Elementary Number Theory

Section 12. Quadratic Reciprocity—Proofs of Theorems

- 1 Theorem 12.1. Gauss's Lemma
 - 2 Theorem 12.2
- 3 Theorem 12.3
- 4 Lemma 12.1

5 Theorem 12.4. The Quadratic Reciprocity Theorem

Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss's Lemma.

Suppose that p is an odd prime, $p \nmid a$, and there are among the least residues (mod p) of

$$a, 2a, 3a, \ldots, \left(rac{p-1}{2}
ight)a$$

exactly g that are greater than (p-1)/2. Then $x^2 \equiv a \pmod{p}$ has a solution or no solution according as g is even or odd. That is, $(a/p) = (-1)^g$.

Proof. Let r_1, r_2, \ldots, r_k denote the least residues (mod p) of $a, 2a, \ldots, ((p-1)/2)$) a that are less than or equal to (p-1)/2, and let s_1, s_2, \ldots, s_g denote those that are greater than (p-1)/2 (so k + g = (p-1)/2). By Euler's Criterion (Theorem 11.2), the claim will follow if we show that $a^{(p-1)/2} \equiv (-1)^g \pmod{p}$.

Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss's Lemma.

Suppose that p is an odd prime, $p \nmid a$, and there are among the least residues (mod p) of

$$a, 2a, 3a, \ldots, \left(rac{p-1}{2}
ight)a$$

exactly g that are greater than (p-1)/2. Then $x^2 \equiv a \pmod{p}$ has a solution or no solution according as g is even or odd. That is, $(a/p) = (-1)^g$.

Proof. Let r_1, r_2, \ldots, r_k denote the least residues (mod p) of $a, 2a, \ldots, ((p-1)/2)$) a that are less than or equal to (p-1)/2, and let s_1, s_2, \ldots, s_g denote those that are greater than (p-1)/2 (so k + g = (p-1)/2). By Euler's Criterion (Theorem 11.2), the claim will follow if we show that $a^{(p-1)/2} \equiv (-1)^g \pmod{p}$.

Theorem 12.1. Gauss's Lemma (continued 1)

Proof (continued). ASSUME that two of r_1, r_2, \ldots, r_k are equal. Then for some $k_1 \neq k_2$ with $0 \leq k_1, k_2 \leq (p-1)/2$, we have $k_1 a \equiv k_2 a \pmod{p}$. Since (a, p) = 1 then by Theorem 4.4 we have $k_1 \equiv k_2 \pmod{p}$ and hence $k_1 = k_2$, a CONTRADICTION. So r_1, r_2, \ldots, r_k must be distinct. Similarly, the s_1, s_2, \ldots, s_g must be distinct. Now consider the set of number $\{r_1, r_2, \ldots, r_k, p - s_1, p - s_2, \ldots, p - s_g\}$. Each integer *n* in the set satisfies $1 \le n \le (p-1)/2$ and there are up to k+g = (p-1)/2 distinct elements in the set. We now show that the numbers in the set are actually distinct. ASSUME that for some $1 \le i \le k$ and $1 \le j \le g$ we have $r_i \equiv p - s_i$ (mod *p*). Then $r_i + s_i \equiv p \equiv 0 \pmod{p}$. Now $r_i = ta \pmod{p}$ and $s_i = ua \pmod{p}$ for some t and u positive integers less than or equal to (p-1)/2. Then $r_i + s_i \equiv (t+u)a \equiv 0 \pmod{p}$ and, since (a, p) = 1 then by Theorem 4.4 we have $t + u \equiv 0 \pmod{p}$. But this is a CONTRADICTION since $2 \le t + u \le p - 1$. So the assumption that two of the elements in set $\{r_1, r_2, \ldots, r_k, p - s_1, p - s_2, \ldots, p - s_g\}$ are equal is false, and hence the k + g = (p - 1)/2 elements of this set are distinct.

