Elementary Number Theory

Section 1. Integers—Proofs of Theorems

Table of contents

(1) Lemma 1.1
(2) Lemma 1.2
(3) Theorem 1.1
(4) Theorem 1.2. The Division Algorithm
(5) Lemma 1.3
(6) Theorem 1.3. The Euclidean Algorithm
(7) Corollary 1.1
(8) Corollary 1.2
(9) Corollary 1.3

Lemma 1.1

Lemma 1.1. If $d \mid a$ and $d \mid b$, then $d \mid(a+b)$.

Proof. By the definition of divisibility, $d \mid a$ implies that there is integer q such that $d q=a$, and $d \mid b$ implies that there is integer r such that $d r=b$. So (by the distributive property)

$$
a+b=d q+d b=d(q+b)
$$

where $q+b$ is an integer. Hence, by the definition of divisibility again, $d \mid(a+b)$, as claimed.

Lemma 1.1

Lemma 1.1. If $d \mid a$ and $d \mid b$, then $d \mid(a+b)$.

Proof. By the definition of divisibility, $d \mid a$ implies that there is integer q such that $d q=a$, and $d \mid b$ implies that there is integer r such that $d r=b$. So (by the distributive property)

$$
a+b=d q+d b=d(q+b)
$$

where $q+b$ is an integer. Hence, by the definition of divisibility again, $d \mid(a+b)$, as claimed.

Lemma 1.2

Lemma 1.2. If $d\left|a_{1}, d\right| a_{2}, \ldots, d \mid a_{n}$, then $d \mid\left(c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}\right)$ for any integers $c_{1}, c_{2}, \ldots, c_{n}$.

Proof. By the definition of divisiblity, there are integers $q_{1}, q_{2}, \ldots, q_{n}$ such that $a_{1}=d q_{1}, a_{2}=d q_{2}, \ldots, a_{n}=d q_{n}$. So (by the distributive property)

$$
\begin{gathered}
c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}=c_{1} d q_{1}+c_{2} d q_{2}+\cdots c_{n} d q_{n} \\
=d\left(c_{1} q_{1}+c_{2} q_{2}+\cdots+c_{n} q_{n}\right),
\end{gathered}
$$

where $c_{1} q_{1}+c_{2} q_{2}+\cdots+c_{n} q_{n}$ is an integer. Hence, by the definition of divisibility again, $d \mid\left(c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}\right)$, as claimed.

Lemma 1.2

Lemma 1.2. If $d\left|a_{1}, d\right| a_{2}, \ldots, d \mid a_{n}$, then $d \mid\left(c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}\right)$ for any integers $c_{1}, c_{2}, \ldots, c_{n}$.

Proof. By the definition of divisiblity, there are integers $q_{1}, q_{2}, \ldots, q_{n}$ such that $a_{1}=d q_{1}, a_{2}=d q_{2}, \ldots, a_{n}=d q_{n}$. So (by the distributive property)

$$
\begin{gathered}
c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}=c_{1} d q_{1}+c_{2} d q_{2}+\cdots c_{n} d q_{n} \\
=d\left(c_{1} q_{1}+c_{2} q_{2}+\cdots+c_{n} q_{n}\right)
\end{gathered}
$$

where $c_{1} q_{1}+c_{2} q_{2}+\cdots+c_{n} q_{n}$ is an integer. Hence, by the definition of divisibility again, $d \mid\left(c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}\right)$, as claimed.

Theorem 1.1

Theorem 1.1. If $(a, b)=d$ then $(a / d, b / d)=1$.
Proof. Since $(a, b)=d$ then d divides a and so a / d is an integer.
Similarly, since $(a, b)=d$ then d divides b and so b / d is an integer. Let c denote the greatest common divisor $c=(a / d, b / d)$. We want to show that $c=1$.

Theorem 1.1

Theorem 1.1. If $(a, b)=d$ then $(a / d, b / d)=1$.
Proof. Since $(a, b)=d$ then d divides a and so a / d is an integer.
Similarly, since $(a, b)=d$ then d divides b and so b / d is an integer. Let c denote the greatest common divisor $c=(a / d, b / d)$. We want to show that $c=1$.

