Elementary Number Theory

Section 11. Quadratic Congruences—Proofs of Theorems

Theorem 11.1. Suppose that p is an odd prime. If $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has exactly two (least residue) solutions or no solutions.

Proof. Notice that $a \not\equiv 0 \pmod{p}$, since $p \nmid a$. Suppose that the congruence has a solution, say r. Then p - r is a solution too, since $(p - r)^2 \equiv p^2 - 2pr + r^2 \equiv r^2 \equiv a \pmod{p}$. If $r = p - r \pmod{p}$, then $2r \equiv 0 \pmod{p}$; but (2, p) = 1 so by Theorem 4.4 we have $r \equiv 0 \pmod{p}$, contradicting the fact that $a \not\equiv 0 \pmod{p}$. So r and p - r are different solutions.

Theorem 11.1. Suppose that *p* is an odd prime. If $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has exactly two (least residue) solutions or no solutions.

Proof. Notice that $a \not\equiv 0 \pmod{p}$, since $p \nmid a$. Suppose that the congruence has a solution, say r. Then p - r is a solution too, since $(p-r)^2 \equiv p^2 - 2pr + r^2 \equiv r^2 \equiv a \pmod{p}$. If $r = p - r \pmod{p}$, then $2r \equiv 0 \pmod{p}$; but (2, p) = 1 so by Theorem 4.4 we have $r \equiv 0 \pmod{p}$ p), contradicting the fact that $a \not\equiv 0 \pmod{p}$. So r and p - r are different solutions. Let s be any (least residue) solution. Then $r^2 \equiv s^2 \pmod{p}$, whence $p \mid (r-s)(r+s)$. Thus, by Euclid's Lemma (Lemma 2.5), $p \mid (r-s)$ or p|(r+s). If p|(r-s) then $r \equiv s \pmod{p}$. If p|(r+s) then $s \equiv p-r$ (mod p). Since s, r, and p - r are all least residues, we have either s = ror s = p - r, and these are the only solutions. That is, there are either no solutions or exactly two (least residue) solutions, as claimed.

Theorem 11.1. Suppose that *p* is an odd prime. If $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has exactly two (least residue) solutions or no solutions.

Proof. Notice that $a \not\equiv 0 \pmod{p}$, since $p \nmid a$. Suppose that the congruence has a solution, say r. Then p - r is a solution too, since $(p-r)^2 \equiv p^2 - 2pr + r^2 \equiv r^2 \equiv a \pmod{p}$. If $r = p - r \pmod{p}$, then $2r \equiv 0 \pmod{p}$; but (2, p) = 1 so by Theorem 4.4 we have $r \equiv 0 \pmod{p}$ p), contradicting the fact that $a \not\equiv 0 \pmod{p}$. So r and p - r are different solutions. Let s be any (least residue) solution. Then $r^2 \equiv s^2 \pmod{p}$, whence $p \mid (r-s)(r+s)$. Thus, by Euclid's Lemma (Lemma 2.5), $p \mid (r-s)$ or p|(r+s). If p|(r-s) then $r \equiv s \pmod{p}$. If p|(r+s) then $s \equiv p-r$ (mod p). Since s, r, and p - r are all least residues, we have either s = ror s = p - r, and these are the only solutions. That is, there are either no solutions or exactly two (least residue) solutions, as claimed.

Theorem 11.2. Euler's Criterion.

If p is an odd prime and $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has a solution or no solution depending on whether $a^{(p-1)/2} \equiv 1 \pmod{p}$, or $a^{(p-1)/2} \equiv -1 \pmod{p}$, respectively.

Proof. Let g be a primitive root of the odd prime p (there are $\varphi(p-1)$) primitive roots of p, by Theorem 10.6). Since g is a primitive root of p, then by the definition of "primitive root" it has order $\varphi(p) = p - 1$. Then $a \equiv g^k \pmod{p}$ for some k (since $a \not\equiv 0 \pmod{p}$).

Theorem 11.2. Euler's Criterion.

If p is an odd prime and $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has a solution or no solution depending on whether $a^{(p-1)/2} \equiv 1 \pmod{p}$, or $a^{(p-1)/2} \equiv -1 \pmod{p}$, respectively.