Theorem 12.1. Gauss's Lemma (continued 1)

Proof (continued). ASSUME that two of r_1, r_2, \ldots, r_k are equal. Then for some $k_1 \neq k_2$ with $0 \le k_1, k_2 \le (p-1)/2$, we have $k_1 a \equiv k_2 a \pmod{p}$. Since (a, p) = 1 then by Theorem 4.4 we have $k_1 \equiv k_2 \pmod{p}$ and hence $k_1 = k_2$, a CONTRADICTION. So r_1, r_2, \ldots, r_k must be distinct. Similarly, the s_1, s_2, \ldots, s_g must be distinct. Now consider the set of number $\{r_1, r_2, \ldots, r_k, p - s_1, p - s_2, \ldots, p - s_g\}$. Each integer *n* in the set satisfies $1 \le n \le (p-1)/2$ and there are up to k+g = (p-1)/2 distinct elements in the set. We now show that the numbers in the set are actually distinct. ASSUME that for some $1 \le i \le k$ and $1 \le j \le g$ we have $r_i \equiv p - s_i$ (mod *p*). Then $r_i + s_i \equiv p \equiv 0 \pmod{p}$. Now $r_i = ta \pmod{p}$ and $s_i = ua \pmod{p}$ for some t and u positive integers less than or equal to (p-1)/2. Then $r_i + s_i \equiv (t+u)a \equiv 0 \pmod{p}$ and, since (a, p) = 1 then by Theorem 4.4 we have $t + u \equiv 0 \pmod{p}$. But this is a CONTRADICTION since $2 \le t + u \le p - 1$. So the assumption that two of the elements in set $\{r_1, r_2, \ldots, r_k, p - s_1, p - s_2, \ldots, p - s_g\}$ are equal is false, and hence the k + g = (p - 1)/2 elements of this set are distinct.

Theorem 12.1. Gauss's Lemma (continued 2)

Proof (continued). That is, the set $\{r_1, r_2, \ldots, r_k, p - s_1, p - s_2, \ldots, p - s_g\}$ contains exactly the elements $1, 2, \ldots, (p-1)/2$. So

$$r_1r_2\cdots r_k(p-s_1)(p-s_2)\cdots (p-s_g) = 1\cdot 2\cdots ((p-1)/2).$$

Because $p - s_j \equiv -s_j \pmod{p}$ for all j, then we have

$$r_1r_2\cdots r_ks_1s_2\cdots s_g(-1)^g\equiv \left(rac{p-1}{2}
ight)!\ (\mathrm{mod}\ p).$$
 (*)

Next, since $r_1, r_2, \ldots, r_k, s_1, s_2, \ldots, s_g$ are (by construction) the least residues (mod p) of $a, 2a, \ldots, ((p-1)/2)a$, then the product $r_1r_2 \cdots r_ks_1s_2 \cdots s_g$ is congruent modulo p to $a(2a)(3a) \cdots ((p-1)/2)a = a^{(p-1)/2} \left(\frac{p-1}{2}\right)!$. So by (*) we have

$$a^{(p-1)/2}(-1)^g\left(rac{p-1}{2}
ight)!\equiv \left(rac{p-1}{2}
ight)!\ ({
m mod}\ p).$$

Theorem 12.1. Gauss's Lemma (continued 2)

Proof (continued). That is, the set $\{r_1, r_2, \ldots, r_k, p - s_1, p - s_2, \ldots, p - s_g\}$ contains exactly the elements $1, 2, \ldots, (p-1)/2$. So

$$r_1r_2\cdots r_k(p-s_1)(p-s_2)\cdots (p-s_g) = 1\cdot 2\cdots ((p-1)/2).$$

Because $p - s_j \equiv -s_j \pmod{p}$ for all j, then we have

$$r_1r_2\cdots r_ks_1s_2\cdots s_g(-1)^g \equiv \left(\frac{p-1}{2}\right)! \pmod{p}. \quad (*)$$

Next, since $r_1, r_2, \ldots, r_k, s_1, s_2, \ldots, s_g$ are (by construction) the least residues (mod p) of $a, 2a, \ldots, ((p-1)/2)a$, then the product $r_1r_2 \cdots r_ks_1s_2 \cdots s_g$ is congruent modulo p to $a(2a)(3a) \cdots ((p-1)/2)a = a^{(p-1)/2} \left(\frac{p-1}{2}\right)!$. So by (*) we have $a^{(p-1)/2}(-1)^g \left(\frac{p-1}{2}\right)! \equiv \left(\frac{p-1}{2}\right)! \pmod{p}.$

Theorem 12.1. Gauss's Lemma (continued 3)

Theorem 12.1. Gauss's Lemma.

