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Theorem 10.1

Theorem 10.1

Theorem 10.1. Suppose that (a,m) = 1 and a has order t modulo m.
Then an ≡ 1 (mod m) if and only if n is a multiple of t.

Proof. Suppose n = tq for some integer q. Then
an ≡ atq ≡ (at)q ≡ 1q ≡ 1 (mod m), since at ≡ 1 (mod m) by hypothesis.

Conversely, suppose that an ≡ 1 (mod m). Since t is the smallest positive
integer such that at ≡ 1 (mod m), then we must have n ≥ t. By the
Division Algorithm (Theorem 1.2), n = tq + r where q ≥ 1 and 0 ≤ r < t.
Thus

1 ≡ an ≡ atq+r ≡ (at)qar ≡ 1qar ≡ ar (mod m).

But t is the smallest positive integer such that at ≡ 1 (mod m), and
qr ≡ 1 (mod m) where 0 ≤ r < t, so we must have r = 0. Thus, n = tq
and n is a multiple of t, as claimed.
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Theorem 10.2

Theorem 10.2

Theorem 10.2. If (a,m) = 1 and a has order t (mod m), then t |ϕ(m).

Proof. Since (a,m) = 1 by hypothesis, then Euler’s Theorem (Theorem
9.1) implies that aϕ(m) ≡ 1 (mod m). By Theorem 10.1, we then have
that ϕ(m) is a multiple of t. That is, t |ϕ(m) as claimed.
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Theorem 10.3

Theorem 10.3

Theorem 10.3. If p and q are odd primes and q | ap − 1, then either
q | a − 1 or q = 2kp + 1 for some integer k.

Proof. Since q | ap − 1 by hypothesis, then ap ≡ 1 (mod q). So by
Theorem 10.1, the order of a modulo q is a divisor of p. Since p is prime,
the a has order either 1 or p. If the order of a is 1, then a1 ≡ 1 (mod q),
so that q | a − 1.

If in stead the order of a is p, then by Theorem 10.2,
p |ϕ(q). Since ϕ(q) = q − 1 by Note 9.A, then p | q − 1. So q − 1 = rp
for some integer r . Since p and q are both odd by hypothesis, then r must
be even. Hence, q = rp + 1 = 2kp + 1 for some integer k, as claimed.
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Theorem 10.4

Theorem 10.4

Theorem 10.4. If the order of a modulo m is t, then ar ≡ as (mod m) if
and only if r ≡ s (mod t).

Proof. First, suppose ar ≡ qs (mod m); without loss of generality,
suppose r ≥ s. Then ar−s ≡ 1 (mod m), so that by Theorem 10.1 we
have r − s is a multiple of t. That is, r ≡ s (mod t), as claimed.

Conversely, suppose r ≡ s (mod t). Then r = s + kt for some integer k.
Since the order of a mod m is t by hypothesis, then at ≡ 1 (mod m), and

ar ≡ as+kt ≡ as(at)k ≡ as(1)k ≡ as (mod m),

as claimed.
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Theorem 10.5

Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues
modulo m of g , g2, g3, . . . , gϕ(m) are a permutation of the ϕ(m) positive
integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then (g ,m) = 1 by the definition
of “primitive root.” o each power of g is relatively prime to m (this follows
by The Unique Factorization Theorem/Fundamental Theorem of
Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither
does gn and m where n > 0).

Furthermore, no two powers of g ,
g , g2, . . . , gϕ(m), have the same least residue, because if g j ≡ gk (mod m)
then by Theorem 10.4 we have j ≡ k (mod ϕ(m)) (or that j = k since
1 ≤ j , k ≤ ϕ(m) ≤ m − 1). That is, if j 6≡ k (mod ϕ(m)), where
1 ≤ j , k ≤ ϕ(m), then gk 6≡ gk (mod m). Hence, the powers of g are
distinct, as claimed.

() Elementary Number Theory March 6, 2022 7 / 16



Theorem 10.5

Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues
modulo m of g , g2, g3, . . . , gϕ(m) are a permutation of the ϕ(m) positive
integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then (g ,m) = 1 by the definition
of “primitive root.” o each power of g is relatively prime to m (this follows
by The Unique Factorization Theorem/Fundamental Theorem of
Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither
does gn and m where n > 0). Furthermore, no two powers of g ,
g , g2, . . . , gϕ(m), have the same least residue, because if g j ≡ gk (mod m)
then by Theorem 10.4 we have j ≡ k (mod ϕ(m)) (or that j = k since
1 ≤ j , k ≤ ϕ(m) ≤ m − 1). That is, if j 6≡ k (mod ϕ(m)), where
1 ≤ j , k ≤ ϕ(m), then gk 6≡ gk (mod m). Hence, the powers of g are
distinct, as claimed.

() Elementary Number Theory March 6, 2022 7 / 16



Theorem 10.5

Theorem 10.5

Theorem 10.5. If g is a primitive root of m, then the least residues
modulo m of g , g2, g3, . . . , gϕ(m) are a permutation of the ϕ(m) positive
integers less than m and relatively prime to it.

