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Lemma 1.1

Lemma 1.1

Lemma 1.1. If d | a and d | b, then d | (a + b).

Proof. By the definition of divisibility, d | a implies that there is integer q
such that dq = a, and d | b implies that there is integer r such that
dr = b. So (by the distributive property)

a + b = dq + db = d(q + b),

where q + b is an integer. Hence, by the definition of divisibility again,
d | (a + b), as claimed.
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Lemma 1.2

Lemma 1.2

Lemma 1.2. If d | a1, d | a2, . . . , d | an, then d | (c1a1 + c2a2 + · · ·+ cnan)
for any integers c1, c2, . . . , cn.

Proof. By the definition of divisiblity, there are integers q1, q2, . . . , qn such
that a1 = dq1, a2 = dq2, . . . ,an = dqn. So (by the distributive property)

c1a1 + c2a2 + · · ·+ cnan = c1dq1 + c2dq2 + · · · cndqn

= d(c1q1 + c2q2 + · · ·+ cnqn),

where c1q1 + c2q2 + · · ·+ cnqn is an integer. Hence, by the definition of
divisibility again, d | (c1a1 + c2a2 + · · ·+ cnan), as claimed.

() Elementary Number Theory July 1, 2021 4 / 13



Lemma 1.2

Lemma 1.2

Lemma 1.2. If d | a1, d | a2, . . . , d | an, then d | (c1a1 + c2a2 + · · ·+ cnan)
for any integers c1, c2, . . . , cn.

Proof. By the definition of divisiblity, there are integers q1, q2, . . . , qn such
that a1 = dq1, a2 = dq2, . . . ,an = dqn. So (by the distributive property)

c1a1 + c2a2 + · · ·+ cnan = c1dq1 + c2dq2 + · · · cndqn

= d(c1q1 + c2q2 + · · ·+ cnqn),

where c1q1 + c2q2 + · · ·+ cnqn is an integer. Hence, by the definition of
divisibility again, d | (c1a1 + c2a2 + · · ·+ cnan), as claimed.

() Elementary Number Theory July 1, 2021 4 / 13



Theorem 1.1

Theorem 1.1

Theorem 1.1. If (a, b) = d then (a/d , b/d) = 1.

Proof. Since (a, b) = d then d divides a and so a/d is an integer.
Similarly, since (a, b) = d then d divides b and so b/d is an integer. Let c
denote the greatest common divisor c = (a/d , b/d). We want to show
that c = 1.

Since 1 is a divisor of every integer, then every greatest common divisor is
at least 1; that is, c ≥ 1. Since c | (a/d) and c | (b/d) then there are
integers q and r such that a/d = cq and b/d = cr . This is equivalent to
the equations (cd)q = a and (cd)r = b. So, by the definition of
divisibility, cd is a divisor of both a and b. Therefore cd is less than or
equal to the greatest common divisor of a and b, d = (a, b). This cd ≤ d .
Since d is positive (being a greatest common divisor), this gives c ≤ 1.
Hence c = (a/d , b/d) = 1, as claimed.
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Theorem 1.2. The Division Algorithm

Theorem 1.2

Theorem 1.2. The Division Algorithm.
Given positive integers a and b, there exist unique integers q and r with
0 ≤ r < b such that a = bq + r .

Proof. Consider the set of integers A = {a, a− b, a− 2b, a− 3b, . . .}. Set
A contains a subset of nonnegative integers which is nonempty (since a is
positive by hypothesis) and bounded below by 0. By the Least-Integer
Principle, A contains a least element, say a − qb where q is an integer.
Now a − qb is nonnegative and it less than b (or else a − (q + 1)b would
be a lesser nonnegative element of A, contradicting the minimality of
a − qb). Let r = a − bq. The 0 ≤ r < b and a = bq + r , as required. We
now need to show that such q and r are unique.

Suppose that q, r , q1, and r1 satisfy a = bq + r = bq1 + r1 with
0 ≤ r < b and 0 ≤ r1 < b1. Then we have

0 = a − a = (bq + r)− (bq1 + r1) = b(q − q1) + (r − r1). (1)
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Theorem 1.2. The Division Algorithm

Theorem 1.2 (continued)

Theorem 1.2. The Division Algorithm.
Given positive integers a and b, there exist unique integers q and r with
0 ≤ r < b such that a = bq + r .