Since 1 is a divisor of every integer, then every greatest common divisor is at least 1 ; that is, $c \geq 1$. Since $c \mid(a / d)$ and $c \mid(b / d)$ then there are integers q and r such that $a / d=c q$ and $b / d=c r$. This is equivalent to the equations $(c d) q=a$ and $(c d) r=b$. So, by the definition of divisibility, $c d$ is a divisor of both a and b. Therefore $c d$ is less than or equal to the greatest common divisor of a and $b, d=(a, b)$. This $c d \leq d$. Since d is positive (being a greatest common divisor), this gives $c \leq 1$. Hence $c=(a / d, b / d)=1$, as claimed.

Theorem 1.1

Theorem 1.1. If $(a, b)=d$ then $(a / d, b / d)=1$.
Proof. Since $(a, b)=d$ then d divides a and so a / d is an integer.
Similarly, since $(a, b)=d$ then d divides b and so b / d is an integer. Let c denote the greatest common divisor $c=(a / d, b / d)$. We want to show that $c=1$.

Since 1 is a divisor of every integer, then every greatest common divisor is at least 1 ; that is, $c \geq 1$. Since $c \mid(a / d)$ and $c \mid(b / d)$ then there are integers q and r such that $a / d=c q$ and $b / d=c r$. This is equivalent to the equations $(c d) q=a$ and $(c d) r=b$. So, by the definition of divisibility, $c d$ is a divisor of both a and b. Therefore $c d$ is less than or equal to the greatest common divisor of a and $b, d=(a, b)$. This $c d \leq d$. Since d is positive (being a greatest common divisor), this gives $c \leq 1$. Hence $c=(a / d, b / d)=1$, as claimed.

Theorem 1.2

Theorem 1.2. The Division Algorithm.
Given positive integers a and b, there exist unique integers q and r with $0 \leq r<b$ such that $a=b q+r$.

Proof. Consider the set of integers $A=\{a, a-b, a-2 b, a-3 b, \ldots\}$. Set A contains a subset of nonnegative integers which is nonempty (since a is positive by hypothesis) and bounded below by 0 . By the Least-Integer Principle, A contains a least element, say $a-q b$ where q is an integer. Now $a-q b$ is nonnegative and it less than b (or else $a-(q+1) b$ would be a lesser nonnegative element of A, contradicting the minimality of $a-q b)$. Let $r=a-b q$. The $0 \leq r<b$ and $a=b q+r$, as required. We now need to show that such q and r are unique.

Theorem 1.2

Theorem 1.2. The Division Algorithm.

Given positive integers a and b, there exist unique integers q and r with $0 \leq r<b$ such that $a=b q+r$.

Proof. Consider the set of integers $A=\{a, a-b, a-2 b, a-3 b, \ldots\}$. Set A contains a subset of nonnegative integers which is nonempty (since a is positive by hypothesis) and bounded below by 0 . By the Least-Integer Principle, A contains a least element, say $a-q b$ where q is an integer. Now $a-q b$ is nonnegative and it less than b (or else $a-(q+1) b$ would be a lesser nonnegative element of A, contradicting the minimality of $a-q b)$. Let $r=a-b q$. The $0 \leq r<b$ and $a=b q+r$, as required. We now need to show that such q and r are unique.

Suppose that q, r, q_{1}, and r_{1} satisfy $a=b q+r=b q_{1}+r_{1}$ with $0 \leq r<b$ and $0 \leq r_{1}<b_{1}$. Then we have

$$
\begin{equation*}
0=a-a=(b q+r)-\left(b q_{1}+r_{1}\right)=b\left(q-q_{1}\right)+\left(r-r_{1}\right) . \tag{1}
\end{equation*}
$$

Theorem 1.2

Theorem 1.2. The Division Algorithm.

Given positive integers a and b, there exist unique integers q and r with $0 \leq r<b$ such that $a=b q+r$.