Suppose that p is an odd prime, $p \nmid a$, and there are among the least residues (mod p) of $a, 2a, 3a, \ldots, \left(\frac{p-1}{2}\right)a$ exactly g that are greater than (p-1)/2. Then $x^2 \equiv a \pmod{p}$ has a solution or no solution according as g is even or odd. That is, $(a/p) = (-1)^g$.

Proof (continued). ...

$$a^{(p-1)/2}(-1)^g\left(rac{p-1}{2}
ight)! \equiv \left(rac{p-1}{2}
ight)! \pmod{p}.$$

Since ((p-1)/2)! is relatively prime to p, then by Theorem 4.4 we have $a^{(p-1)/2}(-1)^g \equiv 1 \pmod{p}$, or (multiplying both sides by $(-1)^g$) $a^{(p-1)/2} \equiv (-1)^g \pmod{p}$. But we know that $a^{(p-1)/2} \equiv (a/p) \pmod{p}$ by Euler's Criterion (Theorem 4.11), so $(a/p) \equiv (-1)^g \pmod{p}$. Since p is an odd prime, this implies $(a/p) = (-1)^g$ as claimed.

Theorem 12.2. If *p* is an odd prime, then

(2/p) = 1 if $p \equiv 1$ or 7 (mod 8), or (2/p) = -1 if $p \equiv 3$ or 5 (mod 8).

Proof. We will use Thereom 12.1, and so we consider the multiples of 2 of 2, 4, ..., p - 1. Let 2a be the first even integer greater than (p - 1)/2. So between 2 and (p - 1)/2 inclusive) there are a - 1 even integers, namely 2, 4, 6, ..., 2a - 2. Now the total number of even integers between 2 and p - 1 is (p - 1)/2, so the number of even numbers greater than (p - 1)/2 and less than or equal to p - 1 is g = (p - 1)/2 - (a - 1).

Theorem 12.2. If *p* is an odd prime, then

(2/p) = 1 if $p \equiv 1$ or 7 (mod 8), or (2/p) = -1 if $p \equiv 3$ or 5 (mod 8).

Proof. We will use Thereom 12.1, and so we consider the multiples of 2 of 2, 4, ..., p-1. Let 2a be the first even integer greater than (p-1)/2. So between 2 and (p-1)/2 inclusive) there are a-1 even integers, namely 2, 4, 6, \ldots , 2a - 2. Now the total number of even integers between 2 and p-1 is (p-1)/2, so the number of even numbers greater than (p-1)/2 and less than or equal to p-1 is g = (p-1)/2 - (a-1). But since 2a is the smallest integer greater than (p-1)/2, then a is the smallest integer greater than (p-1)/4 and hence a-1 is the smallest integer greater than (p-5)/4. This implies that -(a-1) is the *largest* integer less than -(p-5)/4, and so g = (p-1)/2 - (a-1) is the largest integer less than (p+3)/4.

Theorem 12.2. If *p* is an odd prime, then

(2/p) = 1 if $p \equiv 1$ or 7 (mod 8), or (2/p) = -1 if $p \equiv 3$ or 5 (mod 8).

Proof. We will use Thereom 12.1, and so we consider the multiples of 2 of 2, 4, ..., p-1. Let 2a be the first even integer greater than (p-1)/2. So between 2 and (p-1)/2 inclusive) there are a-1 even integers, namely 2, 4, 6, \ldots , 2a - 2. Now the total number of even integers between 2 and p-1 is (p-1)/2, so the number of even numbers greater than (p-1)/2 and less than or equal to p-1 is g = (p-1)/2 - (a-1). But since 2a is the smallest integer greater than (p-1)/2, then a is the smallest integer greater than (p-1)/4 and hence a-1 is the smallest integer greater than (p-5)/4. This implies that -(a-1) is the *largest* integer less than -(p-5)/4, and so g = (p-1)/2 - (a-1) is the largest integer less than (p+3)/4.

