Elementary Number Theory

Section 10. Primitive Roots—Proofs of Theorems

Table of contents

(1) Theorem 10.1
(2) Theorem 10.2
(3) Theorem 10.3
(4) Theorem 10.4
(5) Theorem 10.5
(6) Lemma 10.1
(7) Corollary 10.B
(8) Lemma 10.2
(9) Lemma 10.3
(10) Theorem 10.6
(11) Theorem 10.B. Part of Wilson's Theorem

Theorem 10.1

Theorem 10.1. Suppose that $(a, m)=1$ and a has order t modulo m. Then $a^{n} \equiv 1(\bmod m)$ if and only if n is a multiple of t.

Proof. Suppose $n=t q$ for some integer q. Then
$a^{n} \equiv a^{t q} \equiv\left(a^{t}\right)^{q} \equiv 1^{q} \equiv 1(\bmod m)$, since $a^{t} \equiv 1(\bmod m)$ by hypothesis.

Theorem 10.1

Theorem 10.1. Suppose that $(a, m)=1$ and a has order t modulo m. Then $a^{n} \equiv 1(\bmod m)$ if and only if n is a multiple of t.

Proof. Suppose $n=t q$ for some integer q. Then $a^{n} \equiv a^{t q} \equiv\left(a^{t}\right)^{q} \equiv 1^{q} \equiv 1(\bmod m)$, since $a^{t} \equiv 1(\bmod m)$ by hypothesis.

Conversely, suppose that $a^{n} \equiv 1(\bmod m)$. Since t is the smallest positive integer such that $a^{t} \equiv 1(\bmod m)$, then we must have $n \geq t$. By the Division Algorithm (Theorem 1.2), $n=t q+r$ where $q \geq 1$ and $0 \leq r<t$. Thus

$$
1 \equiv a^{n} \equiv a^{t q+r} \equiv\left(a^{t}\right)^{q} a^{r} \equiv 1^{q} a^{r} \equiv a^{r}(\bmod m) .
$$

But t is the smallest positive integer such that $a^{t} \equiv 1(\bmod m)$, and $q^{r} \equiv 1(\bmod m)$ where $0 \leq r<t$, so we must have $r=0$. Thus, $n=t q$ and n is a multiple of t, as claimed.

Theorem 10.1

Theorem 10.1. Suppose that $(a, m)=1$ and a has order t modulo m. Then $a^{n} \equiv 1(\bmod m)$ if and only if n is a multiple of t.

Proof. Suppose $n=t q$ for some integer q. Then $a^{n} \equiv a^{t q} \equiv\left(a^{t}\right)^{q} \equiv 1^{q} \equiv 1(\bmod m)$, since $a^{t} \equiv 1(\bmod m)$ by hypothesis.

Conversely, suppose that $a^{n} \equiv 1(\bmod m)$. Since t is the smallest positive integer such that $a^{t} \equiv 1(\bmod m)$, then we must have $n \geq t$. By the Division Algorithm (Theorem 1.2), $n=t q+r$ where $q \geq 1$ and $0 \leq r<t$. Thus

$$
1 \equiv a^{n} \equiv a^{t q+r} \equiv\left(a^{t}\right)^{q} a^{r} \equiv 1^{q} a^{r} \equiv a^{r}(\bmod m) .
$$

But t is the smallest positive integer such that $a^{t} \equiv 1(\bmod m)$, and $q^{r} \equiv 1(\bmod m)$ where $0 \leq r<t$, so we must have $r=0$. Thus, $n=t q$ and n is a multiple of t, as claimed.

Theorem 10.2

Theorem 10.2. If $(a, m)=1$ and a has order $t(\bmod m)$, then $t \mid \varphi(m)$.

Proof. Since $(a, m)=1$ by hypothesis, then Euler's Theorem (Theorem 9.1) implies that $a^{\varphi(m)} \equiv 1(\bmod m)$. By Theorem 10.1, we then have that $\varphi(m)$ is a multiple of t. That is, $t \mid \varphi(m)$ as claimed.

Theorem 10.2

Theorem 10.2. If $(a, m)=1$ and a has order $t(\bmod m)$, then $t \mid \varphi(m)$.