Proof. Let g be a primitive root of the odd prime p (there are $\varphi(p-1)$) primitive roots of p, by Theorem 10.6). Since g is a primitive root of p, then by the definition of "primitive root" it has order $\varphi(p) = p - 1$. Then $a \equiv g^k \pmod{p}$ for some k (since $a \not\equiv 0 \pmod{p}$).

If k is even, then $x^2 \equiv a \pmod{p}$ has a solution, namely the least residue of $g^{k/2}$. By Fermat's (Little) Theorem, Theorem 6.1, $g^{p-1} \equiv 1 \pmod{p}$, so we have

$$g^{(p-1)/2} \equiv (g^k)^{(p-1)/2} \equiv (g^{k/2})^{(p-1)} \equiv (g^{(p-1)})^{k/2} \equiv 1 \pmod{p}.$$

So $a^{(p-1)/2} \equiv 1 \pmod{p}$ and $x^2 \equiv a \pmod{p}$ has a solution (namely $x = g^{k/2}$), as claimed.

Theorem 11.2. Euler's Criterion.

If p is an odd prime and $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has a solution or no solution depending on whether $a^{(p-1)/2} \equiv 1 \pmod{p}$, or $a^{(p-1)/2} \equiv -1 \pmod{p}$, respectively.

Proof. Let g be a primitive root of the odd prime p (there are $\varphi(p-1)$) primitive roots of p, by Theorem 10.6). Since g is a primitive root of p, then by the definition of "primitive root" it has order $\varphi(p) = p - 1$. Then $a \equiv g^k \pmod{p}$ for some k (since $a \not\equiv 0 \pmod{p}$).

If k is even, then $x^2 \equiv a \pmod{p}$ has a solution, namely the least residue of $g^{k/2}$. By Fermat's (Little) Theorem, Theorem 6.1, $g^{p-1} \equiv 1 \pmod{p}$, so we have

$$a^{(p-1)/2} \equiv (g^k)^{(p-1)/2} \equiv (g^{k/2})^{(p-1)} \equiv (g^{(p-1)})^{k/2} \equiv 1 \pmod{p}.$$

So $a^{(p-1)/2} \equiv 1 \pmod{p}$ and $x^2 \equiv a \pmod{p}$ has a solution (namely $x = g^{k/2}$), as claimed.

Theorem 11.2. Euler's Criterion (continued)

Theorem 11.2. Euler's Criterion.

If p is an odd prime and $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has a solution or no solution depending on whether $a^{(p-1)/2} \equiv 1 \pmod{p}$, or $a^{(p-1)/2} \equiv -1 \pmod{p}$, respectively.

Proof (continued). If k is odd, then (since $a \equiv g^k \pmod{p}$). Now $x^2 \equiv 1 \pmod{p}$ has two solutions (by Theorem 11.1), namely 1 and p-1. We know that $g^{(p-1)} \equiv 1 \pmod{p}$, so $g^{(p-1)/2}$ must have least residue 1 or p-1; it can't be 1, or else the order of g is less than p-1 and g is not a primitive root of p. So it must be that $g^{(p-1)/2} \equiv p-1 \equiv -1 \pmod{p}$. Therefore $a^{(p-1)/2} \equiv (g^k)^{(p-1)/2} \equiv (g^{(p-1)/2})^k \equiv (-1)^k \equiv -1 \pmod{p}$. Now if $x^2 \equiv a \pmod{p}$ has a solution, say r, then we would have $1 \equiv r^{p-1} \equiv (r^2)^{(p-1)/2} \equiv a^{(p-1)/2} \equiv -1 \pmod{p}$,

a contradiction. So there is no solution to $x^2 \equiv a \pmod{p}$. That is, $a^{(p-1)/2} \equiv -1 \pmod{p}$ and $x^2 \equiv a \pmod{p}$ has no solution, as claimed. Since this covers both parities of k, the result holds.

Theorem 11.2. Euler's Criterion (continued)

Theorem 11.2. Euler's Criterion.

