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Section 12. Quadratic Reciprocity—Proofs of Theorems
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Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss's Lemma (continued 1)

Proof (continued). ASSUME that two of r1,r, ..., rc are equal. Then
for some ky # ky with 0 < ky, ko < (p—1)/2, we have kya = kpa (mod p).
Since (a, p) = 1 then by Theorem 4.4 we have k; = ko (mod p) and hence
k1 = ko, a CONTRADICTION. So ry, ra, . .., rxy must be distinct. Similarly,
the s1,%,...,s; must be distinct. Now consider the set of number
{rn,r,....;n,p—51,p—52,...,p— Sg}. Each integer n in the set satisfies
1 <n<(p—1)/2and there are up to k + g = (p —1)/2 distinct elements
in the set. We now show that the numbers in the set are actually distinct.

ASSUME that forsome 1 << kand1<j<gwehaver,=p—s5;
(mod p). Then rj+s; = p =0 (mod p). Now r; = ta (mod p) and

sj = ua (mod p) for some t and u positive integers less than or equal to
(p—1)/2. Then ri+s; = (t+ u)a=0 (mod p) and, since (a, p) =1 then
by Theorem 4.4 we have t + u = 0 (mod p). But this is a
CONTRADICTION since 2 < t+ u < p— 1. So the assumption that two
of the elements in set {ri,r,...,rn,p—5s1,p—5,...,p— s} are equal is

false, and hence the k + g = (p — 1)/2 elements of this set are distinct.
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Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss’s Lemma.
Suppose that p is an odd prime, p { a, and there are among the least

residues (mod p) of
p—1
2 vy | ——
a, 2a, 3a, ,< > )a

exactly g that are greater than (p — 1)/2. Then x2 = a (mod p) has a
solution or no solution according as g is even or odd. That is,

(a/p) = (-1)%.

Proof. Let ry,r,..., rc denote the least residues (mod p) of
a,2a,...((p—1)/2))a that are less than or equal to (p — 1)/2, and let
S1,52,...,5g denote those that are greater than (p — 1)/2 (so

k+ g = (p—1)/2). By Euler’s Criterion (Theorem 11.2), the claim will
follow if we show that a(P~1)/2 = (—1)8 (mod p).
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Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss's Lemma (continued 2)

Proof (continued). That is, the set

{rn,r,....;n,p—5s1,p—%,...,p— Sg} contains exactly the elements
1,2,...,(p—1)/2. So
nr-n(p—s)p—s)(p—s)=1-2-----((p—1)/2).
Because p — s; = —s; (mod p) for all j, then we have
g p—1
rr - rsisy - sg(—1)% = — I (mod p). (%)
Next, since ri, ra, ..., rk,s1,2,...,5g are (by construction) the least

residues (mod p) of a,2a,...,((p—1)/2)a, then the product
rr---rgs1s - -+ Sg is congruent modulo p to

a(2a)(3a) -~ ((p — 1)/2)a = alP~1/2 (PT—l)l So by (%) we have

a(p—l)/2(_1)g (’DT_1>| = <pT_1>' (mod p).
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Theorem 12.1. Gauss's Lemma (continued 3)

Theorem 12.1. Gauss’s Lemma.

Suppose that p is an odd prime, p { a, and there are among the least
-1

residues (mod p) of a,2a,3a,..., (PT> a exactly g that are greater

than (p — 1)/2. Then x?> = a (mod p) has a solution or no solution

according as g is even or odd. That is, (a/p) = (—1)&.

Proof (continued). ...

APD/2(_1)8 (”T_1>! _ (%)! (mod p).

Since ((p — 1)/2)! is relatively prime to p, then by Theorem 4.4 we have
alP~1)/2(~1)8 =1 (mod p), or (multiplying both sides by (—1)8&)

alP=1)/2 = (—1)& (mod p). But we know that alP~1/2 = (a/p) (mod p)
by Euler’'s Criterion (Theorem 4.11), so (a/p) = (—1)& (mod p). Since p
is an odd prime, this implies (a/p) = (—1)#& as claimed. O

Theorem 12.2

Theorem 12.2

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof. We will use Thereom 12.1, and so we consider the multiples of 2
of 2,4,...,p— 1. Let 2a be the first even integer greater than (p — 1)/2.
So between 2 and (p — 1)/2 inclusive) there are a — 1 even integers,
namely 2,4,6,...,2a — 2. Now the total number of even integers between
2and p—1is (p—1)/2, so the number of even numbers greater than
(p—1)/2 and less than or equal top—1lis g =(p—1)/2—(a—1). But
since 2a is the smallest integer greater than (p — 1)/2, then a is the
smallest integer greater than (p — 1)/4 and hence a — 1 is the smallest
integer greater than (p —5)/4. This implies that —(a — 1) is the /argest
integer less than —(p —5)/4, and so g = (p—1)/2 — (a— 1) is the largest
integer less than (p + 3)/4.
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Theorem 12.2 Theorem 12.2

