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Section 10. Primitive Roots—Proofs of Theorems
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Theorem 10.1

Theorem 10.1. Suppose that (a, m) =1 and a has order t modulo m.
Then a" =1 (mod m) if and only if n is a multiple of t.
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Theorem 10.1

Theorem 10.1. Suppose that (a, m) =1 and a has order t modulo m.
Then a" =1 (mod m) if and only if n is a multiple of t.

Proof. Suppose n = tq for some integer q. Then
a" = a"=(a")9=19 =1 (mod m), since a* =1 (mod m) by hypothesis.
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Theorem 10.1

Theorem 10.1. Suppose that (a, m) =1 and a has order t modulo m.
Then a" =1 (mod m) if and only if n is a multiple of t.

Proof. Suppose n = tq for some integer q. Then
a" = a"=(a")9=19 =1 (mod m), since a* =1 (mod m) by hypothesis.

Conversely, suppose that a” =1 (mod m). Since t is the smallest positive
integer such that a® =1 (mod m), then we must have n > t. By the
Division Algorithm (Theorem 1.2), n=tq+ r where g >1and 0 < r < t.
Thus

1=a"=a"" = (a"%" =1%" = a" (mod m).

But t is the smallest positive integer such that a® =1 (mod m), and
qg" =1 (mod m) where 0 < r < t, so we must have r = 0. Thus, n = tq
and n is a multiple of t, as claimed. 0J
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Theorem 10.2

Theorem 10.2. If (a, m) =1 and a has order t (mod m), then t|p(m).
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Theorem 10.2

Theorem 10.2. If (a, m) =1 and a has order t (mod m), then t|p(m).

Proof. Since (a, m) =1 by hypothesis, then Euler's Theorem (Theorem
9.1) implies that a#(™ =1 (mod m). By Theorem 10.1, we then have
that ¢(m) is a multiple of t. That is, t|¢(m) as claimed. O
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Theorem 10.3

Theorem 10.3. If p and g are odd primes and g | aP — 1, then either
g|la—1or qg=2kp+ 1 for some integer k.
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Theorem 10.3

Theorem 10.3. If p and g are odd primes and g | aP — 1, then either
g|la—1or qg=2kp+ 1 for some integer k.

Proof. Since g|a” — 1 by hypothesis, then a? =1 (mod q). So by
Theorem 10.1, the order of a modulo g is a divisor of p. Since p is prime,
the a has order either 1 or p. If the order of ais 1, then a! =1 (mod q),
so that g|a — 1.
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Theorem 10.3

Theorem 10.3. If p and g are odd primes and g | aP — 1, then either
g|la—1or qg=2kp+ 1 for some integer k.

Proof. Since g|a” — 1 by hypothesis, then a? =1 (mod q). So by
Theorem 10.1, the order of a modulo g is a divisor of p. Since p is prime,
the a has order either 1 or p. If the order of ais 1, then a! =1 (mod q),
so that g |a — 1. If in stead the order of a is p, then by Theorem 10.2,
ple(q). Since ¢(q) = g — 1 by Note 9.A, then p|g—1. Sog—1=rp
for some integer r. Since p and g are both odd by hypothesis, then r must
be even. Hence, g = rp+ 1 = 2kp 4+ 1 for some integer k, as claimed. [
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Theorem 10.4

Theorem 10.4. If the order of a modulo m is t, then a" = a° (mod m) if

and only if r = s (mod t).
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Theorem 10.4

Theorem 10.4

Theorem 10.4. If the order of a modulo m is t, then a" = a° (mod m) if
and only if r = s (mod t).

Proof. First, suppose a" = ¢° (mod m); without loss of generality,
suppose r > s. Then a"* =1 (mod m), so that by Theorem 10.1 we
have r — s is a multiple of t. Thatis, r = s (mod t), as claimed.
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Theorem 10.4

Theorem 10.4. If the order of a modulo m is t, then a" = a° (mod m) if
and only if r = s (mod t).

Proof. First, suppose a" = ¢° (mod m); without loss of generality,
suppose r > s. Then a"* =1 (mod m), so that by Theorem 10.1 we
have r — s is a multiple of t. Thatis, r = s (mod t), as claimed.