If p is an odd prime and $p \nmid a$, then $x^2 \equiv a \pmod{p}$ has a solution or no solution depending on whether $a^{(p-1)/2} \equiv 1 \pmod{p}$, or $a^{(p-1)/2} \equiv -1 \pmod{p}$, respectively.

Proof (continued). If k is odd, then (since $a \equiv g^k \pmod{p}$). Now $x^2 \equiv 1 \pmod{p}$ has two solutions (by Theorem 11.1), namely 1 and p-1. We know that $g^{(p-1)} \equiv 1 \pmod{p}$, so $g^{(p-1)/2}$ must have least residue 1 or p-1; it can't be 1, or else the order of g is less than p-1 and g is not a primitive root of p. So it must be that $g^{(p-1)/2} \equiv p-1 \equiv -1 \pmod{p}$. Therefore $a^{(p-1)/2} \equiv (g^k)^{(p-1)/2} \equiv (g^{(p-1)/2})^k \equiv (-1)^k \equiv -1 \pmod{p}$. Now if $x^2 \equiv a \pmod{p}$ has a solution, say r, then we would have

$$1 \equiv r^{p-1} \equiv (r^2)^{(p-1)/2} \equiv a^{(p-1)/2} \equiv -1 \pmod{p},$$

a contradiction. So there is no solution to $x^2 \equiv a \pmod{p}$. That is, $a^{(p-1)/2} \equiv -1 \pmod{p}$ and $x^2 \equiv a \pmod{p}$ has no solution, as claimed. Since this covers both parities of k, the result holds.

Theorem 11.3. The Legendre symbol has the properties

Proof. (A) Suppose (a/p) = 1, so that $x^2 \equiv a \pmod{p}$ has a solution. Since $a \equiv b \pmod{p}$, then $x^2 \equiv b \pmod{p}$ also has a solution; namely, the same solution as $x^2 \equiv a \pmod{p}$ has. Hence (b/p) = 1, as claimed.

Theorem 11.3. The Legendre symbol has the properties

Proof. (A) Suppose (a/p) = 1, so that $x^2 \equiv a \pmod{p}$ has a solution. Since $a \equiv b \pmod{p}$, then $x^2 \equiv b \pmod{p}$ also has a solution; namely, the same solution as $x^2 \equiv a \pmod{p}$ has. Hence (b/p) = 1, as claimed.

Suppose (a/p) = -1, so that $x^2 \equiv a \pmod{p}$ does not have a solution. If (b/p) = 1 then $x^2 \equiv b \pmod{p}$ has a solution and, as just shown, this would also be a solution to $x^2 \equiv a \pmod{p}$ since $a \equiv b \pmod{p}$, a contradiction. So it must be that $x^2 \equiv b \pmod{p}$ does not have a solution and so (b/p) = -1, as claimed.

Theorem 11.3. The Legendre symbol has the properties

Proof. (A) Suppose (a/p) = 1, so that $x^2 \equiv a \pmod{p}$ has a solution. Since $a \equiv b \pmod{p}$, then $x^2 \equiv b \pmod{p}$ also has a solution; namely, the same solution as $x^2 \equiv a \pmod{p}$ has. Hence (b/p) = 1, as claimed.

Suppose (a/p) = -1, so that $x^2 \equiv a \pmod{p}$ does not have a solution. If (b/p) = 1 then $x^2 \equiv b \pmod{p}$ has a solution and, as just shown, this would also be a solution to $x^2 \equiv a \pmod{p}$ since $a \equiv b \pmod{p}$, a contradiction. So it must be that $x^2 \equiv b \pmod{p}$ does not have a solution and so (b/p) = -1, as claimed.

Theorem 11.3 (continued)

Theorem 11.3. The Legendre symbol has the properties (B) if $p \nmid a$, then $(a^2/p) = 1$, and (C) if $p \nmid a$ and $p \nmid b$, then (ab/p) = (a/p)(b/p).

Proof (continued). (B) The least residue of $a \pmod{p}$ is a solution to the equation $x^2 \equiv a^2 \pmod{p}$. Hence $(a^2/p) = 1$, as claimed.

