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Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss’s Lemma.
Suppose that p is an odd prime, p { a, and there are among the least

residues (mod p) of
-1
a,2a,3a,..., <p2> a

exactly g that are greater than (p — 1)/2. Then x?> = a (mod p) has a
solution or no solution according as g is even or odd. That is,

(a/p) = (-1)%.
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Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss’s Lemma.
Suppose that p is an odd prime, p { a, and there are among the least

residues (mod p) of
-1
a,2a,3a,..., <p2 >a

exactly g that are greater than (p — 1)/2. Then x?> = a (mod p) has a
solution or no solution according as g is even or odd. That is,

(a/p) = (-1)%.

Proof. Let ri,r,. .., rx denote the least residues (mod p) of
a,2a,...((p—1)/2))a that are less than or equal to (p — 1)/2, and let
S1,52,...,Sg denote those that are greater than (p — 1)/2 (so

k+g = (p—1)/2). By Euler’s Criterion (Theorem 11.2), the claim will
follow if we show that alP~1)/2 = (—1)& (mod p).
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Theorem 12.1. Gauss's Lemma (continued 1)

Proof (continued). ASSUME that two of ri, ra, ..., rk are equal. Then
for some ki # ko with 0 < ki, ko < (p—1)/2, we have kja = koa (mod p).
Since (a, p) = 1 then by Theorem 4.4 we have ki = ko (mod p) and hence
ki = ko, a CONTRADICTION. So r1, r,..., r must be distinct. Similarly,
the s1,%,...,5; must be distinct. Now consider the set of number
{ri,r,....,0,p—51,p—52,...,p—sg}. Each integer n in the set satisfies
1< n<(p—1)/2 and there are up to k + g = (p — 1)/2 distinct elements
in the set. We now show that the numbers in the set are actually distinct.
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Theorem 12.1. Gauss's Lemma (continued 1)

Proof (continued). ASSUME that two of ri, ra, ..., rk are equal. Then
for some ki # ko with 0 < ki, ko < (p—1)/2, we have kja = koa (mod p).
Since (a, p) = 1 then by Theorem 4.4 we have ki = ko (mod p) and hence
ki = ko, a CONTRADICTION. So r1, r,..., r must be distinct. Similarly,
the s1,%,...,5; must be distinct. Now consider the set of number
{ri,r,....,0,p—51,p—52,...,p—sg}. Each integer n in the set satisfies
1< n<(p—1)/2 and there are up to k + g = (p — 1)/2 distinct elements
in the set. We now show that the numbers in the set are actually distinct.

ASSUME that forsome 1 </ < kand1<j<gwehaver,=p—s5;
(mod p). Then r; 4+ s; = p =0 (mod p). Now r; = ta (mod p) and

s; = ua (mod p) for some t and u positive integers less than or equal to
(p—1)/2. Then r;+s; = (t+ u)a= 0 (mod p) and, since (a,p) =1 then
by Theorem 4.4 we have t + u =0 (mod p). But this is a
CONTRADICTION since 2 < t+ u < p — 1. So the assumption that two
of the elements in set {ri,r,...,rn,p—5s1,p—52,...,p— sg} are equal is

false, and hence the k + g = (p — 1)/2 elements of this set are distinct.
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Theorem 12.1. Gauss's Lemma (continued 2)

Proof (continued). That is, the set

{rn,n,....,0,p—5s1,p—%,...,p— Sg} contains exactly the elements
1,2,...,(p—1)/2. So

nr-orn(p—si)(p—s) - (p—s)=1-2---- ((p—1)/2).
Because p — sj = —s; (mod p) for all j, then we have

s (-1 = (P50 )1 mod p). ()
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Theorem 12.1. Gauss's Lemma (continued 2)

