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Theorem 12.1. Gauss’s Lemma

Theorem 12.1. Gauss’s Lemma

Theorem 12.1. Gauss’s Lemma.
Suppose that p is an odd prime, p - a, and there are among the least
residues (mod p) of

a, 2a, 3a, . . . ,

(
p − 1

2

)
a

exactly g that are greater than (p − 1)/2. Then x2 ≡ a (mod p) has a
solution or no solution according as g is even or odd. That is,
(a/p) = (−1)g .

Proof. Let r1, r2, . . . , rk denote the least residues (mod p) of
a, 2a, . . . ((p − 1)/2))a that are less than or equal to (p − 1)/2, and let
s1, s2, . . . , sg denote those that are greater than (p − 1)/2 (so
k + g = (p − 1)/2). By Euler’s Criterion (Theorem 11.2), the claim will
follow if we show that a(p−1)/2 ≡ (−1)g (mod p).
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Theorem 12.1. Gauss’s Lemma

Theorem 12.1. Gauss’s Lemma (continued 1)

Proof (continued). ASSUME that two of r1, r2, . . . , rk are equal. Then
for some k1 6= k2 with 0 ≤ k1, k2 ≤ (p− 1)/2, we have k1a ≡ k2a (mod p).
Since (a, p) = 1 then by Theorem 4.4 we have k1 ≡ k2 (mod p) and hence
k1 = k2, a CONTRADICTION. So r1, r2, . . . , rk must be distinct. Similarly,
the s1, s2, . . . , sg must be distinct. Now consider the set of number
{r1, r2, . . . , rk , p− s1, p− s2, . . . , p− sg}. Each integer n in the set satisfies
1 ≤ n ≤ (p− 1)/2 and there are up to k + g = (p− 1)/2 distinct elements
in the set. We now show that the numbers in the set are actually distinct.

ASSUME that for some 1 ≤ i ≤ k and 1 ≤ j ≤ g we have ri ≡ p − sj
(mod p). Then ri + sj ≡ p ≡ 0 (mod p). Now ri = ta (mod p) and
sj = ua (mod p) for some t and u positive integers less than or equal to
(p − 1)/2. Then ri + sj ≡ (t + u)a ≡ 0 (mod p) and, since (a, p) = 1 then
by Theorem 4.4 we have t + u ≡ 0 (mod p). But this is a
CONTRADICTION since 2 ≤ t + u ≤ p − 1. So the assumption that two
of the elements in set {r1, r2, . . . , rk , p − s1, p − s2, . . . , p − sg} are equal is
false, and hence the k + g = (p − 1)/2 elements of this set are distinct.
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Theorem 12.1. Gauss’s Lemma

Theorem 12.1. Gauss’s Lemma (continued 2)

Proof (continued). That is, the set
{r1, r2, . . . , rk , p − s1, p − s2, . . . , p − sg} contains exactly the elements
1, 2, . . . , (p − 1)/2. So

r1r2 · · · rk(p − s1)(p − s2) · · · (p − sg ) = 1 · 2 · · · · · ((p − 1)/2).

Because p − sj ≡ −sj (mod p) for all j , then we have

r1r2 · · · rks1s2 · · · sg (−1)g ≡
(

p − 1

2

)
! (mod p). (∗)

Next, since r1, r2, . . . , rk , s1, s2, . . . , sg are (by construction) the least
residues (mod p) of a, 2a, . . . , ((p − 1)/2)a, then the product
r1r2 · · · rks1s2 · · · sg is congruent modulo p to

a(2a)(3a) · · · ((p − 1)/2)a = a(p−1)/2
(

p−1
2

)
!. So by (∗) we have

a(p−1)/2(−1)g
(

p − 1

2

)
! ≡

(
p − 1

2

)
! (mod p).
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Theorem 12.1. Gauss’s Lemma

Theorem 12.1. Gauss’s Lemma (continued 3)

Theorem 12.1. Gauss’s Lemma.
Suppose that p is an odd prime, p - a, and there are among the least

residues (mod p) of a, 2a, 3a, . . . ,

(
p − 1

2

)
a exactly g that are greater

than (p − 1)/2. Then x2 ≡ a (mod p) has a solution or no solution
according as g is even or odd. That is, (a/p) = (−1)g .