Theorem 12.2 (continued 1)

Theorem 12.2. If *p* is an odd prime, then

(2/p) = 1 if $p \equiv 1$ or 7 (mod 8), or (2/p) = -1 if $p \equiv 3$ or 5 (mod 8).

Proof (continued). Consider the case when $p \equiv 1 \pmod{8}$. Then p = 8k + 1 for some k, and (p+3)/4 = (8k+4)/4 = 2k + 1. Since g is the largest integer less than (p+3)/4, then g = 2k and $(-1)^g = (-1)^{2k} = 1$. By Theorem 12.1, (2/p) = 1 if $p \equiv 1 \pmod{8}$.

Consider the case when $p \equiv 3 \pmod{8}$. Then p = 8k + 3 for some k, and (p+3)/4 = (8k+6)/4 = 2k + 3/2. Since g is the largest integer less than (p+3)/4, then g = 2k + 1 and $(-1)^g = (-1)^{2k+1} = -1$. By Theorem 12.1, (2/p) = -1 if $p \equiv 3 \pmod{8}$.

Theorem 12.2 (continued 1)

Theorem 12.2. If *p* is an odd prime, then

(2/p) = 1 if $p \equiv 1$ or 7 (mod 8), or (2/p) = -1 if $p \equiv 3$ or 5 (mod 8).

Proof (continued). Consider the case when $p \equiv 1 \pmod{8}$. Then p = 8k + 1 for some k, and (p+3)/4 = (8k+4)/4 = 2k + 1. Since g is the largest integer less than (p+3)/4, then g = 2k and $(-1)^g = (-1)^{2k} = 1$. By Theorem 12.1, (2/p) = 1 if $p \equiv 1 \pmod{8}$.

Consider the case when $p \equiv 3 \pmod{8}$. Then p = 8k + 3 for some k, and (p+3)/4 = (8k+6)/4 = 2k+3/2. Since g is the largest integer less than (p+3)/4, then g = 2k + 1 and $(-1)^g = (-1)^{2k+1} = -1$. By Theorem 12.1, (2/p) = -1 if $p \equiv 3 \pmod{8}$.

Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then

(2/p) = 1 if $p \equiv 1$ or 7 (mod 8), or (2/p) = -1 if $p \equiv 3$ or 5 (mod 8).

Proof (continued). Consider the case when $p \equiv 5 \pmod{8}$. Then p = 8k + 4 for some k, and (p+3)/4 = (8k+8)/4 = 2k+2. Since g is the largest integer less than (p+3)/4, then g = 2k + 1 and $(-1)^g = (-1)^{2k+1} = -1$. By Theorem 12.1, (2/p) = -1 if $p \equiv 5 \pmod{8}$.

Consider the case when $p \equiv 7 \pmod{8}$. Then p = 8k + 7 for some k, and (p+3)/4 = (8k+10)/4 = 2k+5/2. Since g is the largest integer less than (p+3)/4, then g = 2k+2 and $(-1)^g = (-1)^{2k+2} = 1$. By Theorem 12.1, (2/p) = 1 if $p \equiv 7 \pmod{8}$.

Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then

(2/p) = 1 if $p \equiv 1$ or 7 (mod 8), or (2/p) = -1 if $p \equiv 3$ or 5 (mod 8).

Proof (continued). Consider the case when $p \equiv 5 \pmod{8}$. Then p = 8k + 4 for some k, and (p+3)/4 = (8k+8)/4 = 2k+2. Since g is the largest integer less than (p+3)/4, then g = 2k + 1 and $(-1)^g = (-1)^{2k+1} = -1$. By Theorem 12.1, (2/p) = -1 if $p \equiv 5 \pmod{8}$.

Consider the case when $p \equiv 7 \pmod{8}$. Then p = 8k + 7 for some k, and (p+3)/4 = (8k+10)/4 = 2k+5/2. Since g is the largest integer less than (p+3)/4, then g = 2k+2 and $(-1)^g = (-1)^{2k+2} = 1$. By Theorem 12.1, (2/p) = 1 if $p \equiv 7 \pmod{8}$.

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root of 4p + 1.

Proof. Let q = 4p + 1. Since q is prime by hypothesis, then $\varphi(q) = q - 1 = 4p$. By Theorem 10.2, the order of 2 divides $\varphi(q)$ so that 2 has order 1, 2, 4, p, 2p, or $4p \pmod{q}$.

