + r.

Proof. Consider the set of integers $A = \{a, a - b, a - 2b, a - 3b, ...\}$. Set *A* contains a subset of nonnegative integers which is nonempty (since *a* is positive by hypothesis) and bounded below by 0. By the Least-Integer Principle, *A* contains a least element, say a - qb where *q* is an integer. Now a - qb is nonnegative and it less than *b* (or else a - (q + 1)b would be a lesser nonnegative element of *A*, contradicting the minimality of a - qb). Let r = a - bq. The $0 \le r < b$ and a = bq + r, as required. We now need to show that such *q* and *r* are unique.

Suppose that q, r, q₁, and r₁ satisfy $a = bq + r = bq_1 + r_1$ with $0 \le r < b$ and $0 \le r_1 < b_1$. Then we have

$$0 = a - a = (bq + r) - (bq_1 + r_1) = b(q - q_1) + (r - r_1).$$
(1)

Theorem 1.2 (continued)

Theorem 1.2. The Division Algorithm.

Given positive integers a and b, there exist unique integers q and r with $0 \le r < b$ such that a = bq + r.

Proof (continued). Then we have

$$0 = a - a = (bq + r) - (bq_1 + r_1) = b(q - q_1) + (r - r_1).$$
(1)

Hence $r_1 - r = b(q - q_1)$, so that (by the definition of divisibility) $b | (r_1 - r)$. But since $0 \le r < b$ (or, equivalently, $-b < r \le 0$) and $0 \le r_1 < b$ then we have

$$-b < r_1 - r < b$$
.

But the only multiple of *b* strictly between -b and *b* is 0. Hence $r_1 - r = 0$ or $r = r_1$ and from (1) we have $q - q_1 = 0$ or $q = q_1$. Hence the numbers *q* and *r* are unique, as claimed.

Lemma 1.3. If a = bq + r, then (a, b) = (b, r).

Proof. Let *d* be the greatest common divisor of *a* and *b*, d = (a, b). Then *d* is a divisor of *a* and *d* is a divisor of *b* (that is, $d \mid a$ and $d \mid b$), so by Lemma 1.3 *d* is a divisor of a - bq = r (that is, $d \mid r$). So *d* is *a* common divisor of *b* and *r*.

Lemma 1.3

Lemma 1.3. If a = bq + r, then (a, b) = (b, r).

Proof. Let *d* be the greatest common divisor of *a* and *b*, d = (a, b). Then *d* is a divisor of *a* and *d* is a divisor of *b* (that is, $d \mid a$ and $d \mid b$), so by Lemma 1.3 *d* is a divisor of a - bq = r (that is, $d \mid r$). So *d* is a common divisor of *b* and *r*.

Suppose that c is any common divisor of b and r, so that $c \mid b$ (and so $c \mid bq$) and $c \mid r$. Then, by Lemma 1.1, $c \mid bq + r$ or $c \mid a$. Hence c is a common divisor of a and b. Since d is the greatest common divisor of a and b, then $c \leq d$.

Lemma 1.3

Lemma 1.3. If a = bq + r, then (a, b) = (b, r).

Proof. Let *d* be the greatest common divisor of *a* and *b*, d = (a, b). Then *d* is a divisor of *a* and *d* is a divisor of *b* (that is, $d \mid a$ and $d \mid b$), so by Lemma 1.3 *d* is a divisor of a - bq = r (that is, $d \mid r$). So *d* is a common divisor of *b* and *r*.

Suppose that c is any common divisor of b and r, so that $c \mid b$ (and so $c \mid bq$) and $c \mid r$. Then, by Lemma 1.1, $c \mid bq + r$ or $c \mid a$. Hence c is a common divisor of a and b. Since d is the greatest common divisor of a and b, then $c \leq d$.

So *d* is (1) a common divisor of *b* and *r*, and (2) if *c* is a common divisor of *b* and *r* then $c \leq d$. Therefore (by definition) *d* is the greatest common divisor of *b* and *r* (that is, d = (b, r)), as claimed.

Lemma 1.3. If a = bq + r, then (a, b) = (b, r).

Proof. Let *d* be the greatest common divisor of *a* and *b*, d = (a, b). Then *d* is a divisor of *a* and *d* is a divisor of *b* (that is, $d \mid a$ and $d \mid b$), so by Lemma 1.3 *d* is a divisor of a - bq = r (that is, $d \mid r$). So *d* is a common divisor of *b* and *r*.

Suppose that c is any common divisor of b and r, so that $c \mid b$ (and so $c \mid bq$) and $c \mid r$. Then, by Lemma 1.1, $c \mid bq + r$ or $c \mid a$. Hence c is a common divisor of a and b. Since d is the greatest common divisor of a and b, then $c \leq d$.

So *d* is (1) a common divisor of *b* and *r*, and (2) if *c* is a common divisor of *b* and *r* then $c \le d$. Therefore (by definition) *d* is the greatest common divisor of *b* and *r* (that is, d = (b, r)), as claimed.

Theorem 1.3. The Euclidean Algorithm. If *a* and *b* are positive integers, $b \neq 0$, and

a = bq + r,	$0 \leq r < b$,
$b=rq_1+r_1,$	$0 \leq r_1 < r,$
$r=r_1q_2+r_2,$	$0 \leq r_2 < r_1,$
:	:
$r_k = r_{k+1}q_{k+2} + r_{k+2},$	$0 \leq r_{k+2} < r_{k+1},$

the for k large enough, say k = t, we have $r_{t-1} = r_t q_{t+1}$, and $(a, b) = r_t$.