Proof (continued). . . .

a(p−1)/2(−1)g
(

p − 1

2

)
! ≡

(
p − 1

2

)
! (mod p).

Since ((p − 1)/2)! is relatively prime to p, then by Theorem 4.4 we have
a(p−1)/2(−1)g ≡ 1 (mod p), or (multiplying both sides by (−1)g )
a(p−1)/2 ≡ (−1)g (mod p). But we know that a(p−1)/2 ≡ (a/p) (mod p)
by Euler’s Criterion (Theorem 4.11), so (a/p) ≡ (−1)g (mod p). Since p
is an odd prime, this implies (a/p) = (−1)g as claimed.
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Theorem 12.2

Theorem 12.2

Theorem 12.2. If p is an odd prime, then

(2/p) = 1 if p ≡ 1 or 7 (mod 8), or (2/p) = −1 if p ≡ 3 or 5 (mod 8).

Proof. We will use Thereom 12.1, and so we consider the multiples of 2
of 2, 4, . . . , p − 1. Let 2a be the first even integer greater than (p − 1)/2.
So between 2 and (p − 1)/2 inclusive) there are a − 1 even integers,
namely 2, 4, 6, . . . , 2a − 2. Now the total number of even integers between
2 and p − 1 is (p − 1)/2, so the number of even numbers greater than
(p − 1)/2 and less than or equal to p − 1 is g = (p − 1)/2− (a − 1).

But
since 2a is the smallest integer greater than (p − 1)/2, then a is the
smallest integer greater than (p − 1)/4 and hence a − 1 is the smallest
integer greater than (p − 5)/4. This implies that −(a − 1) is the largest
integer less than −(p − 5)/4, and so g = (p − 1)/2− (a− 1) is the largest
integer less than (p + 3)/4.
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Theorem 12.2

Theorem 12.2 (continued 1)

Theorem 12.2. If p is an odd prime, then

(2/p) = 1 if p ≡ 1 or 7 (mod 8), or (2/p) = −1 if p ≡ 3 or 5 (mod 8).

Proof (continued). Consider the case when p ≡ 1 (mod 8). Then
p = 8k + 1 for some k, and (p + 3)/4 = (8k + 4)/4 = 2k + 1. Since g is
the largest integer less than (p + 3)/4, then g = 2k and
(−1)g = (−1)2k = 1. By Theorem 12.1, (2/p) = 1 if p ≡ 1 (mod 8).

Consider the case when p ≡ 3 (mod 8). Then p = 8k + 3 for some k, and
(p + 3)/4 = (8k + 6)/4 = 2k + 3/2. Since g is the largest integer less
than (p + 3)/4, then g = 2k + 1 and (−1)g = (−1)2k+1 = −1. By
Theorem 12.1, (2/p) = −1 if p ≡ 3 (mod 8).
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Theorem 12.2 (continued 1)
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Theorem 12.2

Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then

(2/p) = 1 if p ≡ 1 or 7 (mod 8), or (2/p) = −1 if p ≡ 3 or 5 (mod 8).

Proof (continued). Consider the case when p ≡ 5 (mod 8). Then
p = 8k + 4 for some k, and (p + 3)/4 = (8k + 8)/4 = 2k + 2. Since g is
the largest integer less than (p + 3)/4, then g = 2k + 1 and
(−1)g = (−1)2k+1 = −1. By Theorem 12.1, (2/p) = −1 if p ≡ 5 (mod
8).

Consider the case when p ≡ 7 (mod 8). Then p = 8k + 7 for some k, and
(p + 3)/4 = (8k + 10)/4 = 2k + 5/2. Since g is the largest integer less
than (p + 3)/4, then g = 2k + 2 and (−1)g = (−1)2k+2 = 1. By Theorem
12.1, (2/p) = 1 if p ≡ 7 (mod 8).
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Theorem 12.3

Theorem 12.3

Theorem 12.3. If p and 4p + 1 are both primes, then 2 is a primitive root
of 4p + 1.