Proof. Since $(a, m)=1$ by hypothesis, then Euler's Theorem (Theorem 9.1) implies that $a^{\varphi(m)} \equiv 1(\bmod m)$. By Theorem 10.1 , we then have that $\varphi(m)$ is a multiple of t. That is, $t \mid \varphi(m)$ as claimed.

Theorem 10.3

Theorem 10.3. If p and q are odd primes and $q \mid a^{p}-1$, then either $q \mid a-1$ or $q=2 k p+1$ for some integer k.

Proof. Since $q \mid a^{p}-1$ by hypothesis, then $a^{p} \equiv 1(\bmod q)$. So by Theorem 10.1, the order of a modulo q is a divisor of p. Since p is prime, the a has order either 1 or p. If the order of a is 1, then $a^{1} \equiv 1(\bmod q)$, so that $q \mid a-1$.

Theorem 10.3

Theorem 10.3. If p and q are odd primes and $q \mid a^{p}-1$, then either $q \mid a-1$ or $q=2 k p+1$ for some integer k.

Proof. Since $q \mid a^{p}-1$ by hypothesis, then $a^{p} \equiv 1(\bmod q)$. So by Theorem 10.1, the order of a modulo q is a divisor of p. Since p is prime, the a has order either 1 or p. If the order of a is 1 , then $a^{1} \equiv 1(\bmod q)$, so that $q \mid a-1$. If in stead the order of a is p, then by Theorem 10.2, $p \mid \varphi(q)$. Since $\varphi(q)=q-1$ by Note 9.A, then $p \mid q-1$. So $q-1=r p$ for some integer r. Since p and q are both odd by hypothesis, then r must be even. Hence, $q=r p+1=2 k p+1$ for some integer k, as claimed.

Theorem 10.3

Theorem 10.3. If p and q are odd primes and $q \mid a^{p}-1$, then either $q \mid a-1$ or $q=2 k p+1$ for some integer k.

Proof. Since $q \mid a^{p}-1$ by hypothesis, then $a^{p} \equiv 1(\bmod q)$. So by Theorem 10.1, the order of a modulo q is a divisor of p. Since p is prime, the a has order either 1 or p. If the order of a is 1 , then $a^{1} \equiv 1(\bmod q)$, so that $q \mid a-1$. If in stead the order of a is p, then by Theorem 10.2, $p \mid \varphi(q)$. Since $\varphi(q)=q-1$ by Note 9.A, then $p \mid q-1$. So $q-1=r p$ for some integer r. Since p and q are both odd by hypothesis, then r must be even. Hence, $q=r p+1=2 k p+1$ for some integer k, as claimed.

Theorem 10.4

Theorem 10.4. If the order of a modulo m is t, then $a^{r} \equiv a^{s}(\bmod m)$ if and only if $r \equiv s(\bmod t)$.

Proof. First, suppose $a^{r} \equiv q^{s}(\bmod m)$; without loss of generality, suppose $r \geq s$. Then $a^{r-s} \equiv 1(\bmod m)$, so that by Theorem 10.1 we have $r-s$ is a multiple of t. That is, $r \equiv s(\bmod t)$, as claimed.

Theorem 10.4

Theorem 10.4. If the order of a modulo m is t, then $a^{r} \equiv a^{s}(\bmod m)$ if and only if $r \equiv s(\bmod t)$.

Proof. First, suppose $a^{r} \equiv q^{s}(\bmod m)$; without loss of generality, suppose $r \geq s$. Then $a^{r-s} \equiv 1(\bmod m)$, so that by Theorem 10.1 we have $r-s$ is a multiple of t. That is, $r \equiv s(\bmod t)$, as claimed.

Conversely, suppose $r \equiv s(\bmod t)$. Then $r=s+k t$ for some integer k. Since the order of $a \bmod m$ is t by hypothesis, then $a^{t} \equiv 1(\bmod m)$, and

$$
a^{r} \equiv a^{s+k t} \equiv a^{s}\left(a^{t}\right)^{k} \equiv a^{s}(1)^{k} \equiv a^{s}(\bmod m),
$$

Theorem 10.4

Theorem 10.4. If the order of a modulo m is t, then $a^{r} \equiv a^{s}(\bmod m)$ if and only if $r \equiv s(\bmod t)$.