Proof. Consider the set of integers $A=\{a, a-b, a-2 b, a-3 b, \ldots\}$. Set A contains a subset of nonnegative integers which is nonempty (since a is positive by hypothesis) and bounded below by 0 . By the Least-Integer Principle, A contains a least element, say $a-q b$ where q is an integer. Now $a-q b$ is nonnegative and it less than b (or else $a-(q+1) b$ would be a lesser nonnegative element of A, contradicting the minimality of $a-q b)$. Let $r=a-b q$. The $0 \leq r<b$ and $a=b q+r$, as required. We now need to show that such q and r are unique.

Suppose that q, r, q_{1}, and r_{1} satisfy $a=b q+r=b q_{1}+r_{1}$ with $0 \leq r<b$ and $0 \leq r_{1}<b_{1}$. Then we have

$$
\begin{equation*}
0=a-a=(b q+r)-\left(b q_{1}+r_{1}\right)=b\left(q-q_{1}\right)+\left(r-r_{1}\right) . \tag{1}
\end{equation*}
$$

Theorem 1.2 (continued)

Theorem 1.2. The Division Algorithm.

Given positive integers a and b, there exist unique integers q and r with $0 \leq r<b$ such that $a=b q+r$.

Proof (continued). Then we have

$$
\begin{equation*}
0=a-a=(b q+r)-\left(b q_{1}+r_{1}\right)=b\left(q-q_{1}\right)+\left(r-r_{1}\right) . \tag{1}
\end{equation*}
$$

Hence $r_{1}-r=b\left(q-q_{1}\right)$, so that (by the definition of divisibility) $b \mid\left(r_{1}-r\right)$. But since $0 \leq r<b$ (or, equivalently, $-b<r \leq 0$) and $0 \leq r_{1}<b$ then we have

$$
-b<r_{1}-r<b
$$

But the only multiple of b strictly between $-b$ and b is 0 . Hence $r_{1}-r=0$ or $r=r_{1}$ and from (1) we have $q-q_{1}=0$ or $q=q_{1}$. Hence the numbers q and r are unique, as claimed.

Lemma 1.3

Lemma 1.3. If $a=b q+r$, then $(a, b)=(b, r)$.
Proof. Let d be the greatest common divisor of a and $b, d=(a, b)$. Then d is a divisor of a and d is a divisor of b (that is, $d \mid a$ and $d \mid b$), so by Lemma $1.3 d$ is a divisor of $a-b q=r$ (that is, $d \mid r$). So d is a common divisor of b and r.

Lemma 1.3

Lemma 1.3. If $a=b q+r$, then $(a, b)=(b, r)$.
Proof. Let d be the greatest common divisor of a and $b, d=(a, b)$. Then d is a divisor of a and d is a divisor of b (that is, $d \mid a$ and $d \mid b$), so by Lemma $1.3 d$ is a divisor of $a-b q=r$ (that is, $d \mid r$). So d is a common divisor of b and r.

Suppose that c is any common divisor of b and r, so that $c \mid b$ (and so $c \mid b q$) and $c \mid r$. Then, by Lemma 1.1, $c \mid b q+r$ or $c \mid a$. Hence c is a common divisor of a and b. Since d is the greatest common divisor of a and b, then $c \leq d$.

Lemma 1.3

Lemma 1.3. If $a=b q+r$, then $(a, b)=(b, r)$.
Proof. Let d be the greatest common divisor of a and $b, d=(a, b)$. Then d is a divisor of a and d is a divisor of b (that is, $d \mid a$ and $d \mid b$), so by Lemma $1.3 d$ is a divisor of $a-b q=r$ (that is, $d \mid r$). So d is a common divisor of b and r.

Suppose that c is any common divisor of b and r, so that $c \mid b$ (and so $c \mid b q$) and $c \mid r$. Then, by Lemma 1.1, $c \mid b q+r$ or $c \mid a$. Hence c is a common divisor of a and b. Since d is the greatest common divisor of a and b, then $c \leq d$.