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root of 4p + 1.

Proof. Let q = 4p + 1. Since q is prime by hypothesis, then $\varphi(q) = q - 1 = 4p$. By Theorem 10.2, the order of 2 divides $\varphi(q)$ so that 2 has order 1, 2, 4, p, 2p, or $4p \pmod{q}$.

Now by Euler's Criterion (Theorem 11.2) $2^{2p} \equiv 2^{(q-1)/2} \equiv (2/q) \pmod{q}$. But p is odd, so $4p \equiv 4 \pmod{8}$, and $q \equiv 4p + 1 \equiv 5 \pmod{8}$ so that by Theorem 12.2 we have that (2/q) = -1 and hence $2^{2p} \not\equiv 1 \pmod{q}$. That is, the order of 2 is not 2p. Next, the order of 2 (mod q) cannot be a divisor of 2p or else $2^{2p} \equiv 1 \pmod{q}$ (by Theorem 10.1), which we just saw is not the case. Finally, the order of 2 (mod q) cannot be 4, since $2^4 \equiv 1 \pmod{q}$ implies that prime q is 3 or 5, neither of which can be the case since q = 4p + 1 where p is prime. So the only possible value for the order of 2 is q - 1 = 4p and so (by definition of "primitive root") 2 is a primitive root of q = 4p + 1, as claimed.

()

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root of 4p + 1.

Proof. Let q = 4p + 1. Since q is prime by hypothesis, then $\varphi(q) = q - 1 = 4p$. By Theorem 10.2, the order of 2 divides $\varphi(q)$ so that 2 has order 1, 2, 4, p, 2p, or $4p \pmod{q}$.

Now by Euler's Criterion (Theorem 11.2) $2^{2p} \equiv 2^{(q-1)/2} \equiv (2/q) \pmod{q}$. But p is odd, so $4p \equiv 4 \pmod{8}$, and $q \equiv 4p + 1 \equiv 5 \pmod{8}$ so that by Theorem 12.2 we have that (2/q) = -1 and hence $2^{2p} \not\equiv 1 \pmod{q}$. That is, the order of 2 is not 2p. Next, the order of 2 (mod q) cannot be a divisor of 2p or else $2^{2p} \equiv 1 \pmod{q}$ (by Theorem 10.1), which we just saw is not the case. Finally, the order of 2 (mod q) cannot be 4, since $2^4 \equiv 1 \pmod{q}$ implies that prime q is 3 or 5, neither of which can be the case since q = 4p + 1 where p is prime. So the only possible value for the order of 2 is q - 1 = 4p and so (by definition of "primitive root") 2 is a primitive root of q = 4p + 1, as claimed.

Lemma 12.1

Lemma 12.1. If p and q are different odd primes, then

$$\sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p}\right] + \sum_{k=1}^{(q-1)/2} \left[\frac{kp}{q}\right] = \frac{p-1}{2} \cdot \frac{q-1}{2}.$$

Here, $\left[\,\cdot\,\right]$ denotes the greatest integer function.

Proof.

Lemma 12.1

Lemma 12.1. If p and q are different odd primes, then

$$\sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p}\right] + \sum_{k=1}^{(q-1)/2} \left[\frac{kp}{q}\right] = \frac{p-1}{2} \cdot \frac{q-1}{2}.$$

Here, $\left[\,\cdot\,\right]$ denotes the greatest integer function.

Proof. Let $S(p,q) = \sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p}\right]$. Then the claim is $S(p,q) + S(q,p) = \frac{(p-1)(q-1)}{q}$. We give a geometric proof. The figure here has (p-1)(q-1)/4 points with integer coordinates. Such points lie below the line y = px/q if their x coordinate is greater than their y-coordinate.

Lemma 12.1

Lemma 12.1. If p and q are different odd primes, then

$$\sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p}\right] + \sum_{k=1}^{(q-1)/2} \left[\frac{kp}{q}\right] = \frac{p-1}{2} \cdot \frac{q-1}{2}.$$

Here, $\left[\,\cdot\,\right]$ denotes the greatest integer function.