Proof. Since the sequence of nonnegative integers $b > r > r_1 > r_2 > \cdots$ is bounded below, then it must contain a least element by the Least-Integer Principle. Since r_{i+1} is strictly less than r_i (and by The Division Algorithm [Theorem 1.2], if $r_i \neq 0$ then we can produce r_{i+1}) then the sequence must have a least element, say $r_{t+1} = 0$.

Theorem 1.3. The Euclidean Algorithm. If *a* and *b* are positive integers, $b \neq 0$, and

a = bq + r,	$0 \leq r < b$,
$b=rq_1+r_1,$	$0 \leq r_1 < r,$
$r=r_1q_2+r_2,$	$0 \leq r_2 < r_1,$
:	:
$r_k = r_{k+1}q_{k+2} + r_{k+2},$	$0 \leq r_{k+2} < r_{k+1},$

the for k large enough, say k = t, we have $r_{t-1} = r_t q_{t+1}$, and $(a, b) = r_t$.

Proof. Since the sequence of nonnegative integers $b > r > r_1 > r_2 > \cdots$ is bounded below, then it must contain a least element by the Least-Integer Principle. Since r_{i+1} is strictly less than r_i (and by The Division Algorithm [Theorem 1.2], if $r_i \neq 0$ then we can produce r_{i+1}) then the sequence must have a least element, say $r_{t+1} = 0$.

Theorem 1.3 (continued)

Theorem 1.3. The Euclidean Algorithm.

If a and b are positive integers, $b \neq 0$, and

a = bq + r,	$0 \leq r < b$,
$b=rq_1+r_1,$	$0 \leq r_1 < r,$
$r=r_1q_2+r_2,$	$0 \leq r_2 < r_1,$
:	:
$r_k = r_{k+1}q_{k+2} + r_{k+2},$	$0 \leq r_{k+2} < r_{k+1},$

the for k large enough, say k = t, we have $r_{t-1} = r_t q_{t+1}$, and $(a, b) = r_t$. **Proof (continued).** Then we must have

$$r_{t-1} = r_t q_{t+1} + r_{t+1} = r_t q_{t+1},$$

and so $r_t | r_{t-1}$ or $(r_{t-1}, r_t) = r_t$. Applying Lemma 1.3 repeatedly we have

$$(a,b) = (b,r) = (r,r_1) = (r_1,r_2) = \cdots = (r_{t-1},r_t) = r_t,$$

as claimed.

Corollary 1.1. If $d \mid ab$ and (d, a) = 1, then $d \mid b$.

Proof. Since *d* and *a* are relatively prime, then by Theorem 1.4 there are integers *x* and *y* such that dx + ay = 1. Therefore b(dx + ay) = b or d(bx) + (ab)y = b. Since d|d(bx) and d|ab (by hypothesis; so we also have d|(ab)y) then by Lemma 1.1 d|(d(bx) + (ab)y). That is, d|b, as claimed.

Corollary 1.1. If $d \mid ab$ and (d, a) = 1, then $d \mid b$.

Proof. Since *d* and *a* are relatively prime, then by Theorem 1.4 there are integers *x* and *y* such that dx + ay = 1. Therefore b(dx + ay) = b or d(bx) + (ab)y = b. Since d|d(bx) and d|ab (by hypothesis; so we also have d|(ab)y) then by Lemma 1.1 d|(d(bx) + (ab)y). That is, d|b, as claimed.

Corollary 1.2

Corollary 1.2. Let (a, b) = d, and suppose that $c \mid a$ and $c \mid b$. Then $c \mid d$. That is, every common divisor of integers a and b is a divisor of the greatest common divisor of a and b.

Proof. By Theorem 1.4, there are integers x and y such that ax + by = d. Since $c \mid a$ and $c \mid b$ then $c \mid (ax)$ and $c \mid (by)$; hence, by Lemma 1.1 $c \mid (ax + by)$. Since d = ax + by = d, then $c \mid d$, as claimed.

Corollary 1.2

Corollary 1.2. Let (a, b) = d, and suppose that $c \mid a$ and $c \mid b$. Then $c \mid d$. That is, every common divisor of integers a and b is a divisor of the greatest common divisor of a and b.

Proof. By Theorem 1.4, there are integers x and y such that ax + by = d. Since $c \mid a$ and $c \mid b$ then $c \mid (ax)$ and $c \mid (by)$; hence, by Lemma 1.1 $c \mid (ax + by)$. Since d = ax + by = d, then $c \mid d$, as claimed.

Corollary 1.3. If $a \mid m, b \mid m$, and (a, b) = 1, then $ab \mid m$.

Proof. Since $b \mid m$ then by the definition of divisibility, there is integer q such that m = bq. Now $a \mid m$, so $a \mid bq$. Next, (a, b) = 1 so by Corollary 1.1, $a \mid q$. Hence there is integer r such that q = ar, so that m = bq = bar. By the definition of divisibility, this implies that $ab \mid m$, as claimed.

Corollary 1.3. If a | m, b | m, and (a, b) = 1, then ab | m.

Proof. Since $b \mid m$ then by the definition of divisibility, there is integer q such that m = bq. Now $a \mid m$, so $a \mid bq$. Next, (a, b) = 1 so by Corollary 1.1, $a \mid q$. Hence there is integer r such that q = ar, so that m = bq = bar. By the definition of divisibility, this implies that $ab \mid m$, as claimed.