Proof. Since g is a primitive root of m, then (g ,m) = 1 by the definition
of “primitive root.” o each power of g is relatively prime to m (this follows
by The Unique Factorization Theorem/Fundamental Theorem of
Arithmetic, Theorem 2.2; if g and m share no prime factors, then neither
does gn and m where n > 0). Furthermore, no two powers of g ,
g , g2, . . . , gϕ(m), have the same least residue, because if g j ≡ gk (mod m)
then by Theorem 10.4 we have j ≡ k (mod ϕ(m)) (or that j = k since
1 ≤ j , k ≤ ϕ(m) ≤ m − 1). That is, if j 6≡ k (mod ϕ(m)), where
1 ≤ j , k ≤ ϕ(m), then gk 6≡ gk (mod m). Hence, the powers of g are
distinct, as claimed.

() Elementary Number Theory March 6, 2022 7 / 16



Lemma 10.1

Lemma 10.1

Lemma 10.1. Suppose that a has order t modulo m. Then ak has order t
modulo m if and only if (k, t) = 1.

Proof. Notice that (a,m) = 1 from the definition of “order.” First,
suppose (k, t) = 1. Denote the order of ak modulo m as s. Since a has
order t modulo m by hypothesis, then 1 ≡ (1)k ≡ (at)k ≡ (ak)t (mod m).
By Theorem 10.1, we then have that s | t. Since s is the order of ak then
(ak)s ≡ aks ≡ 1 (mod m), so by Theorem 10.1 (again), t | ks. Since
(k, t) = 1, then t | s by Corollary 1.1. But since we also have s | t, then it
must be that s = t so that the order of ak modulo m is t, as claimed.

Conversely, suppose that a and ak both have order mod m of t and that
(k, t) = r . Then 1 ≡ at ≡ (at)k/r ≡ (ak)t/r (mod m). By Theorem 10.1,
t/r is a multiple of t, so that we must have r = (k, t) = 1, as claimed.
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Corollary 10.B

Corollary 10.B

Corollary 10.B. Suppose that g is a primitive root of prime p. Then the
least residue of gk is a primitive root of p if and only if (k, p − 1) = 1.

Proof. Since g is a primitive root of p, then the order or g is ϕ(p), and
ϕ(p) = p − 1 by Note 9.A. That is, g is of order p − 1. Set t = p − 1. By
Lemma 10.1, gk has order t = p − 1 = ϕ(p) modulo p (and so gk is also
a primitive root of p) if and only if (k, t) = (k, p− 1) = 1. That is, gk is a
primitive root of p if and only if (k, p − 1) = 1, as claimed.
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Lemma 10.2

Lemma 10.2

Lemma 10.2. If f is a polynomial of degree n, then f (x) ≡ 0 (mod p)
has at most n solutions.

Proof. Let f (x) = anx
n + an−1x

n−1 + · · ·+ a1xa0 have degree n where
an 6≡ 0 (mod p). We prove the claim by induction. For the base case,
consider the equation for n = 1: a1x + a0 ≡ 0 (mod p). Since an 6≡ 0
(mod p), then because p is prime we have (a1, p) = 1, by Theorem 5.1
there is at most one solution.

For the induction hypothesis, suppose that the lemma is true for
polynomials of degree n− 1. Now consider f as an n degree polynomial. If
f (x) ≡ 0 (mod p) has not solution, then the claim holds. So we can
suppose that f (x) ≡ 0 (mod p) has a solution x = r . That is, f (r) ≡ 0
(mod p), and r is a least residue modulo p. Next, x − r is a factor of
x t − r t for t = 0, 1, . . . , n because
x t − r t = (x − r)(x t−1 + x t−2r + x t−3r2 + · · · xr t−2 + r t−1), as can be
shown by simplifying the right-hand side.
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Lemma 10.2

Lemma 10.2 (continued)

Lemma 10.2. If f is a polynomial of degree n, then f (x) ≡ 0 (mod p)
has at most n solutions.

Proof (continued). So we have

f (x) ≡ f (x)− 0 ≡ f (x)− f (r)

≡ an(x
n − rn) + an−1(x

n−1 − rn−1) + · · ·+ a2(x
2 − r2) + a1(x − r)

≡ (x − r)g(x) (mod p), (∗)
where g is a polynomial of degree n − 1. Suppose that s is also a solution
to f (x) ≡ 0 (mod p). The from (∗) f (s) ≡ (s − r)g(s) ≡ 0 (mod p).
Since p is prime, then by Euclid’s Lemma (Lemma 2.5) either s ≡ r (mod
p) or g(s) ≡ 0 (mod p). Now g is degree n − 1, so by the induction
hypothesis, g(s) ≡ 0 (mod p) has at most n − 1 solutions. Also s ≡ r
(mod p) has exactly one solution, so we have for degree n polynomial f
that the equation f (x) ≡ 0 (mod p) has at most n solutions, as needed.
So by induction the result holds for all degrees n ∈ N, as claimed.
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Lemma 10.3

Lemma 10.3

Lemma 10.3. If d | p − 1, then xd ≡ 1 (mod p) has exactly d solutions.