Conversely, suppose r = s (mod t). Then r = s + kt for some integer k.
Since the order of a mod m is t by hypothesis, then a' =1 (mod m), and

a" = "M = 2%(ah)k = 2°(1) = a° (mod m),

as claimed. O
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Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues
modulo m of g, g2, g3, ...,g%°(™ are a permutation of the ©(m) positive
integers less than m and relatively prime to it.
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Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues
modulo m of g, g2, g3, ...,g%°(™ are a permutation of the ©(m) positive
integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then (g, m) = 1 by the definition
of “primitive root.” o each power of g is relatively prime to m (this follows
by The Unique Factorization Theorem/Fundamental Theorem of
Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither
does g" and m where n > 0).
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Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues
modulo m of g, g2, g3, ...,g%°(™ are a permutation of the ©(m) positive
integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then (g, m) = 1 by the definition
of “primitive root.” o each power of g is relatively prime to m (this follows
by The Unique Factorization Theorem/Fundamental Theorem of
Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither
does g” and m where n > 0). Furthermore, no two powers of g,
g,8%,...,8°" have the same least residue, because if g/ = gk (mod m)
then by Theorem 10.4 we have j = k (mod ¢(m)) (or that j = k since
1<j,k<¢(m)<m-—1). Thatis, if j # k (mod ©(m)), where

1 <j,k < @(m), then gk # gk (mod m). Hence, the powers of g are
distinct, as claimed. OJ
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Lemma 10.1

Lemma 10.1. Suppose that a has order t modulo m. Then a* has order t
modulo m if and only if (k,t) = 1.
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Lemma 10.1

Lemma 10.1. Suppose that a has order t modulo m. Then a* has order t
modulo m if and only if (k,t) = 1.

”

Proof. Notice that (a, m) =1 from the definition of “order.” First,
suppose (k, t) = 1. Denote the order of a¥ modulo m as s. Since a has
order t modulo m by hypothesis, then 1 = (1)* = (a%)* = (a¥)* (mod m).
By Theorem 10.1, we then have that s|t. Since s is the order of a¥ then
(a*)* = aks =1 (mod m), so by Theorem 10.1 (again), t|ks. Since
(k,t) =1, then t|s by Corollary 1.1. But since we also have s|t, then it
must be that s = t so that the order of ak modulo m is ¢, as claimed.
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Lemma 10.1

Lemma 10.1. Suppose that a has order t modulo m. Then a* has order t
modulo m if and only if (k,t) = 1.

”

Proof. Notice that (a, m) =1 from the definition of “order.” First,
suppose (k, t) = 1. Denote the order of a¥ modulo m as s. Since a has
order t modulo m by hypothesis, then 1 = (1)* = (a%)* = (a¥)* (mod m).
By Theorem 10.1, we then have that s|t. Since s is the order of a¥ then
(a*)* = aks =1 (mod m), so by Theorem 10.1 (again), t|ks. Since
(k,t) =1, then t|s by Corollary 1.1. But since we also have s|t, then it
must be that s = t so that the order of ak modulo m is ¢, as claimed.

Conversely, suppose that a and a* both have order mod m of t and that
(k,t) =r. Then 1 = at = (a*)*/" = (a¥)!/" (mod m). By Theorem 10.1,
t/r is a multiple of t, so that we must have r = (k,t) = 1, as claimed. []
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Corollary 10.B

Corollary 10.B. Suppose that g is a primitive root of prime p. Then the
least residue of g is a primitive root of p if and only if (k,p — 1) = 1.
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Corollary 10.B

Corollary 10.B. Suppose that g is a primitive root of prime p. Then the
least residue of g is a primitive root of p if and only if (k,p — 1) = 1.

Proof. Since g is a primitive root of p, then the order or g is ¢(p), and
©(p) = p—1 by Note 9.A. That is, g is of order p — 1. Set t = p— 1. By
Lemma 10.1, g¥ has order t = p — 1 = ¢(p) modulo p (and so g is also
a primitive root of p) if and only if (k,t) = (k,p—1) = 1. Thatis, g¥ is a
primitive root of p if and only if (k,p — 1) =1, as claimed. O]
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Lemma 10.2

Lemma 10.2. If f is a polynomial of degree n, then f(x) =0 (mod p)
has at most n solutions.
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Lemma 10.2

Lemma 10.2. If f is a polynomial of degree n, then f(x) =0 (mod p)
has at most n solutions.

Proof. Let f(x) = apx" 4+ a,_1x"~! +--- + a;xag have degree n where
ap Z 0 (mod p). We prove the claim by induction. For the base case,
consider the equation for n = 1: a;x + ag = 0 (mod p). Since a, 0
(mod p), then because p is prime we have (a1, p) = 1, by Theorem 5.1
there is at most one solution.
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Lemma 10.2

Lemma 10.2. If f is a polynomial of degree n, then f(x) =0 (mod p)
has at most n solutions.