Proof. First, suppose $a^{r} \equiv q^{s}(\bmod m)$; without loss of generality, suppose $r \geq s$. Then $a^{r-s} \equiv 1(\bmod m)$, so that by Theorem 10.1 we have $r-s$ is a multiple of t. That is, $r \equiv s(\bmod t)$, as claimed.

Conversely, suppose $r \equiv s(\bmod t)$. Then $r=s+k t$ for some integer k. Since the order of $a \bmod m$ is t by hypothesis, then $a^{t} \equiv 1(\bmod m)$, and

$$
a^{r} \equiv a^{s+k t} \equiv a^{s}\left(a^{t}\right)^{k} \equiv a^{s}(1)^{k} \equiv a^{s}(\bmod m)
$$

as claimed.

Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues modulo m of $g, g^{2}, g^{3}, \ldots, g^{\varphi(m)}$ are a permutation of the $\varphi(m)$ positive integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then $(g, m)=1$ by the definition of "primitive root." o each power of g is relatively prime to m (this follows by The Unique Factorization Theorem/Fundamental Theorem of Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither does g^{n} and m where $n>0$).

Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues modulo m of $g, g^{2}, g^{3}, \ldots, g^{\varphi(m)}$ are a permutation of the $\varphi(m)$ positive integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then $(g, m)=1$ by the definition of "primitive root." o each power of g is relatively prime to m (this follows by The Unique Factorization Theorem/Fundamental Theorem of Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither does g^{n} and m where $n>0$). Furthermore, no two powers of g,
 then by Theorem 10.4 we have $j \equiv k(\bmod \varphi(m))$ (or that $j=k$ since $1 \leq j, k \leq \varphi(m) \leq m-1)$. That is, if $j \not \equiv k(\bmod \varphi(m))$, where $1 \leq j, k \leq \varphi(m)$, then $g^{k} \not \equiv g^{k}(\bmod m)$. Hence, the powers of g are distinct, as claimed

Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues modulo m of $g, g^{2}, g^{3}, \ldots, g^{\varphi(m)}$ are a permutation of the $\varphi(m)$ positive integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then $(g, m)=1$ by the definition of "primitive root." o each power of g is relatively prime to m (this follows by The Unique Factorization Theorem/Fundamental Theorem of Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither does g^{n} and m where $n>0$). Furthermore, no two powers of g, $g, g^{2}, \ldots, g^{\varphi(m)}$, have the same least residue, because if $g^{j} \equiv g^{k}(\bmod m)$ then by Theorem 10.4 we have $j \equiv k(\bmod \varphi(m))$ (or that $j=k$ since $1 \leq j, k \leq \varphi(m) \leq m-1)$. That is, if $j \not \equiv k(\bmod \varphi(m))$, where $1 \leq j, k \leq \varphi(m)$, then $g^{k} \not \equiv g^{k}(\bmod m)$. Hence, the powers of g are distinct, as claimed.

Lemma 10.1

Lemma 10.1. Suppose that a has order t modulo m. Then a^{k} has order t modulo m if and only if $(k, t)=1$.

Proof. Notice that $(a, m)=1$ from the definition of "order." First, suppose $(k, t)=1$. Denote the order of a^{k} modulo m as s. Since a has order t modulo m by hypothesis, then $1 \equiv(1)^{k} \equiv\left(a^{t}\right)^{k} \equiv\left(a^{k}\right)^{t}(\bmod m)$ By Theorem 10.1, we then have that $s \mid t$. Since s is the order of a^{k} then $\left(a^{k}\right)^{s} \equiv a^{k} s \equiv 1(\bmod m)$, so by Theorem 10.1 (again), $t \mid k s$. Since $(k, t)=1$, then $t \mid s$ by Corollary 1.1. But since we also have $s \mid t$, then it must be that $s=t$ so that the order of a^{k} modulo m is t, as claimed.

Lemma 10.1

Lemma 10.1. Suppose that a has order t modulo m. Then a^{k} has order t modulo m if and only if $(k, t)=1$.