Proof (continued). Then we have

0 = a − a = (bq + r)− (bq1 + r1) = b(q − q1) + (r − r1). (1)

Hence r1 − r = b(q − q1), so that (by the definition of divisibility)
b | (r1 − r). But since 0 ≤ r < b (or, equivalently, −b < r ≤ 0) and
0 ≤ r1 < b then we have

−b < r1 − r < b.

But the only multiple of b strictly between −b and b is 0. Hence
r1 − r = 0 or r = r1 and from (1) we have q − q1 = 0 or q = q1. Hence
the numbers q and r are unique, as claimed.
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Lemma 1.3

Lemma 1.3

Lemma 1.3. If a = bq + r , then (a, b) = (b, r).

Proof. Let d be the greatest common divisor of a and b, d = (a, b). Then
d is a divisor of a and d is a divisor of b (that is, d | a and d | b), so by
Lemma 1.3 d is a divisor of a − bq = r (that is, d | r). So d is a common
divisor of b and r .

Suppose that c is any common divisor of b and r , so that c | b (and so
c | bq) and c | r . Then, by Lemma 1.1, c | bq + r or c | a. Hence c is a
common divisor of a and b. Since d is the greatest common divisor of a
and b, then c ≤ d .

So d is (1) a common divisor of b and r , and (2) if c is a common divisor
of b and r then c ≤ d . Therefore (by definition) d is the greatest common
divisor of b and r (that is, d = (b, r)), as claimed.
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Theorem 1.3. The Euclidean Algorithm

Theorem 1.3

Theorem 1.3. The Euclidean Algorithm.
If a and b are positive integers, b 6= 0, and

a = bq + r , 0 ≤ r < b,
b = rq1 + r1, 0 ≤ r1 < r ,
r = r1q2 + r2, 0 ≤ r2 < r1,
...

...
rk = rk+1qk+2 + rk+2, 0 ≤ rk+2 < rk+1,

the for k large enough, say k = t, we have rt−1 = rtqt+1, and (a, b) = rt .

Proof. Since the sequence of nonnegative integers b > r > r1 > r2 > · · ·
is bounded below, then it must contain a least element by the
Least-Integer Principle. Since ri+1 is strictly less than ri (and by The
Division Algorithm [Theorem 1.2], if ri 6= 0 then we can produce ri+1)
then the sequence must have a least element, say rt+1 = 0.
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Theorem 1.3. The Euclidean Algorithm

Theorem 1.3 (continued)

Theorem 1.3. The Euclidean Algorithm.
If a and b are positive integers, b 6= 0, and

a = bq + r , 0 ≤ r < b,
b = rq1 + r1, 0 ≤ r1 < r ,
r = r1q2 + r2, 0 ≤ r2 < r1,
...

...
rk = rk+1qk+2 + rk+2, 0 ≤ rk+2 < rk+1,

the for k large enough, say k = t, we have rt−1 = rtqt+1, and (a, b) = rt .

Proof (continued). Then we must have

rt−1 = rtqt+1 + rt+1 = rtqt+1,

and so rt | rt−1 or (rt−1, rt) = rt . Applying Lemma 1.3 repeatedly we have

(a, b) = (b, r) = (r , r1) = (r1, r2) = · · · = (rt−1, rt) = rt ,

as claimed.
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Corollary 1.1

Corollary 1.1

Corollary 1.1. If d | ab and (d , a) = 1, then d | b.

Proof. Since d and a are relatively prime, then by Theorem 1.4 there are
integers x and y such that dx + ay = 1. Therefore b(dx + ay) = b or
d(bx) + (ab)y = b. Since d |d(bx) and d | ab (by hypothesis; so we also
have d |(ab)y) then by Lemma 1.1 d | (d(bx) + (ab)y). That is, d | b, as
claimed.
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Corollary 1.2

Corollary 1.2

Corollary 1.2. Let (a, b) = d , and suppose that c | a and c | b. Then c | d .
That is, every common divisor of integers a and b is a divisor of the
greatest common divisor of a and b.

Proof. By Theorem 1.4, there are integers x and y such that ax + by = d .
Since c | a and c | b then c | (ax) and c | (by); hence, by Lemma 1.1
c | (ax + by). Since d = ax + by = d , then c | d , as claimed.
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Corollary 1.3

Corollary 1.3

Corollary 1.3. If a |m, b |m, and (a, b) = 1, then ab |m.

Proof. Since b |m then by the definition of divisibility, there is integer q
such that m = bq. Now a |m, so a | bq. Next, (a, b) = 1 so by Corollary
1.1, a | q. Hence there is integer r such that q = ar , so that
m = bq = bar . By the definition of divisibility, this implies that ab |m, as
claimed.
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