Proof. Let f(x) = apx" 4+ a,_1x"~! +--- + a;xag have degree n where
ap Z 0 (mod p). We prove the claim by induction. For the base case,
consider the equation for n = 1: a;x + ag = 0 (mod p). Since a, 0
(mod p), then because p is prime we have (a1, p) = 1, by Theorem 5.1
there is at most one solution.

For the induction hypothesis, suppose that the lemma is true for
polynomials of degree n — 1. Now consider f as an n degree polynomial. If
f(x) = 0 (mod p) has not solution, then the claim holds. So we can
suppose that f(x) =0 (mod p) has a solution x = r. Thatis, f(r) =0
(mod p), and r is a least residue modulo p. Next, x — r is a factor of

xt —rtfor t =0,1,...,n because

xt—rt=(x—r)(x* 1+ x2r 4+ xt32 4 - xrt=2 4 rt71), as can be
shown by simplifying the right-hand side.
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Lemma 10.2

Lemma 10.2 (continued)

Lemma 10.2. If f is a polynomial of degree n, then f(x) =0 (mod p)
has at most n solutions.

Proof (continued). So we have

f(x)=f(x)—0=f(x)—f(r)
=ap(x" — ")+ a1 (X"t ="+t (- rP) +ai(x—r)

= (x—r)g(x) (mod p), (%)
where g is a polynomial of degree n — 1.
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Lemma 10.2 (continued)

Lemma 10.2. If f is a polynomial of degree n, then f(x) =0 (mod p)
has at most n solutions.

Proof (continued). So we have
f(x)=f(x)—0=f(x)—f(r)
= a,(x" — ")+ a1 (x" =" b e () +a(x—r)

= (x = r)g(x) (mod p),  (¥)

where g is a polynomial of degree n — 1. Suppose that s is also a solution

to f(x) =0 (mod p). The from (x) f(s) = (s — r)g(s) =0 (mod p).

Since p is prime, then by Euclid’'s Lemma (Lemma 2.5) either s = r (mod

p) or g(s) =0 (mod p). Now g is degree n — 1, so by the induction

hypothesis, g(s) = 0 (mod p) has at most n — 1 solutions. Also s = r

(mod p) has exactly one solution, so we have for degree n polynomial f

that the equation f(x) = 0 (mod p) has at most n solutions, as needed.

So by induction the result holds for all degrees n € N, as claimed. Ol
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Lemma 10.3

Lemma 10.3. If d|p — 1, then x? =1 (mod p) has exactly d solutions.
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Lemma 10.3

Lemma 10.3

Lemma 10.3. If d|p — 1, then x? =1 (mod p) has exactly d solutions.

Proof. By Fermat's (Little) Theorem (Theorem 6.1), the congruence

xP~1 =1 (mod p) has exactly p — 1 solutions, namely 1,2,...,p — 1.
Moreover,

xP7h 1= (x? 1) (xP~ 19 xP7172d oo x4 1) = (x9 — 1)h(x).
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Lemma 10.3

Lemma 10.3. If d|p — 1, then x? =1 (mod p) has exactly d solutions.

Proof. By Fermat's (Little) Theorem (Theorem 6.1), the congruence
xP~1 =1 (mod p) has exactly p — 1 solutions, namely 1,2,...,p — 1.
Moreover,

xP7h 1= (x? 1) (xP~ 19 xP7172d oo x4 1) = (x9 — 1)h(x).

By Lemma 10.2, h(x) = 0 (mod p) has at most p — 1 — d solutions.
Hence x¢ =1 (mod p) has at least (p — 1) — (p — 1 — d) = d solutions.
By Lemma 10.2 again, but applied to x? =1 (mod p), we see that this
equation has at most d solutions, and hence has exactly d solutions, as
claimed. O
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Theorem 10.6

Theorem 10.6. Every prime p has ¢(p — 1) primitive roots.
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Theorem 10.6

Theorem 10.6. Every prime p has ¢(p — 1) primitive roots.

Proof. By Theorem 10.2, we know that each of the integers

1,2,...,p— 1 has an order that is a divisor of p — 1. For each divisor t of
p — 1, let ¥ (t) denote the number of these integers that have order t.
Notice that this gives ¢)(p — 1) as the number of these integers of order

p — 1, and hence the number of primitive roots of p. Then we have

> t|p—1 ¥(t) = p— 1. By Theorem 9.4, we have

Dtlpr () =p—=1=2 ,_10(t)
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Theorem 10.6

Theorem 10.6. Every prime p has ¢(p — 1) primitive roots.