Proof. By Fermat’s (Little) Theorem (Theorem 6.1), the congruence
xp−1 ≡ 1 (mod p) has exactly p − 1 solutions, namely 1, 2, . . . , p − 1.
Moreover,

xp−1 − 1 = (xd − 1)(xp−1−d + xp−1−2d + · · ·+ xd + 1) = (xd − 1)h(x).

By Lemma 10.2, h(x) ≡ 0 (mod p) has at most p − 1− d solutions.
Hence xd ≡ 1 (mod p) has at least (p − 1)− (p − 1− d) = d solutions.
By Lemma 10.2 again, but applied to xd ≡ 1 (mod p), we see that this
equation has at most d solutions, and hence has exactly d solutions, as
claimed.
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Theorem 10.6

Theorem 10.6

Theorem 10.6. Every prime p has ϕ(p − 1) primitive roots.

Proof. By Theorem 10.2, we know that each of the integers
1, 2, . . . , p − 1 has an order that is a divisor of p − 1. For each divisor t of
p − 1, let ψ(t) denote the number of these integers that have order t.
Notice that this gives ψ(p − 1) as the number of these integers of order
p − 1, and hence the number of primitive roots of p. Then we have∑

t | p−1 ψ(t) = p − 1. By Theorem 9.4, we have∑
t | p−1 ψ(t) = p − 1 =

∑
t | p−1 ϕ(t).

If we can show that ψ(t) ≤ ϕ(t) for
each t, then the equality of the sums will imply equality of ψ(t) and ϕ(t)
for each t; in particular, we will have ψ(p − 1) = ϕ(p − 1) so that the
number of primitive roots will be ϕ(p − 1) as claimed.
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Theorem 10.6

Theorem 10.6 (continued)

Theorem 10.6. Every prime p has ϕ(p − 1) primitive roots.

Proof (continued). Fix some t. If ψ(t) = 0 then ψ(t) ≤ ϕ(t) and out
claim is demonstrated. If ψ(t) 6= t, then there is some integer in
{1, 2, . . . , p − 1} with order t; denote it as a. The congruence x t ≡ 1
(mod p) has exactly t solutions by Lemma 10.3. Also, for
x ∈ {a, a2, a3, . . . , at} we have x t ≡ 1 (mod p). By Theorem 10.4, no two
of a, a2, a3, . . . , at have the same least residue (mod p), so (the least
residues of) these give all solutions of x t ≡ 1 (mod p) (and hence the list
includes all elements of order t, and maybe some other elements). By
Lemma 10.1, the numbers in {a, a2, a3, . . . , at} that are order t mod p (of
which there are, by definition, ψ(t) such numbers) are those powers ak

with (k, t) = 1. By the definition of Euler’s function, the number of such
k is ϕ(t). Therefore, ψ(t) = ϕ(t) for all t | p − 1, and the claim now
follows as explained above.
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Theorem 10.B. Part of Wilson’s Theorem

Theorem 10.B

Theorem 10.B. If p is an odd prime then (p − 1)! ≡ −1 (mod p).

Proof. By Theorem 10.6, there is some primitive root g of prime p. By
Theorem 10.5, the least residues mod p of g , g2, g3, . . . , gp−1 (notice
ϕ(p) = p − 1) are a permutation of 1, 2, . . . , p − 1. Multiplying, we have

1 · 2 · · · · · (p − 1) ≡ g · g2 · g3 · · · · · gp−1

or, since
∑p−1

i=1 = p(p − 1)/2,

(p − 1)! ≡ gp(p−1)/2 ≡ (gp)p−1 (mod p).
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Theorem 10.B. Part of Wilson’s Theorem

Theorem 10.B (continued)

Theorem 10.B. If p is an odd prime then (p − 1)! ≡ −1 (mod p).

Proof (continued). . . .

(p − 1)! ≡ gp(p−1)/2 ≡ (gp)p−1 (mod p).

But g (p−1)/2 satisfies x2 ≡ 1 (mod p) (since
(g (p−1)/2)2 ≡ gp−1 ≡ gϕ(p) ≡ 1 (mod p) by Euler’s Theorem, Theorem
9.1), so g (p−1)/2 ≡ 1 or −1 (mod p) (notice that these valid values for x
in x2 ≡ 1 (mod p) and by Lemma 10.2 there are at most 2 such values of
x). But we cannot have g (p−1)/2 ≡ 1 (mod p), since this would mean that
the order of g is at most (p − 1)/2, and we hypothesized that g is a
primitive root and so is order ϕ(p) = p − 1. Therefore, g (p−1)/2 ≡ −1
(mod p), and hence (p − 1)! ≡ −1 (mod p), as claimed.
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