Proof (continued). That is, the set

{rn,n,....,0,p—5s1,p—%,...,p— Sg} contains exactly the elements
1,2,...,(p—1)/2. So
rr-rn(p—si)(p—s) - (p—sg)=1-2----- ((p—1)/2).
Because p — sj = —s; (mod p) for all j, then we have
g p—1
rnr---rsisy - sg(—1)% = —— I' (mod p). (%)
Next, since ri, r, ..., r,s1,52,...,5g are (by construction) the least

residues (mod p) of a,2a,...,((p —1)/2)a, then the product
riry---rgs1sy - - - Sg is congruent modulo p to

a(2a)(3a)--- ((p — 1)/2)a = alP~1)/2 (pT_l) l. So by (*) we have
alP~1/2(_1)8 (p;1>' = (p;1)| (mod p).
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Theorem 12.1. Gauss's Lemma (continued 3)

Theorem 12.1. Gauss’s Lemma.
Suppose that p is an odd prime, p { a, and there are among the least

-1
residues (mod p) of a,2a,3a,..., <[32> a exactly g that are greater

than (p —1)/2. Then x> = a (mod p) has a solution or no solution
according as g is even or odd. That is, (a/p) = (—1)8.

Proof (continued). ...

alP~/2(_1)8 <p;1>! = (”;1>1 (mod p).

Since ((p — 1)/2)! is relatively prime to p, then by Theorem 4.4 we have

alP~1/2(—~1)8 =1 (mod p), or (multiplying both sides by (—1)&)

alP~1/2 = (~1)& (mod p). But we know that a(P~1/2 = (a/p) (mod p)

by Euler's Criterion (Theorem 4.11), so (a/p) = (—1)& (mod p). Since p

is an odd prime, this implies (a/p) = (—1)& as claimed. O
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Theorem 12.2

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).
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Theorem 12.2

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof. We will use Thereom 12.1, and so we consider the multiples of 2
of 2,4,...,p— 1. Let 2a be the first even integer greater than (p — 1)/2.
So between 2 and (p — 1)/2 inclusive) there are a — 1 even integers,
namely 2,4,6,...,2a — 2. Now the total number of even integers between
2and p—1is (p—1)/2, so the number of even numbers greater than
(p—1)/2 and less than or equal top—1lis g =(p—1)/2 — (a —1).
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Theorem 12.2

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof. We will use Thereom 12.1, and so we consider the multiples of 2
of 2,4,...,p— 1. Let 2a be the first even integer greater than (p — 1)/2.
So between 2 and (p — 1)/2 inclusive) there are a — 1 even integers,
namely 2,4,6,...,2a — 2. Now the total number of even integers between
2and p—1is (p—1)/2, so the number of even numbers greater than
(p—1)/2 and less than or equal top—1lis g =(p—1)/2 — (a—1). But
since 2a is the smallest integer greater than (p — 1)/2, then a is the
smallest integer greater than (p — 1)/4 and hence a — 1 is the smallest
integer greater than (p — 5)/4. This implies that —(a — 1) is the /largest
integer less than —(p —5)/4, and so g = (p—1)/2 — (a — 1) is the largest
integer less than (p + 3)/4.
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Theorem 12.2 (continued 1)

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof (continued). Consider the case when p =1 (mod 8). Then

p =8k + 1 for some k, and (p+3)/4 = (8k +4)/4 =2k + 1. Since g is
the largest integer less than (p + 3)/4, then g = 2k and

(—1)8 = (—1)%¢ = 1. By Theorem 12.1, (2/p) = 1 if p=1 (mod 8).
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Theorem 12.2 (continued 1)

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof (continued). Consider the case when p =1 (mod 8). Then

p =8k + 1 for some k, and (p+3)/4 = (8k +4)/4 =2k + 1. Since g is
the largest integer less than (p + 3)/4, then g = 2k and

(—1)8 = (—1)%¢ = 1. By Theorem 12.1, (2/p) = 1 if p=1 (mod 8).