Proof. Notice that $(a, m)=1$ from the definition of "order." First, suppose $(k, t)=1$. Denote the order of a^{k} modulo m as s. Since a has order t modulo m by hypothesis, then $1 \equiv(1)^{k} \equiv\left(a^{t}\right)^{k} \equiv\left(a^{k}\right)^{t}(\bmod m)$. By Theorem 10.1, we then have that $s \mid t$. Since s is the order of a^{k} then $\left(a^{k}\right)^{s} \equiv a^{k} s \equiv 1(\bmod m)$, so by Theorem 10.1 (again), $t \mid k s$. Since $(k, t)=1$, then $t \mid s$ by Corollary 1.1. But since we also have $s \mid t$, then it must be that $s=t$ so that the order of a^{k} modulo m is t, as claimed.

Conversely, suppose that a and a^{k} both have order mod m of t and that $(k, t)=r$. Then $1 \equiv a^{t} \equiv\left(a^{t}\right)^{k / r} \equiv\left(a^{k}\right)^{t / r}(\bmod m)$. By Theorem 10.1, t / r is a multiple of t, so that we must have $r=(k, t)=1$, as claimed.

Lemma 10.1

Lemma 10.1. Suppose that a has order t modulo m. Then a^{k} has order t modulo m if and only if $(k, t)=1$.

Proof. Notice that $(a, m)=1$ from the definition of "order." First, suppose $(k, t)=1$. Denote the order of a^{k} modulo m as s. Since a has order t modulo m by hypothesis, then $1 \equiv(1)^{k} \equiv\left(a^{t}\right)^{k} \equiv\left(a^{k}\right)^{t}(\bmod m)$. By Theorem 10.1, we then have that $s \mid t$. Since s is the order of a^{k} then $\left(a^{k}\right)^{s} \equiv a^{k} s \equiv 1(\bmod m)$, so by Theorem 10.1 (again), $t \mid k s$. Since $(k, t)=1$, then $t \mid s$ by Corollary 1.1. But since we also have $s \mid t$, then it must be that $s=t$ so that the order of a^{k} modulo m is t, as claimed.

Conversely, suppose that a and a^{k} both have order mod m of t and that $(k, t)=r$. Then $1 \equiv a^{t} \equiv\left(a^{t}\right)^{k / r} \equiv\left(a^{k}\right)^{t / r}(\bmod m)$. By Theorem 10.1, t / r is a multiple of t, so that we must have $r=(k, t)=1$, as claimed.

Corollary 10.B

Corollary 10.B. Suppose that g is a primitive root of prime p. Then the least residue of g^{k} is a primitive root of p if and only if $(k, p-1)=1$.

Proof. Since g is a primitive root of p, then the order or g is $\varphi(p)$, and $\varphi(p)=p-1$ by Note 9.A. That is, g is of order $p-1$. Set $t=p-1$. By Lemma 10.1, g^{k} has order $t=p-1=\varphi(p)$ modulo p (and so g^{k} is also a primitive root of p) if and only if $(k, t)=(k, p-1)=1$. That is, g^{k} is a primitive root of p if and only if $(k, p-1)=1$, as claimed.

Corollary 10.B

Corollary 10.B. Suppose that g is a primitive root of prime p. Then the least residue of g^{k} is a primitive root of p if and only if $(k, p-1)=1$.

Proof. Since g is a primitive root of p, then the order or g is $\varphi(p)$, and $\varphi(p)=p-1$ by Note 9.A. That is, g is of order $p-1$. Set $t=p-1$. By Lemma 10.1, g^{k} has order $t=p-1=\varphi(p)$ modulo p (and so g^{k} is also a primitive root of p) if and only if $(k, t)=(k, p-1)=1$. That is, g^{k} is a primitive root of p if and only if $(k, p-1)=1$, as claimed.

Lemma 10.2

Lemma 10.2. If f is a polynomial of degree n, then $f(x) \equiv 0(\bmod p)$ has at most n solutions.

Proof. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x a_{0}$ have degree n where $a_{n} \not \equiv 0(\bmod p)$. We prove the claim by induction. For the base case, consider the equation for $n=1: a_{1} x+a_{0} \equiv 0(\bmod p)$. Since $a_{n} \not \equiv 0$ $(\bmod p)$, then because p is prime we have $\left(a_{1}, p\right)=1$, by Theorem 5.1 there is at most one solution.

Lemma 10.2

Lemma 10.2. If f is a polynomial of degree n, then $f(x) \equiv 0(\bmod p)$ has at most n solutions.