Proof. Let q = 4p + 1. Since q is prime by hypothesis, then
ϕ(q) = q − 1 = 4p. By Theorem 10.2, the order of 2 divides ϕ(q) so that
2 has order 1, 2, 4, p, 2p, or 4p (mod q).

Now by Euler’s Criterion (Theorem 11.2) 22p ≡ 2(q−1)/2 ≡ (2/q) (mod q).
But p is odd, so 4p ≡ 4 (mod 8), and q ≡ 4p + 1 ≡ 5 (mod 8) so that by
Theorem 12.2 we have that (2/q) = −1 and hence 22p 6≡ 1 (mod q).
That is, the order of 2 is not 2p. Next, the order of 2 (mod q) cannot be
a divisor of 2p or else 22p ≡ 1 (mod q) (by Theorem 10.1), which we just
saw is not the case. Finally, the order of 2 (mod q) cannot be 4, since
24 ≡ 1 (mod q) implies that prime q is 3 or 5, neither of which can be the
case since q = 4p + 1 where p is prime. So the only possible value for the
order of 2 is q − 1 = 4p and so (by definition of “primitive root”) 2 is a
primitive root of q = 4p + 1, as claimed.
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Lemma 12.1

Lemma 12.1

Lemma 12.1. If p and q are different odd primes, then

(p−1)/2∑
k=1

[
kq

p

]
+

(q−1)/2∑
k=1

[
kp

q

]
=

p − 1

2
· q − 1

2
.

Here, [ · ] denotes the greatest integer function.

Proof.

Let S(p, q) =

(p−1)/2∑
k=1

[
kq

p

]
. Then the

claim is S(p, q) + S(q, p) =
(p − 1)(q − 1)

4
.

We give a geometric proof. The figure here
has (p − 1)(q − 1)/4 points with integer
coordinates. Such points lie below the line
y = px/q if their x coordinate is greater
than their y -coordinate.
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Lemma 12.1

Lemma 12.1 (continued 1)

Proof (continued). The x coordinates of the lattice points are
1, 2, . . . , (p − 1)/2 and the y coordinates are 1, 2, . . . (q − 1)/2. There are
(q−1)/2 lattice points with fixed x coordinate k where 1 ≤ k ≤ (p−1)/2.
Consider the line segment {(x , y) | x = k, 0 ≤ y ≤ (q − 1)/2}. This
segment intersects the line y = qx/p at the point (k, qk/p), and the part
of the line segment below line y = qx/p is
{(x , y) | x = k, 0 ≤ y ≤ min{(q − 1)/2, qk/p}}. Since 1 ≤ k ≤ (p − 1)/2,
then qk/p ≤ q(p − 1)/(2p) < q/2 and so [qk/p] ≤ (q − 1)/2. So the
number of lattice points with x coordinate k is [qk/p]. Since k ranges
from 1 to (p − 1)/2, the total number of lattice points below the line is

S(p, q) =

(p−1)/2∑
k=1

[
kq

p

]
. Interchanging p and q, a similar argument shows

that the points to the left of the line is S(q, p) =

(q−1)/2∑
k=1

[
kp

q

]
.
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Lemma 12.1

Lemma 12.1 (continued 2)

Lemma 12.1. If p and q are different odd primes, then

(p−1)/2∑
k=1

[
kq

p

]
+

(q−1)/2∑
k=1

[
kp

q

]
=

p − 1

2
· q − 1

2
.

Here, [ · ] denotes the greatest integer function.

Proof (continued). ASSUME (a, b) is a lattice point on the line
y = qx/p. The b = qa/p or bp = qa; hence p | qa and since (p, q) = 1
then p | a by Euclid’s Lemma (Lemma 2.5); that is, a is a multiple of p.
But 1 ≤ a ≤ (p − 1)/2 since this is a lattice point, and there are no
multiples of p satisfying these inequalities, a CONTRADICTION. So the
assumption that there are lattice points on the line y = qx/p is false, and
the total number of points in the lattice is the sum of the number of those
below the line y = qx/p plus the number of those above the line. Since
the lattice contains (p − 1)(q − 1)/4, the claim follows.