Consider the case when p =3 (mod 8). Then p = 8k + 3 for some k, and
(p+3)/4=(8k+6)/4 =2k +3/2. Since g is the largest integer less
than (p + 3)/4, then g =2k + 1 and (—1)& = (—1)?k*1 = —1. By
Theorem 12.1, (2/p) = —1 if p =3 (mod 8).
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Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof (continued). Consider the case when p =5 (mod 8). Then

p = 8k + 4 for some k, and (p+3)/4 = (8k +8)/4 = 2k + 2. Since g is
the largest integer less than (p + 3)/4, then g = 2k 4+ 1 and

(—1)8 = (—1)%%*1 = —1. By Theorem 12.1, (2/p) = —1 if p =5 (mod
8).
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Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then

(2/p)=1if p=1or7 (mod8), or (2/p) =—1if p=3or5 (mod 8).

Proof (continued). Consider the case when p =5 (mod 8). Then

p = 8k + 4 for some k, and (p+3)/4 = (8k +8)/4 = 2k + 2. Since g is
the largest integer less than (p + 3)/4, then g = 2k 4+ 1 and

(—1)8 = (—1)%%*1 = —1. By Theorem 12.1, (2/p) = —1 if p =5 (mod
8).

Consider the case when p =7 (mod 8). Then p = 8k + 7 for some k, and
(p+3)/4 = (8k+10)/4 =2k +5/2. Since g is the largest integer less

than (p+3)/4, then g = 2k +2 and (—1)& = (—1)?k*2 = 1. By Theorem
12.1, (2/p) =1if p=7 (mod 8). O
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Theorem 12.3

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root
of 4p + 1.
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Theorem 12.3

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root
of 4p + 1.

Proof. Let g = 4p + 1. Since g is prime by hypothesis, then
©(q) = g — 1 = 4p. By Theorem 10.2, the order of 2 divides ¢(q) so that
2 has order 1, 2, 4, p, 2p, or 4p (mod q).
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Theorem 12.3

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root
of 4p + 1.

Proof. Let g = 4p + 1. Since g is prime by hypothesis, then
©(q) = g — 1 = 4p. By Theorem 10.2, the order of 2 divides ¢(q) so that
2 has order 1, 2, 4, p, 2p, or 4p (mod q).

Now by Euler's Criterion (Theorem 11.2) 22° = 2(9-1)/2 = (2/q) (mod q).
But p is odd, so 4p =4 (mod 8), and g = 4p + 1 =5 (mod 8) so that by
Theorem 12.2 we have that (2/q) = —1 and hence 22P # 1 (mod q).
That is, the order of 2 is not 2p. Next, the order of 2 (mod g) cannot be
a divisor of 2p or else 227 = 1 (mod q) (by Theorem 10.1), which we just
saw is not the case. Finally, the order of 2 (mod g) cannot be 4, since
2% =1 (mod q) implies that prime g is 3 or 5, neither of which can be the
case since g = 4p + 1 where p is prime. So the only possible value for the
order of 2 is ¢ — 1 = 4p and so (by definition of “primitive root”) 2 is a
primitive root of g = 4p + 1, as claimed. O
Elementary Number Theory March 14, 2022 10 / 17



Lemma 12.1

Lemma 12.1. If p and g are different odd primes, then

(p—1)/2 (g—-1)/2
kq k| p—1 qg-—1
> 5y [

k=1 P k=1 q

Here, [-] denotes the greatest integer function.
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Lemma 12.1

Lemma 12.1. If p and g are different odd primes, then
Pl
=1 LP = L9 2 2
Here, [-] denotes the greatest integer function.

Proof. |

i
1

. o ser o .
4 B

x

1 2 3 p=3 p—1t
2 2
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Lemma 12.1

Lemma 12.1. If p and g are different odd primes, then

k=1 P

k=1
Here, [-] denotes the greatest integer function.

Proof. =71

(p—1)/2 .
Let S(p, g [ } Then the B
1

k=
claim is S(p, q) + S(q,p) = w
We give a geometric proof. The figure here
has (p — 1)(g — 1)/4 points with integer
coordinates. Such points lie below the line
= px/q if their x coordinate is greater .
than their y-coordinate. 1

Elementary Number Theory

(p—1)/2 (g—1)/2
kq ke| p—1 ¢q
2 [% 2 [q}zz'

-1
> .