Proof. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x a_{0}$ have degree n where $a_{n} \not \equiv 0(\bmod p)$. We prove the claim by induction. For the base case, consider the equation for $n=1: a_{1} x+a_{0} \equiv 0(\bmod p)$. Since $a_{n} \not \equiv 0$ $(\bmod p)$, then because p is prime we have $\left(a_{1}, p\right)=1$, by Theorem 5.1 there is at most one solution.

For the induction hypothesis, suppose that the lemma is true for polynomials of degree $n-1$. Now consider f as an n degree polynomial. If $f(x) \equiv 0(\bmod p)$ has not solution, then the claim holds. So we can suppose that $f(x) \equiv 0(\bmod p)$ has a solution $x=r$. That is, $f(r) \equiv 0$ $(\bmod p)$, and r is a least residue modulo p. Next, $x-r$ is a factor of $x^{t}-r^{t}$ for $t=0,1, \ldots, n$ because
$x^{t}-r^{t}=(x-r)\left(x^{t-1}+x^{t-2} r+x^{t-3} r^{2}+\cdots x r^{t-2}+r^{t-1}\right)$, as can be shown by simplifying the right-hand side.

Lemma 10.2

Lemma 10.2. If f is a polynomial of degree n, then $f(x) \equiv 0(\bmod p)$ has at most n solutions.

Proof. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x a_{0}$ have degree n where $a_{n} \not \equiv 0(\bmod p)$. We prove the claim by induction. For the base case, consider the equation for $n=1: a_{1} x+a_{0} \equiv 0(\bmod p)$. Since $a_{n} \not \equiv 0$ $(\bmod p)$, then because p is prime we have $\left(a_{1}, p\right)=1$, by Theorem 5.1 there is at most one solution.

For the induction hypothesis, suppose that the lemma is true for polynomials of degree $n-1$. Now consider f as an n degree polynomial. If $f(x) \equiv 0(\bmod p)$ has not solution, then the claim holds. So we can suppose that $f(x) \equiv 0(\bmod p)$ has a solution $x=r$. That is, $f(r) \equiv 0$ $(\bmod p)$, and r is a least residue modulo p. Next, $x-r$ is a factor of $x^{t}-r^{t}$ for $t=0,1, \ldots, n$ because $x^{t}-r^{t}=(x-r)\left(x^{t-1}+x^{t-2} r+x^{t-3} r^{2}+\cdots x r^{t-2}+r^{t-1}\right)$, as can be shown by simplifying the right-hand side.

Lemma 10.2 (continued)

Lemma 10.2. If f is a polynomial of degree n, then $f(x) \equiv 0(\bmod p)$ has at most n solutions.

Proof (continued). So we have

$$
\begin{gather*}
f(x) \equiv f(x)-0 \equiv f(x)-f(r) \\
\equiv a_{n}\left(x^{n}-r^{n}\right)+a_{n-1}\left(x^{n-1}-r^{n-1}\right)+\cdots+a_{2}\left(x^{2}-r^{2}\right)+a_{1}(x-r) \\
\equiv(x-r) g(x)(\bmod p), \tag{*}
\end{gather*}
$$

where g is a polynomial of degree $n-1$. Suppose that s is also a solution to $f(x) \equiv 0(\bmod p)$. The from $(*) f(s) \equiv(s-r) g(s) \equiv 0(\bmod p)$. Since p is prime, then by Euclid's Lemma (Lemma 2.5) either $s \equiv r$ (mod $p)$ or $g(s) \equiv 0(\bmod p)$. Now g is degree $n-1$, so by the induction hypothesis, $g(s) \equiv 0(\bmod p)$ has at most $n-1$ solutions. Also $s \equiv r$ $(\bmod p)$ has exactly one solution, so we have for degree n polynomial f that the equation $f(x) \equiv 0(\bmod p)$ has at most n solutions, as needed. So by induction the result holds for all degrees $n \in \mathbb{N}$, as claimed.

Lemma 10.2 (continued)

Lemma 10.2. If f is a polynomial of degree n, then $f(x) \equiv 0(\bmod p)$ has at most n solutions.