Proof.
Let
$$S(p,q) = \sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p} \right]$$
. Then the
claim is $S(p,q) + S(q,p) = \frac{(p-1)(q-1)}{4}$.
We give a geometric proof. The figure here
has $(p-1)(q-1)/4$ points with integer
coordinates. Such points lie below the line
 $y = px/q$ if their x coordinate is greater
than their y-coordinate.

Lemma 12.1 (continued 1)

Proof (continued). The x coordinates of the lattice points are $1, 2, \ldots, (p-1)/2$ and the y coordinates are $1, 2, \ldots, (q-1)/2$. There are (q-1)/2 lattice points with fixed x coordinate k where $1 \le k \le (p-1)/2$. Consider the line segment $\{(x, y) \mid x = k, 0 \le y \le (q - 1)/2\}$. This segment intersects the line y = qx/p at the point (k, qk/p), and the part of the line segment below line y = qx/p is $\{(x, y) \mid x = k, 0 \le y \le \min\{(q-1)/2, qk/p\}\}$. Since $1 \le k \le (p-1)/2$, then $qk/p \le q(p-1)/(2p) < q/2$ and so $[qk/p] \le (q-1)/2$. So the number of lattice points with x coordinate k is [qk/p]. Since k ranges from 1 to (p-1)/2, the total number of lattice points below the line is $S(p,q) = \sum_{p=1}^{(p-1)/2} \left[\frac{kq}{p}\right]$. Interchanging p and q, a similar argument shows

that the points to the left of the line is $S(q, p) = \sum_{k=1}^{\lfloor (q-1)/2} \left\lfloor \frac{kp}{q} \right\rfloor$.

Lemma 12.1 (continued 1)

Proof (continued). The *x* coordinates of the lattice points are 1, 2, ..., (p-1)/2 and the *y* coordinates are 1, 2, ..., (q-1)/2. There are (q-1)/2 lattice points with fixed *x* coordinate *k* where $1 \le k \le (p-1)/2$. Consider the line segment $\{(x, y) \mid x = k, 0 \le y \le (q-1)/2\}$. This segment intersects the line y = qx/p at the point (k, qk/p), and the part of the line segment below line y = qx/p is $\{(x, y) \mid x = k, 0 \le y \le (q-1)/2, k \le (p-1)/2, k \le q(p-1)/2, qk/p\}$. Since $1 \le k \le (p-1)/2$, then $qk/p \le q(p-1)/(2p) < q/2$ and so $[qk/p] \le (q-1)/2$. So the number of lattice points with *x* coordinate *k* is [qk/p]. Since *k* ranges from 1 to (p-1)/2, the total number of lattice points below the line is

 $S(p,q) = \sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p}\right]$. Interchanging p and q, a similar argument shows

that the points to the left of the line is $S(q, p) = \sum_{k=1}^{(q-1)/2} \left[\frac{kp}{q}\right]$.

Lemma 12.1 (continued 2)

Lemma 12.1. If p and q are different odd primes, then

$$\sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p}\right] + \sum_{k=1}^{(q-1)/2} \left[\frac{kp}{q}\right] = \frac{p-1}{2} \cdot \frac{q-1}{2}.$$

Here, $[\cdot]$ denotes the greatest integer function.

Proof (continued). ASSUME (a, b) is a lattice point on the line y = qx/p. The b = qa/p or bp = qa; hence $p \mid qa$ and since (p, q) = 1 then $p \mid a$ by Euclid's Lemma (Lemma 2.5); that is, a is a multiple of p. But $1 \le a \le (p-1)/2$ since this is a lattice point, and there are no multiples of p satisfying these inequalities, a CONTRADICTION. So the assumption that there are lattice points on the line y = qx/p is false, and the total number of points in the lattice is the sum of the number of those below the line y = qx/p plus the number of those above the line. Since the lattice contains (p-1)(q-1)/4, the claim follows.

Lemma 12.1 (continued 2)

Lemma 12.1. If p and q are different odd primes, then

$$\sum_{k=1}^{(p-1)/2} \left[\frac{kq}{p}\right] + \sum_{k=1}^{(q-1)/2} \left[\frac{kp}{q}\right] = \frac{p-1}{2} \cdot \frac{q-1}{2}.$$

Here, $[\cdot]$ denotes the greatest integer function.