B

x
2 3 p=3 p—1t
2 2
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Lemma 12.1 (continued 1)

Proof (continued). The x coordinates of the lattice points are
1,2,...,(p—1)/2 and the y coordinates are 1,2,...(g — 1)/2. There are
(g —1)/2 lattice points with fixed x coordinate k where 1 < k < (p—1)/2.
Consider the line segment {(x,y) | x = k,0 <y <(q—1)/2}. This
segment intersects the line y = gx/p at the point (k, gk/p), and the part
of the line segment below line y = gx/p is

[(,y) | x = k,0 < y < min{(q — 1)/2, gk/p}}. Since 1 < k < (p—1)/2,
then gk/p < q(p —1)/(2p) < q/2 and so [gk/p] < (g —1)/2.

Elementary Number Theory March 14, 2022 12 /17



Lemma 12.1 (continued 1)

Proof (continued). The x coordinates of the lattice points are
1,2,...,(p—1)/2 and the y coordinates are 1,2,...(g — 1)/2. There are
(g —1)/2 lattice points with fixed x coordinate k where 1 < k < (p—1)/2.
Consider the line segment {(x,y) | x = k,0 <y <(q—1)/2}. This
segment intersects the line y = gx/p at the point (k, gk/p), and the part
of the line segment below line y = gx/p is
[(,y) | x = k,0 < y < min{(q — 1)/2, gk/p}}. Since 1 < k < (p—1)/2,
then gk/p < q(p—1)/(2p) < q/2 and so [gk/p] < (g —1)/2. So the
number of lattice points with x coordinate k is [gk/p]. Since k ranges
from 1 to (p — 1)/2, the total number of lattice points below the line is
(p—1)/2

S(p,q) = Z [q] Interchanging p and g, a similar argument shows
k=1
(g—1)/2
that the points to the left of the line is S(q, p [ }
k=1

Elementary Number Theory March 14, 2022 12 /17



Lemma 12.1 (continued 2)

Lemma 12.1. If p and g are different odd primes, then

p q] 2 2
k=1 k=1

Here, [-] denotes the greatest integer function.

Proof (continued). ASSUME (a, b) is a lattice point on the line

y = qgx/p. The b= qa/p or bp = ga; hence p| ga and since (p,q) =1
then p|a by Euclid’'s Lemma (Lemma 2.5); that is, a is a multiple of p.
But 1 < a < (p—1)/2 since this is a lattice point, and there are no
multiples of p satisfying these inequalities, a CONTRADICTION.
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Lemma 12.1 (continued 2)

Lemma 12.1. If p and g are different odd primes, then

p q] 2 2
k=1 k=1

Here, [-] denotes the greatest integer function.

Proof (continued). ASSUME (a, b) is a lattice point on the line

y = qgx/p. The b= qa/p or bp = ga; hence p| ga and since (p,q) =1
then p|a by Euclid’'s Lemma (Lemma 2.5); that is, a is a multiple of p.
But 1 < a < (p—1)/2 since this is a lattice point, and there are no
multiples of p satisfying these inequalities, a CONTRADICTION. So the
assumption that there are lattice points on the line y = gx/p is false, and
the total number of points in the lattice is the sum of the number of those
below the line y = gx/p plus the number of those above the line. Since
the lattice contains (p — 1)(g — 1)/4, the claim follows. O

Elementary Number Theory March 14, 2022 13 /17



Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and g are odd primes, then (p/q)(q/p) = (—1)(P—1)(q—1)/4.
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Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and g are odd primes, then (p/q)(q/p) = (—1)(P—1)(q—1)/4.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider
least residues modulo p of multiples of g, g,2q,3q,...((p—1)/2)q.
Denote these multiples of g less than or equal to (p—1)/2 as 1, ra, ..., rk
and denote those greater than (p —1)/2 as s1,5,...,24. The

k+ g = (p—1)/2 and by Gauss's Lemma we have that the Legendre

symbol satisfies (g/p) = (—1)&.
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Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and g are odd primes, then (p/q)(q/p) = (—1)(P—1)(q—1)/4.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider
least residues modulo p of multiples of g, g,2q,3q,...((p—1)/2)q.
Denote these multiples of g less than or equal to (p—1)/2 as 1, ra, ..., rk
and denote those greater than (p —1)/2 as s1,5,...,24. The