Proof (continued). So we have

$$
\begin{gather*}
f(x) \equiv f(x)-0 \equiv f(x)-f(r) \\
\equiv a_{n}\left(x^{n}-r^{n}\right)+a_{n-1}\left(x^{n-1}-r^{n-1}\right)+\cdots+a_{2}\left(x^{2}-r^{2}\right)+a_{1}(x-r) \\
\equiv(x-r) g(x)(\bmod p), \tag{*}
\end{gather*}
$$

where g is a polynomial of degree $n-1$. Suppose that s is also a solution to $f(x) \equiv 0(\bmod p)$. The from $(*) f(s) \equiv(s-r) g(s) \equiv 0(\bmod p)$. Since p is prime, then by Euclid's Lemma (Lemma 2.5) either $s \equiv r(m o d$ $p)$ or $g(s) \equiv 0(\bmod p)$. Now g is degree $n-1$, so by the induction hypothesis, $g(s) \equiv 0(\bmod p)$ has at most $n-1$ solutions. Also $s \equiv r$ $(\bmod p)$ has exactly one solution, so we have for degree n polynomial f that the equation $f(x) \equiv 0(\bmod p)$ has at most n solutions, as needed. So by induction the result holds for all degrees $n \in \mathbb{N}$, as claimed.

Lemma 10.3

Lemma 10.3. If $d \mid p-1$, then $x^{d} \equiv 1(\bmod p)$ has exactly d solutions. Proof. By Fermat's (Little) Theorem (Theorem 6.1), the congruence $x^{p-1} \equiv 1(\bmod p)$ has exactly $p-1$ solutions, namely $1,2, \ldots, p-1$. Moreover, $x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{p-1-2 d}+\cdots+x^{d}+1\right)=\left(x^{d}-1\right) h(x)$.

Lemma 10.3

Lemma 10.3. If $d \mid p-1$, then $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
Proof. By Fermat's (Little) Theorem (Theorem 6.1), the congruence $x^{p-1} \equiv 1(\bmod p)$ has exactly $p-1$ solutions, namely $1,2, \ldots, p-1$. Moreover,

$$
x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{p-1-2 d}+\cdots+x^{d}+1\right)=\left(x^{d}-1\right) h(x)
$$

By Lemma 10.2, $h(x) \equiv 0(\bmod p)$ has at most $p-1-d$ solutions. Hence $x^{d} \equiv 1(\bmod p)$ has at least $(p-1)-(p-1-d)=d$ solutions. By Lemma 10.2 again, but applied to $x^{d} \equiv 1(\bmod p)$, we see that this equation has at most d solutions, and hence has exactly d solutions, as claimed.

Lemma 10.3

Lemma 10.3. If $d \mid p-1$, then $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
Proof. By Fermat's (Little) Theorem (Theorem 6.1), the congruence $x^{p-1} \equiv 1(\bmod p)$ has exactly $p-1$ solutions, namely $1,2, \ldots, p-1$. Moreover,

$$
x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{p-1-2 d}+\cdots+x^{d}+1\right)=\left(x^{d}-1\right) h(x) .
$$

By Lemma $10.2, h(x) \equiv 0(\bmod p)$ has at most $p-1-d$ solutions. Hence $x^{d} \equiv 1(\bmod p)$ has at least $(p-1)-(p-1-d)=d$ solutions. By Lemma 10.2 again, but applied to $x^{d} \equiv 1(\bmod p)$, we see that this equation has at most d solutions, and hence has exactly d solutions, as claimed.

Theorem 10.6

Theorem 10.6. Every prime p has $\varphi(p-1)$ primitive roots.

Proof. By Theorem 10.2, we know that each of the integers
$1,2, \ldots, p-1$ has an order that is a divisor of $p-1$. For each divisor t of $p-1$, let $\psi(t)$ denote the number of these integers that have order t. Notice that this gives $\psi(p-1)$ as the number of these integers of order $p-1$, and hence the number of primitive roots of p. Then we have $\sum_{t \mid p-1} \psi(t)=p-1$. By Theorem 9.4, we have
$\sum_{t \mid p-1} \psi(t)=p-1=\sum_{t \mid p-1} \varphi(t)$.

Theorem 10.6

Theorem 10.6. Every prime p has $\varphi(p-1)$ primitive roots.