Proof (continued). ASSUME (a, b) is a lattice point on the line y = qx/p. The b = qa/p or bp = qa; hence $p \mid qa$ and since (p, q) = 1 then $p \mid a$ by Euclid's Lemma (Lemma 2.5); that is, a is a multiple of p. But $1 \le a \le (p-1)/2$ since this is a lattice point, and there are no multiples of p satisfying these inequalities, a CONTRADICTION. So the assumption that there are lattice points on the line y = qx/p is false, and the total number of points in the lattice is the sum of the number of those below the line y = qx/p plus the number of those above the line. Since the lattice contains (p-1)(q-1)/4, the claim follows.

Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem. If *p* and *q* are odd primes, then $(p/q)(q/p) = (-1)^{(p-1)(q-1)/4}$.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider least residues modulo p of multiples of q, q, 2q, 3q, $\dots ((p-1)/2)q$. Denote these multiples of q less than or equal to (p-1)/2 as r_1, r_2, \dots, r_k and denote those greater than (p-1)/2 as $s_1, s_2, \dots, 2_g$. The k + g = (p-1)/2 and by Gauss's Lemma we have that the Legendre symbol satisfies $(q/p) = (-1)^g$.

Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem. If *p* and *q* are odd primes, then $(p/q)(q/p) = (-1)^{(p-1)(q-1)/4}$.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider least residues modulo p of multiples of q, q, 2q, 3q, ... ((p-1)/2)q. Denote these multiples of q less than or equal to (p-1)/2 as $r_1, r_2, ..., r_k$ and denote those greater than (p-1)/2 as $s_1, s_2, ..., 2_g$. The k + g = (p-1)/2 and by Gauss's Lemma we have that the Legendre symbol satisfies $(q/p) = (-1)^g$. Let R and S denote the sums $R = r_1 + r_2 + \cdots + r_k$ and $S = s_1 + s_2 + \cdots + s_g$. It was shown in the proof of Gauss's Lemma the set $\{r_1, r_2, ..., r_k, p - s_1, p - s_2, ..., p - s_g\}$ contains exactly the elements 1, 2, ..., (p-1)/2. Summing these two representations of the same numbers we get:

$$\sum_{j=1}^{k} r_{j} + \sum_{j=1}^{g} (p - s_{j}) = R + pg - S \dots$$

Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem. If *p* and *q* are odd primes, then $(p/q)(q/p) = (-1)^{(p-1)(q-1)/4}$.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider least residues modulo p of multiples of q, q, 2q, 3q, ... ((p-1)/2)q. Denote these multiples of q less than or equal to (p-1)/2 as r_1, r_2, \ldots, r_k and denote those greater than (p-1)/2 as $s_1, s_2, \ldots, 2_g$. The k + g = (p-1)/2 and by Gauss's Lemma we have that the Legendre symbol satisfies $(q/p) = (-1)^g$. Let R and S denote the sums $R = r_1 + r_2 + \cdots + r_k$ and $S = s_1 + s_2 + \cdots + s_g$. It was shown in the proof of Gauss's Lemma the set $\{r_1, r_2, \ldots, r_k, p - s_1, p - s_2, \ldots, p - s_g\}$ contains exactly the elements $1, 2, \ldots, (p-1)/2$. Summing these two representations of the same numbers we get:

$$\sum_{j=1}^k r_j + \sum_{j=1}^g (p-s_j) = R + pg - S \dots$$

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).

$$\sum_{j=1}^{(p-1)/2} j = \frac{((p-1)/2)((p-1)/2+1)}{2} = \frac{(p-1)(p+1)}{8} = \frac{p^2-1}{8},$$

so that $R + gp - S = (p^2 - 1)/8$ or $R = S - gp + (p^2 - 1)/8$. The least residue modulo p of jq (where $j \in \{1, 2, ..., (p - 1)/2\}$) is the remainder when we divide jq by p. We can use the greatest integer function to find the quotient as [jq/p], so that $jq = [jq/p]p + t_j$ where t_j denotes the least residue (mod p) of jq. So $\sum_{j=1}^{(p-1)/2} t_j$ is the sum of the least residues of $q, 2q, \ldots, ((p - 1)/2)q$, and hence

$$\sum_{j=1}^{(p-1)/2} t_j = r_1 + r_2 + \cdots + r_k + s_1 + s_2 + \cdots + s_g = R + S.$$