k+ g = (p—1)/2 and by Gauss's Lemma we have that the Legendre
symbol satisfies (q/p) = (—1)8. Let R and S denote the sums
R=n+nrn+---+rand S=s + 5+ -+ s,. It was shown in the
proof of Gauss's Lemma the set {ri,r,...,r,p—5s1,p—%,...,p— Sg}
contains exactly the elements 1,2,...,(p — 1)/2. Summing these two
representations of the same numbers we get:

k g
er+2(p—sj):R+pg—5...
j=1 j=1

Elementary Number Theory March 14, 2022 14 /17



Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).

(p—1)/2 )
. ((p=1)/2)(p—-1)/24+1) (p—1)(p+1) p°—1
2 = 2 8 8

j=1

sothat R+gp—S=(p>—1)/8or R=S —gp+ (p> —1)/8. The least
residue modulo p of jg (where j € {1,2,...,(p — 1)/2}) is the remainder
when we divide jg by p.
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Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).

(p—1)/2

j= p—1)/2)((p—1)/2+1) (p—1)(p+1) p*—1

2 a 8 -8

j=1

sothat R+gp—S=(p>—1)/8or R=S —gp+ (p> —1)/8. The least
residue modulo p of jg (where j € {1,2,...,(p — 1)/2}) is the remainder
when we divide jg by p. We can use the greatest integer function to find
the quotient as [jg/p], so that jq = [jq/p]p + tj where t; denotes the least

residue (mod p) of jg. So Z}i}l)p tj is the sum of the least residues of
q,2q,...,((p—1)/2)q, and hence

(p—1)/2
Z t=n+n+-n+ts+o+--+ss=R+S.

Elementary Number Theory March 14, 2022 15 / 17



Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of jqg = [jq/p]p + t; gives

(p—1)/2 (p—1)/2 (p—1)/2
> oda= > la/le+ > 4
j=1 j=1 j=1
(p—1)/2 (p—1)/2

orq Y Jjg=p > Llig/pl+R+S,
j=1 j=1

or q(p?> —1)/8 = pS(p,q) + R+ S, where S(p, q) is defined in Lemma
12.1.
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Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of jqg = [jq/p]p + t; gives

(p—1)/2 (p—1)/2 (p—1)/2

Yoda= > la/ele+ D ¢
=1 =1 =1

(p-1)/2 (p—1)/2
orq Y Jjg=p > Llig/pl+R+S,
= =

or q(p?> —1)/8 = pS(p,q) + R+ S, where S(p, q) is defined in Lemma
12.1. From above, R = S — gp + (p?> — 1)/8, we now have

2 _ _ 2 _
q(p® —1)/8 = pS(p,q) +2S —gp+ (p° —1)/8 or

(¢ —1)(p* —1)/8=p(S(p,q) —g) +25. (%)
Since Z(p 1)/21 = (p? —1)/8, then (p?> — 1)/8 is an integer and so the

left- hand side of (x) is even.
Elementary Number Theory March 14, 2022 16 / 17



Theorem 12.4. Quadratic Reciprocity Theorem (cont. 3)

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and q are odd primes, then (p/q)(q/p) = (—1)(P~D(a-1)/4,

Proof (continued). So the right-hand side of (%), p(S(p,q) —g) +2S, is
even and hence S(p, q) — g is even. Hence (—1)°(P9)—8 =1, or
(—1)5(P9) = (—1)8. Since the Legendre symbol satisfies (—1)8 = (g/p)
by Gauss's Lemma (Theorem 12.1, with a = q), then

(—1)5(”7") = (—1)8 = (q/p). Interchanging p and g, we also get that
(—1)%(@P) = (p/q). Multiplying these last two equations gives
(—1)>P9)+3(@P) = (p/q)(q/p) or, by Lemma 12.1,

(—1)P~ D@D/ = (p/q)(q/p),

as claimed. ]
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