Theorem 12.2 (continued 1)

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof (continued). Consider the case when p =1 (mod 8). Then

p =8k + 1 for some k, and (p+ 3)/4 = (8k +4)/4 = 2k + 1. Since g is
the largest integer less than (p + 3)/4, then g = 2k and

(—1)8 = (—1)%¢ = 1. By Theorem 12.1, (2/p) = 1 if p=1 (mod 8).

Consider the case when p = 3 (mod 8). Then p = 8k + 3 for some k, and
(p+3)/4=(8k+6)/4=2k+3/2. Since g is the largest integer less
than (p + 3)/4, then g =2k + 1 and (—1)& = (-1)?k+1 = —1. By
Theorem 12.1, (2/p) = —1 if p =3 (mod 8).
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Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof (continued). Consider the case when p =5 (mod 8). Then

p = 8k + 4 for some k, and (p+ 3)/4 = (8k +8)/4 = 2k + 2. Since g is
the largest integer less than (p + 3)/4, then g = 2k + 1 and

(—1)8 = (—~1)?¢t1 = —1. By Theorem 12.1, (2/p) = —1 if p =5 (mod
8).

Consider the case when p =7 (mod 8). Then p = 8k + 7 for some k, and
(p+3)/4=(8k+10)/4 =2k +5/2. Since g is the largest integer less

than (p+3)/4, then g = 2k +2 and (—1)& = (—1)?*2 = 1. By Theorem
12.1, (2/p) =1 if p=7 (mod 8). O
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Theorem 12.3

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root
of 4p 4 1.

Proof. Let g = 4p + 1. Since q is prime by hypothesis, then
©(q) = q—1=4p. By Theorem 10.2, the order of 2 divides ¢(q) so that
2 has order 1, 2, 4, p, 2p, or 4p (mod q).

Now by Euler's Criterion (Theorem 11.2) 22 = 2(9-1)/2 = (2/q) (mod q).
But p is odd, so 4p =4 (mod 8), and g =4p+ 1 =5 (mod 8) so that by
Theorem 12.2 we have that (2/q) = —1 and hence 22? # 1 (mod q).
That is, the order of 2 is not 2p. Next, the order of 2 (mod ¢q) cannot be
a divisor of 2p or else 22?7 = 1 (mod q) (by Theorem 10.1), which we just
saw is not the case. Finally, the order of 2 (mod q) cannot be 4, since

2% =1 (mod q) implies that prime g is 3 or 5, neither of which can be the
case since g = 4p + 1 where p is prime. So the only possible value for the
order of 2 is g — 1 = 4p and so (by definition of “primitive root") 2 is a
primitive root of g = 4p + 1, as claimed. O
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Lemma 12.1 (continued 1)

Proof (continued). The x coordinates of the lattice points are
1,2,...,(p—1)/2 and the y coordinates are 1,2,... (g — 1)/2. There are
(g —1)/2 lattice points with fixed x coordinate k where 1 < k < (p—1)/2.
Consider the line segment {(x,y) | x = k,0 <y < (g —1)/2}. This
segment intersects the line y = gx/p at the point (k, gk/p), and the part
of the line segment below line y = gx/p is
{(x,y) | x = k,0 < y < min{(q — 1)/2. qk/p}}. Since 1 < k < (p—1)/2,
then gk/p < q(p —1)/(2p) < q/2 and so [gk/p] < (g —1)/2. So the
number of lattice points with x coordinate k is [gk/p]. Since k ranges
from 1 to (p — 1)/2, the total number of lattice points below the line is
(p—1)/2
S(p,q) = Z [—q} Interchanging p and ¢, a similar argument shows
k=1

that the points to the left of the line is S(q, p) = Z 7

(g-1)/2 |: kp:|
k=1
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Lemma 12.1

Lemma 12.1. If p and g are different odd primes, then

gl 2 2

=1 LP k=1
Here, [-] denotes the greatest integer function.

g-1

Proof. =
(b-1)/2 ¢

Let S(p,q) = Z [_q] Then the |

1 LP |

“1)(q-1) |

claim is S(p, q) + S(q,p) = %‘fq) N

We give a geometric proof. The figure here
has (p — 1)(g — 1)/4 points with integer
coordinates. Such points lie below the line .+« . . .. .
y = px/q if their x coordinate is greater / .
than their y-coordinate. A
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Lemma 12.1 (continued 2)

Lemma 12.1. If p and g are different odd primes, then

e
p — q 2 2

(p—1)/2

k=1
Here, [-] denotes the greatest integer function.