Proof. By Theorem 10.2, we know that each of the integers
$1,2, \ldots, p-1$ has an order that is a divisor of $p-1$. For each divisor t of $p-1$, let $\psi(t)$ denote the number of these integers that have order t. Notice that this gives $\psi(p-1)$ as the number of these integers of order $p-1$, and hence the number of primitive roots of p. Then we have $\sum_{t \mid p-1} \psi(t)=p-1$. By Theorem 9.4, we have $\sum_{t \mid p-1} \psi(t)=p-1=\sum_{t \mid p-1} \varphi(t)$. If we can show that $\psi(t) \leq \varphi(t)$ for each t, then the equality of the sums will imply equality of $\psi(t)$ and $\varphi(t)$ for each t; in particular, we will have $\psi(p-1)=\varphi(p-1)$ so that the number of primitive roots will be $\varphi(p-1)$ as claimed.

Theorem 10.6

Theorem 10.6. Every prime p has $\varphi(p-1)$ primitive roots.

Proof. By Theorem 10.2, we know that each of the integers
$1,2, \ldots, p-1$ has an order that is a divisor of $p-1$. For each divisor t of $p-1$, let $\psi(t)$ denote the number of these integers that have order t. Notice that this gives $\psi(p-1)$ as the number of these integers of order $p-1$, and hence the number of primitive roots of p. Then we have $\sum_{t \mid p-1} \psi(t)=p-1$. By Theorem 9.4, we have $\sum_{t \mid p-1} \psi(t)=p-1=\sum_{t \mid p-1} \varphi(t)$. If we can show that $\psi(t) \leq \varphi(t)$ for each t, then the equality of the sums will imply equality of $\psi(t)$ and $\varphi(t)$ for each t; in particular, we will have $\psi(p-1)=\varphi(p-1)$ so that the number of primitive roots will be $\varphi(p-1)$ as claimed.

Theorem 10.6 (continued)

Theorem 10.6. Every prime p has $\varphi(p-1)$ primitive roots.
Proof (continued). Fix some t. If $\psi(t)=0$ then $\psi(t) \leq \varphi(t)$ and out claim is demonstrated. If $\psi(t) \neq t$, then there is some integer in $\{1,2, \ldots, p-1\}$ with order t; denote it as a. The congruence $x^{t} \equiv 1$ $(\bmod p)$ has exactly t solutions by Lemma 10.3. Also, for $x \in\left\{a, a^{2}, a^{3}, \ldots, a^{t}\right\}$ we have $x^{t} \equiv 1(\bmod p)$. By Theorem 10.4, no two of $a, a^{2}, a^{3}, \ldots, a^{t}$ have the same least residue $(\bmod p)$, so (the least residues of) these give all solutions of $x^{t} \equiv 1(\bmod p)$ (and hence the list includes all elements of order t, and maybe some other elements).
Lemma 10.1, the numbers in $\left\{a, a^{2}, a^{3}, \ldots, a^{t}\right\}$ that are order $t \bmod p$ (of which there are, by definition, $\psi(t)$ such numbers) are those powers a^{k} with $(k, t)=1$. By the definition of Euler's function, the number of such k is $\varphi(t)$. Therefore, $\psi(t)=\varphi(t)$ for all $t \mid p-1$, and the claim now follows as explained above.

Theorem 10.6 (continued)

Theorem 10.6. Every prime p has $\varphi(p-1)$ primitive roots.
Proof (continued). Fix some t. If $\psi(t)=0$ then $\psi(t) \leq \varphi(t)$ and out claim is demonstrated. If $\psi(t) \neq t$, then there is some integer in $\{1,2, \ldots, p-1\}$ with order t; denote it as a. The congruence $x^{t} \equiv 1$ $(\bmod p)$ has exactly t solutions by Lemma 10.3. Also, for $x \in\left\{a, a^{2}, a^{3}, \ldots, a^{t}\right\}$ we have $x^{t} \equiv 1(\bmod p)$. By Theorem 10.4, no two of $a, a^{2}, a^{3}, \ldots, a^{t}$ have the same least residue $(\bmod p)$, so (the least residues of) these give all solutions of $x^{t} \equiv 1(\bmod p)$ (and hence the list includes all elements of order t, and maybe some other elements). By Lemma 10.1, the numbers in $\left\{a, a^{2}, a^{3}, \ldots, a^{t}\right\}$ that are order $t \bmod p$ (of which there are, by definition, $\psi(t)$ such numbers) are those powers a^{k} with $(k, t)=1$. By the definition of Euler's function, the number of such k is $\varphi(t)$. Therefore, $\psi(t)=\varphi(t)$ for all $t \mid p-1$, and the claim now follows as explained above.