Proof. By Theorem 10.2, we know that each of the integers

1,2,...,p— 1 has an order that is a divisor of p — 1. For each divisor t of
p — 1, let ¥ (t) denote the number of these integers that have order t.
Notice that this gives ¢)(p — 1) as the number of these integers of order

p — 1, and hence the number of primitive roots of p. Then we have

> t|p—1 ¥(t) = p— 1. By Theorem 9.4, we have

2ot|po1 () =p—1=732 ,_1¢(t). If we can show that () < ¢(t) for
each t, then the equality of the sums will imply equality of ¥ (t) and ¢(t)
for each t; in particular, we will have ¥(p — 1) = ¢(p — 1) so that the
number of primitive roots will be ¢(p — 1) as claimed.
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Theorem 10.6 (continued)

Theorem 10.6. Every prime p has ¢(p — 1) primitive roots.

Proof (continued). Fix some t. If ¥(t) = 0 then ¥(t) < (t) and out
claim is demonstrated. If ¢)(t) # t, then there is some integer in
{1,2,...,p — 1} with order t; denote it as a. The congruence x! =
(mod p) has exactly t solutions by Lemma 10.3. Also, for

x €{a,a%,a%,...,at} we have x* =1 (mod p). By Theorem 10.4, no two
of a,a%,a%,...,a" have the same least residue (mod p), so (the least
residues of ) these give all solutions of x* =1 (mod p) (and hence the list

includes all elements of order t, and maybe some other elements).
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Theorem 10.6 (continued)

Theorem 10.6. Every prime p has ¢(p — 1) primitive roots.

Proof (continued). Fix some t. If ¥(t) = 0 then ¥(t) < (t) and out
claim is demonstrated. If ¢)(t) # t, then there is some integer in
{1,2,...,p — 1} with order t; denote it as a. The congruence x! =
(mod p) has exactly t solutions by Lemma 10.3. Also, for

x €{a,a%,a%,...,at} we have x* =1 (mod p). By Theorem 10.4, no two
of a,a%,a%,...,a" have the same least residue (mod p), so (the least
residues of ) these give all solutions of x* =1 (mod p) (and hence the list

includes all elements of order t, and maybe some other elements). By
Lemma 10.1, the numbers in {a,a%, a%,...,a’} that are order t mod p (of
which there are, by definition, 1(t) such numbers) are those powers a*
with (k,t) = 1. By the definition of Euler's function, the number of such
k is ¢(t). Therefore, ¥(t) = p(t) for all t|p — 1, and the claim now
follows as explained above. []

Elementary Number Theory March 6, 2022 14 / 16



Theorem 10.B

Theorem 10.B. If p is an odd prime then (p — 1)! = —1 (mod p).
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Theorem 10.B

Theorem 10.B. If p is an odd prime then (p — 1)! = —1 (mod p).
Proof. By Theorem 10.6, there is some primitive root g of prime p. By

Theorem 10.5, the least residues mod p of g,g2,g°3,...,gP~ ! (notice
©(p) = p—1) are a permutation of 1,2,..., p — 1. Multiplying, we have

or, since P = p(p — 1)/2,

(p—1)! = gPP~D/2 = (gP)P~" (mod p).
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Theorem 10.B (continued)

Theorem 10.B. If p is an odd prime then (p — 1)! = —1 (mod p).

Proof (continued). ...
(p— 1)1 = gPlP~/2 = (gP)P~1 (mod p).

But g(P~1)/2 satisfies x> = 1 (mod p) (since

(glP~1)/2)2 = gp—1 = g¢(P) = 1 (mod p) by Euler’s Theorem, Theorem
9.1), so gP~1)/2 =1 or —1 (mod p) (notice that these valid values for x
in x> =1 (mod p) and by Lemma 10.2 there are at most 2 such values of

x).
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Theorem 10.B (continued)

Theorem 10.B. If p is an odd prime then (p — 1)! = —1 (mod p).

Proof (continued). ...
(p— 1)1 = gPlP~/2 = (gP)P~1 (mod p).

But g(P~1)/2 satisfies x> = 1 (mod p) (since

(glP~1)/2)2 = gp—1 = g¢(P) = 1 (mod p) by Euler’s Theorem, Theorem
9.1), so gP~1)/2 =1 or —1 (mod p) (notice that these valid values for x
in x> =1 (mod p) and by Lemma 10.2 there are at most 2 such values of
x). But we cannot have g(P~1)/2 = 1 (mod p), since this would mean that
the order of g is at most (p — 1)/2, and we hypothesized that g is a
primitive root and so is order ¢(p) = p — 1. Therefore, gP~1/2 = 1
(mod p), and hence (p — 1)! = —1 (mod p), as claimed. O
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