Theorem 11.3 (continued)

Theorem 11.3. The Legendre symbol has the properties (B) if $p \nmid a$, then $(a^2/p) = 1$, and (C) if $p \nmid a$ and $p \nmid b$, then (ab/p) = (a/p)(b/p).

Proof (continued). (B) The least residue of $a \pmod{p}$ is a solution to the equation $x^2 \equiv a^2 \pmod{p}$. Hence $(a^2/p) = 1$, as claimed.

(C) Notice that the Legendre symbol is only defined for p and odd prime, so we are assuming that property of p. By Euler's Criterion (Theorem 11.2) we have that (a/p) = 1 if $a^{(p-1)/2} \equiv 1 \pmod{p}$, and (a/p) = -1 if $a^{(p-1)/2} \equiv -1 \pmod{p}$. So $(a/p) \equiv a^{(p-1)/2} \pmod{p}$. Since $(xy)^n \equiv x^n y^n \pmod{p}$ for any x and y, then we have

$$(ab/p) \equiv (ab)^{(p-1)/2} \equiv a^{(p-1)/2} b^{(p-1)/2} \equiv (a/p)(b/p) \pmod{p}.$$

Since the three Legendre symbols in this equivalence are either 1 or -1, the only way the two sides of this congruence can be the same is if the left-had side equals the right-hand side, as claimed.

Theorem 11.3 (continued)

Theorem 11.3. The Legendre symbol has the properties (B) if $p \nmid a$, then $(a^2/p) = 1$, and (C) if $p \nmid a$ and $p \nmid b$, then (ab/p) = (a/p)(b/p).

Proof (continued). (B) The least residue of $a \pmod{p}$ is a solution to the equation $x^2 \equiv a^2 \pmod{p}$. Hence $(a^2/p) = 1$, as claimed.

(C) Notice that the Legendre symbol is only defined for p and odd prime, so we are assuming that property of p. By Euler's Criterion (Theorem 11.2) we have that (a/p) = 1 if $a^{(p-1)/2} \equiv 1 \pmod{p}$, and (a/p) = -1 if $a^{(p-1)/2} \equiv -1 \pmod{p}$. So $(a/p) \equiv a^{(p-1)/2} \pmod{p}$. Since $(xy)^n \equiv x^n y^n \pmod{p}$ for any x and y, then we have $(ab/p) \equiv (ab)^{(p-1)/2} \equiv a^{(p-1)/2} b^{(p-1)/2} \equiv (a/p)(b/p) \pmod{p}$.

Since the three Legendre symbols in this equivalence are either 1 or -1, the only way the two sides of this congruence can be the same is if the left-had side equals the right-hand side, as claimed.

Theorem 11.5. If *p* is an odd prime, then

(-1/p) = 1 if $p \equiv 1 \pmod{4}$, and (-1/p) = -1 if $p \equiv 3 \pmod{4}$.

Proof. As observed in the proof of Theorem 11.3, Euler's Criterion (Theorem 11.2) gives $(a/p) \equiv a^{(p-1)/2} \pmod{p}$. So we have

$$(-1/p) \equiv (-1)^{(p-1)/2} \pmod{p}.$$

Since (p-1)/2 is even for $p \equiv 1 \pmod{4}$, then in this case we have (-1/p) = 1, as claimed. Since (p-1)/2 is odd if $p \equiv 3 \pmod{4}$, then in this case we have (-1/p) = -1, as claimed.

Theorem 11.5. If *p* is an odd prime, then

$$(-1/p) = 1$$
 if $p \equiv 1 \pmod{4}$, and $(-1/p) = -1$ if $p \equiv 3 \pmod{4}$.

Proof. As observed in the proof of Theorem 11.3, Euler's Criterion (Theorem 11.2) gives $(a/p) \equiv a^{(p-1)/2} \pmod{p}$. So we have

$$(-1/p) \equiv (-1)^{(p-1)/2} \pmod{p}.$$

Since (p-1)/2 is even for $p \equiv 1 \pmod{4}$, then in this case we have (-1/p) = 1, as claimed. Since (p-1)/2 is odd if $p \equiv 3 \pmod{4}$, then in this case we have (-1/p) = -1, as claimed.