So d is (1) a common divisor of b and r, and (2) if c is a common divisor of b and r then $c \leq d$. Therefore (by definition) d is the greatest common divisor of b and r (that is, $d=(b, r)$), as claimed.

Lemma 1.3

Lemma 1.3. If $a=b q+r$, then $(a, b)=(b, r)$.
Proof. Let d be the greatest common divisor of a and $b, d=(a, b)$. Then d is a divisor of a and d is a divisor of b (that is, $d \mid a$ and $d \mid b$), so by Lemma $1.3 d$ is a divisor of $a-b q=r$ (that is, $d \mid r$). So d is a common divisor of b and r.

Suppose that c is any common divisor of b and r, so that $c \mid b$ (and so $c \mid b q$) and $c \mid r$. Then, by Lemma 1.1, $c \mid b q+r$ or $c \mid a$. Hence c is a common divisor of a and b. Since d is the greatest common divisor of a and b, then $c \leq d$.

So d is (1) a common divisor of b and r, and (2) if c is a common divisor of b and r then $c \leq d$. Therefore (by definition) d is the greatest common divisor of b and r (that is, $d=(b, r)$), as claimed.

Theorem 1.3

Theorem 1.3. The Euclidean Algorithm.
If a and b are positive integers, $b \neq 0$, and

$$
\begin{array}{ll}
a=b q+r, & 0 \leq r<b, \\
b=r q_{1}+r_{1}, & 0 \leq r_{1}<r, \\
r=r_{1} q_{2}+r_{2}, & 0 \leq r_{2}<r_{1}, \\
\vdots & \vdots \\
r_{k}=r_{k+1} q_{k+2}+r_{k+2}, & 0 \leq r_{k+2}<r_{k+1},
\end{array}
$$

the for k large enough, say $k=t$, we have $r_{t-1}=r_{t} q_{t+1}$, and $(a, b)=r_{t}$.
Proof. Since the sequence of nonnegative integers b
is bounded below, then it must contain a least element by the Least-Integer Principle. Since r_{i+1} is strictly less than r_{i} (and by The Division Algorithm [Theorem 1.2], if $r_{i} \neq 0$ then we can produce r_{i+1}) then the sequence must have a least element, say $r_{t+1}=0$.

Theorem 1.3

Theorem 1.3. The Euclidean Algorithm. If a and b are positive integers, $b \neq 0$, and

$$
\begin{array}{ll}
a=b q+r, & 0 \leq r<b, \\
b=r q_{1}+r_{1}, & 0 \leq r_{1}<r, \\
r=r_{1} q_{2}+r_{2}, & 0 \leq r_{2}<r_{1}, \\
\vdots & \vdots \\
r_{k}=r_{k+1} q_{k+2}+r_{k+2}, & 0 \leq r_{k+2}<r_{k+1},
\end{array}
$$

the for k large enough, say $k=t$, we have $r_{t-1}=r_{t} q_{t+1}$, and $(a, b)=r_{t}$.
Proof. Since the sequence of nonnegative integers $b>r>r_{1}>r_{2}>\ldots$ is bounded below, then it must contain a least element by the Least-Integer Principle. Since r_{i+1} is strictly less than r_{i} (and by The Division Algorithm [Theorem 1.2], if $r_{i} \neq 0$ then we can produce r_{i+1}) then the sequence must have a least element, say $r_{t+1}=0$.