Theorem 10.B

Theorem 10.B. If p is an odd prime then $(p-1)!\equiv-1(\bmod p)$.

Proof. By Theorem 10.6, there is some primitive root g of prime p. By Theorem 10.5, the least residues mod p of $g, g^{2}, g^{3}, \ldots, g^{p-1}$ (notice $\varphi(p)=p-1$) are a permutation of $1,2, \ldots, p-1$. Multiplying, we have

$$
1 \cdot 2 \cdots \cdot(p-1) \equiv g \cdot g^{2} \cdot g^{3} \cdots \cdot g^{p-1}
$$

or, since $\sum_{i=1}^{p-1}=p(p-1) / 2$,

$$
(p-1)!\equiv g^{p(p-1) / 2} \equiv\left(g^{p}\right)^{p-1}(\bmod p) .
$$

Theorem 10.B

Theorem 10.B. If p is an odd prime then $(p-1)!\equiv-1(\bmod p)$.

Proof. By Theorem 10.6, there is some primitive root g of prime p. By Theorem 10.5, the least residues mod p of $g, g^{2}, g^{3}, \ldots, g^{p-1}$ (notice $\varphi(p)=p-1$) are a permutation of $1,2, \ldots, p-1$. Multiplying, we have

$$
1 \cdot 2 \cdots \cdot(p-1) \equiv g \cdot g^{2} \cdot g^{3} \cdots \cdot g^{p-1}
$$

or, since $\sum_{i=1}^{p-1}=p(p-1) / 2$,

$$
(p-1)!\equiv g^{p(p-1) / 2} \equiv\left(g^{p}\right)^{p-1}(\bmod p)
$$

Theorem 10.B (continued)

Theorem 10.B. If p is an odd prime then $(p-1)!\equiv-1(\bmod p)$. Proof (continued). . .

$$
(p-1)!\equiv g^{p(p-1) / 2} \equiv\left(g^{p}\right)^{p-1}(\bmod p)
$$

But $g^{(p-1) / 2}$ satisfies $x^{2} \equiv 1(\bmod p)($ since
$\left(g^{(p-1) / 2}\right)^{2} \equiv g^{p-1} \equiv g^{\varphi(p)} \equiv 1(\bmod p)$ by Euler's Theorem, Theorem 9.1), so $g^{(p-1) / 2} \equiv 1$ or $-1(\bmod p)($ notice that these valid values for x in $x^{2} \equiv 1(\bmod p)$ and by Lemma 10.2 there are at most 2 such values of $x)$. But we cannot have $g^{(p-1) / 2} \equiv 1(\bmod p)$, since this would mean that the order of g is at most $(p-1) / 2$, and we hypothesized that g is a primitive root and so is order $\varphi(p)=p-1$. Therefore, $g^{(p-1) / 2} \equiv-1$ $(\bmod p)$, and hence $(p-1)!\equiv-1(\bmod p)$, as claimed.

Theorem 10.B (continued)

Theorem 10.B. If p is an odd prime then $(p-1)!\equiv-1(\bmod p)$. Proof (continued). ...

$$
(p-1)!\equiv g^{p(p-1) / 2} \equiv\left(g^{p}\right)^{p-1}(\bmod p)
$$

But $g^{(p-1) / 2}$ satisfies $x^{2} \equiv 1(\bmod p)($ since
$\left(g^{(p-1) / 2}\right)^{2} \equiv g^{p-1} \equiv g^{\varphi(p)} \equiv 1(\bmod p)$ by Euler's Theorem, Theorem 9.1), so $g^{(p-1) / 2} \equiv 1$ or $-1(\bmod p)($ notice that these valid values for x in $x^{2} \equiv 1(\bmod p)$ and by Lemma 10.2 there are at most 2 such values of $x)$. But we cannot have $g^{(p-1) / 2} \equiv 1(\bmod p)$, since this would mean that the order of g is at most $(p-1) / 2$, and we hypothesized that g is a primitive root and so is order $\varphi(p)=p-1$. Therefore, $g^{(p-1) / 2} \equiv-1$ $(\bmod p)$, and hence $(p-1)!\equiv-1(\bmod p)$, as claimed.