Proof (continued). ASSUME (a, b) is a lattice point on the line

y = gx/p. The b= qa/p or bp = ga; hence p|qga and since (p,q) =1
then p|a by Euclid's Lemma (Lemma 2.5); that is, a is a multiple of p.
But 1 < a < (p—1)/2 since this is a lattice point, and there are no
multiples of p satisfying these inequalities, a CONTRADICTION. So the
assumption that there are lattice points on the line y = gx/p is false, and
the total number of points in the lattice is the sum of the number of those
below the line y = gx/p plus the number of those above the line. Since
the lattice contains (p — 1)(g — 1)/4, the claim follows. O
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Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and g are odd primes, then (p/q)(q/p) = (—1)(P~1(a-1)/4,

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider
least residues modulo p of multiples of g, gq,2q,3q,...((p—1)/2)q.
Denote these multiples of g less than or equal to (p—1)/2 as 1, ra, ..., rk
and denote those greater than (p —1)/2 as s1,%,...,2,. The

k+ g = (p—1)/2 and by Gauss's Lemma we have that the Legendre
symbol satisfies (q/p) = (—1)&. Let R and S denote the sums
R=n+n+---+randS=s+5 + -+ 5. It was shown in the
proof of Gauss's Lemma the set {ri,r,...,r,p—s1,p—S,...,p— Sg}
contains exactly the elements 1,2,...,(p — 1)/2. Summing these two
representations of the same numbers we get:

k g
er+Z(p—sj):R+pg—S...
j=1 j=1

Theorem 12.4. The Quadratic Reciprocity Theorem

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)
Proof (continued).
(p-1)/2

_((p—=1)/2)((p—1)/24+1) _
Z J= 2 - 8 g

j=1

sothat R+ gp—S=(p>—1)/8or R=S —gp+ (p>—1)/8. The least
residue modulo p of jg (where j € {1,2,...,(p — 1)/2}) is the remainder
when we divide jg by p. We can use the greatest integer function to find
the quotient as [jg/p], so that jqg = [jq/p]p + tj where t; denotes the least
residue (mod p) of jq. So Z}i}l)p tj is the sum of the least residues of
q,2q,...,((p—1)/2)q, and hence

(p—1)/2
Y ti=n+ntontsitot+o+s=R+S.
j=1
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Theorem 12.4. The Quadratic Reciprocity Theorem Theorem 12.4. The Quadratic Reciprocity Theorem

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of jq = [jg/p]p + t; gives

(p—1)/2 (p—1)/2 (p—1)/2
> da= > lia/ple+ >
=1 =1 =1
(p—1)/2 (p—1)/2

orqg Y Jjg=p > Llia/pl+R+S,
=1 =1

or g(p? —1)/8 = pS(p,q) + R+ S, where S(p, q) is defined in Lemma
12.1. From above, R =S — gp + (p> — 1)/8, we now have

q(p> —1)/8 = pS(p,q) +25 —gp+ (p* —1)/8 or
(g—1)(p*—1)/8=p(S(p.q) — &) +25. (%)

Since Z}i}l)pj = (p? —1)/8, then (p?> — 1)/8 is an integer and so the
left-hand side of (x) is even.
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Theorem 12.4. Quadratic Reciprocity Theorem (cont. 3)

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and g are odd primes, then (p/q)(q/p) = (—1)(P~1(a-1)/4,

Proof (continued). So the right-hand side of (x), p(S(p,q) —g) +2S, is
even and hence S(p, q) — g is even. Hence (—1)°(P9)-8 =1 or
(—1)%(P9) = (—1)&. Since the Legendre symbol satisfies (—1)& = (q/p)
by Gauss's Lemma (Theorem 12.1, with a = g), then

(—1)°(P.9) = (—~1)8 = (g/p). Interchanging p and g, we also get that
(—1)%(@P) = (p/q). Multiplying these last two equations gives
(—=1)5(Pa9)+3(a:P) = (p/q)(q/p) or, by Lemma 12.1,

(—1)P= D@D/ = (p/q)(q/p),

as claimed. O
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