Theorem 1.3 (continued)

Theorem 1.3. The Euclidean Algorithm.
If a and b are positive integers, $b \neq 0$, and

$$
\begin{array}{ll}
a=b q+r, & 0 \leq r<b, \\
b=r q_{1}+r_{1}, & 0 \leq r_{1}<r, \\
r=r_{1} q_{2}+r_{2}, & 0 \leq r_{2}<r_{1}, \\
\vdots & \vdots \\
r_{k}=r_{k+1} q_{k+2}+r_{k+2}, & 0 \leq r_{k+2}<r_{k+1},
\end{array}
$$

the for k large enough, say $k=t$, we have $r_{t-1}=r_{t} q_{t+1}$, and $(a, b)=r_{t}$.
Proof (continued). Then we must have

$$
r_{t-1}=r_{t} q_{t+1}+r_{t+1}=r_{t} q_{t+1}
$$

and so $r_{t} \mid r_{t-1}$ or $\left(r_{t-1}, r_{t}\right)=r_{t}$. Applying Lemma 1.3 repeatedly we have

$$
(a, b)=(b, r)=\left(r, r_{1}\right)=\left(r_{1}, r_{2}\right)=\cdots=\left(r_{t-1}, r_{t}\right)=r_{t},
$$

as claimed.

Corollary 1.1

Corollary 1.1. If $d \mid a b$ and $(d, a)=1$, then $d \mid b$.

Proof. Since d and a are relatively prime, then by Theorem 1.4 there are integers x and y such that $d x+a y=1$. Therefore $b(d x+a y)=b$ or $d(b x)+(a b) y=b$. Since $d \mid d(b x)$ and $d \mid a b$ (by hypothesis; so we also have $d \mid(a b) y)$ then by Lemma $1.1 d \mid(d(b x)+(a b) y)$. That is, $d \mid b$, as claimed.

Corollary 1.1

Corollary 1.1. If $d \mid a b$ and $(d, a)=1$, then $d \mid b$.

Proof. Since d and a are relatively prime, then by Theorem 1.4 there are integers x and y such that $d x+a y=1$. Therefore $b(d x+a y)=b$ or $d(b x)+(a b) y=b$. Since $d \mid d(b x)$ and $d \mid a b$ (by hypothesis; so we also have $d \mid(a b) y)$ then by Lemma $1.1 d \mid(d(b x)+(a b) y)$. That is, $d \mid b$, as claimed.

Corollary 1.2

Corollary 1.2. Let $(a, b)=d$, and suppose that $c \mid a$ and $c \mid b$. Then $c \mid d$. That is, every common divisor of integers a and b is a divisor of the greatest common divisor of a and b.

Proof. By Theorem 1.4, there are integers x and y such that $a x+b y=d$. Since $c \mid a$ and $c \mid b$ then $c \mid(a x)$ and $c \mid(b y)$; hence, by Lemma 1.1 $c \mid(a x+$ by $)$. Since $d=a x+$ by $=d$, then $c \mid d$, as claimed.

Corollary 1.2

Corollary 1.2. Let $(a, b)=d$, and suppose that $c \mid a$ and $c \mid b$. Then $c \mid d$. That is, every common divisor of integers a and b is a divisor of the greatest common divisor of a and b.

Proof. By Theorem 1.4, there are integers x and y such that $a x+b y=d$. Since $c \mid a$ and $c \mid b$ then $c \mid(a x)$ and $c \mid(b y)$; hence, by Lemma 1.1 $c \mid(a x+b y)$. Since $d=a x+b y=d$, then $c \mid d$, as claimed.

Corollary 1.3

Corollary 1.3. If $a|m, b| m$, and $(a, b)=1$, then $a b \mid m$.

Proof. Since $b \mid m$ then by the definition of divisibility, there is integer q such that $m=b q$. Now $a \mid m$, so $a \mid b q$. Next, $(a, b)=1$ so by Corollary 1.1, $a \mid q$. Hence there is integer r such that $q=a r$, so that $m=b q=b a r$. By the definition of divisibility, this implies that $a b \mid m$, as claimed.

Corollary 1.3

Corollary 1.3. If $a|m, b| m$, and $(a, b)=1$, then $a b \mid m$.
Proof. Since $b \mid m$ then by the definition of divisibility, there is integer q such that $m=b q$. Now $a \mid m$, so $a \mid b q$. Next, $(a, b)=1$ so by Corollary $1.1, a \mid q$. Hence there is integer r such that $q=a r$, so that $m=b q=b a r$. By the definition of divisibility, this implies that $a b \mid m$, as claimed.