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).

$$\sum_{j=1}^{(p-1)/2} j = \frac{((p-1)/2)((p-1)/2+1)}{2} = \frac{(p-1)(p+1)}{8} = \frac{p^2-1}{8},$$

so that $R + gp - S = (p^2 - 1)/8$ or $R = S - gp + (p^2 - 1)/8$. The least residue modulo p of jq (where $j \in \{1, 2, \dots, (p - 1)/2\}$) is the remainder when we divide jq by p. We can use the greatest integer function to find the quotient as [jq/p], so that $jq = [jq/p]p + t_j$ where t_j denotes the least residue (mod p) of jq. So $\sum_{j=1}^{(p-1)/2} t_j$ is the sum of the least residues of $q, 2q, \dots, ((p-1)/2)q$, and hence

$$\sum_{j=1}^{(p-1)/2} t_j = r_1 + r_2 + \cdots + r_k + s_1 + s_2 + \cdots + s_g = R + S.$$

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of $jq = [jq/p]p + t_j$ gives

$$\sum_{j=1}^{(p-1)/2} jq = \sum_{j=1}^{(p-1)/2} [jq/p]p + \sum_{j=1}^{(p-1)/2} t_j$$

or
$$q \sum_{j=1}^{(p-1)/2} jq = p \sum_{j=1}^{(p-1)/2} [jq/p] + R + S$$
,

or $q(p^2 - 1)/8 = pS(p, q) + R + S$, where S(p, q) is defined in Lemma 12.1. From above, $R = S - gp + (p^2 - 1)/8$, we now have $q(p^2 - 1)/8 = pS(p, q) + 2S - gp + (p^2 - 1)/8$ or

$$(q-1)(p^2-1)/8 = p(S(p,q)-g) + 2S.$$
 (*)

Since $\sum_{j=1}^{(p-1)/2} j = (p^2 - 1)/8$, then $(p^2 - 1)/8$ is an integer and so the left-hand side of (*) is even.

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of $jq = [jq/p]p + t_j$ gives

$$\sum_{j=1}^{(p-1)/2} jq = \sum_{j=1}^{(p-1)/2} [jq/p]p + \sum_{j=1}^{(p-1)/2} t_j$$

or
$$q \sum_{j=1}^{(p-1)/2} jq = p \sum_{j=1}^{(p-1)/2} [jq/p] + R + S$$
,

or $q(p^2 - 1)/8 = pS(p, q) + R + S$, where S(p, q) is defined in Lemma 12.1. From above, $R = S - gp + (p^2 - 1)/8$, we now have $q(p^2 - 1)/8 = pS(p, q) + 2S - gp + (p^2 - 1)/8$ or

$$(q-1)(p^2-1)/8 = p(S(p,q)-g) + 2S.$$
 (*)

Since $\sum_{j=1}^{(p-1)/2} j = (p^2 - 1)/8$, then $(p^2 - 1)/8$ is an integer and so the left-hand side of (*) is even.

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 3)

Theorem 12.4. The Quadratic Reciprocity Theorem. If *p* and *q* are odd primes, then $(p/q)(q/p) = (-1)^{(p-1)(q-1)/4}$.

Proof (continued). So the right-hand side of (*), p(S(p,q) - g) + 2S, is even and hence S(p,q) - g is even. Hence $(-1)^{S(p,q)-g} = 1$, or $(-1)^{S(p,q)} = (-1)^g$. Since the Legendre symbol satisfies $(-1)^g = (q/p)$ by Gauss's Lemma (Theorem 12.1, with a = q), then $(-1)^{S(p,q)} = (-1)^g = (q/p)$. Interchanging p and q, we also get that $(-1)^{S(q,p)} = (p/q)$. Multiplying these last two equations gives $(-1)^{S(p,q)+S(q,p)} = (p/q)(q/p)$ or, by Lemma 12.1,

$$(-1)^{(p-1)(q-1)/4} = (p/q)(q/p),$$

as claimed.