() Elementary Number Theory March 14, 2022 13 / 17



Lemma 12.1

Lemma 12.1 (continued 2)
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Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and q are odd primes, then (p/q)(q/p) = (−1)(p−1)(q−1)/4.

Proof. As with the proof of Gauss’s Lemma (Theorem 12.1), we consider
least residues modulo p of multiples of q, q, 2q, 3q, . . . ((p − 1)/2)q.
Denote these multiples of q less than or equal to (p − 1)/2 as r1, r2, . . . , rk
and denote those greater than (p − 1)/2 as s1, s2, . . . , 2g . The
k + g = (p − 1)/2 and by Gauss’s Lemma we have that the Legendre
symbol satisfies (q/p) = (−1)g .

Let R and S denote the sums
R = r1 + r2 + · · ·+ rk and S = s1 + s2 + · · ·+ sg . It was shown in the
proof of Gauss’s Lemma the set {r1, r2, . . . , rk , p − s1, p − s2, . . . , p − sg}
contains exactly the elements 1, 2, . . . , (p − 1)/2. Summing these two
representations of the same numbers we get:

k∑
j=1

rj +

g∑
j=1

(p − sj) = R + pg − S . . .
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Theorem 12.4. The Quadratic Reciprocity Theorem

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).

(p−1)/2∑
j=1

j =
((p − 1)/2)((p − 1)/2 + 1)

2
=

(p − 1)(p + 1)

8
=

p2 − 1

8
,

so that R + gp − S = (p2 − 1)/8 or R = S − gp + (p2 − 1)/8. The least
residue modulo p of jq (where j ∈ {1, 2, . . . , (p − 1)/2}) is the remainder
when we divide jq by p. We can use the greatest integer function to find
the quotient as [jq/p], so that jq = [jq/p]p + tj where tj denotes the least

residue (mod p) of jq. So
∑(p−1)/2

j=1 tj is the sum of the least residues of
q, 2q, . . . , ((p − 1)/2)q, and hence

(p−1)/2∑
j=1

tj = r1 + r2 + · · · rk + s1 + s2 + · · ·+ sg = R + S .

() Elementary Number Theory March 14, 2022 15 / 17



Theorem 12.4. The Quadratic Reciprocity Theorem

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).
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Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of jq = [jq/p]p + tj gives

(p−1)/2∑
j=1

jq =

(p−1)/2∑
j=1

[jq/p]p +

(p−1)/2∑
j=1

tj

or q

(p−1)/2∑
j=1

jq = p

(p−1)/2∑
j=1

[jq/p] + R + S ,

or q(p2 − 1)/8 = pS(p, q) + R + S , where S(p, q) is defined in Lemma
12.1. From above, R = S − gp + (p2 − 1)/8, we now have
q(p2 − 1)/8 = pS(p, q) + 2S − gp + (p2 − 1)/8 or

(q − 1)(p2 − 1)/8 = p(S(p, q)− g) + 2S . (∗)

Since
∑(p−1)/2

j=1 j = (p2 − 1)/8, then (p2 − 1)/8 is an integer and so the
left-hand side of (∗) is even.
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Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)
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Theorem 12.4. The Quadratic Reciprocity Theorem

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 3)

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and q are odd primes, then (p/q)(q/p) = (−1)(p−1)(q−1)/4.

Proof (continued). So the right-hand side of (∗), p(S(p, q)− g) + 2S , is
even and hence S(p, q)− g is even. Hence (−1)S(p,q)−g = 1, or
(−1)S(p,q) = (−1)g . Since the Legendre symbol satisfies (−1)g = (q/p)
by Gauss’s Lemma (Theorem 12.1, with a = q), then
(−1)S(p,q) = (−1)g = (q/p). Interchanging p and q, we also get that
(−1)S(q,p) = (p/q). Multiplying these last two equations gives
(−1)S(p,q)+S(q,p) = (p/q)(q/p) or, by Lemma 12.1,

(−1)(p−1)(q−1)/4 = (p/q)(q/p),

as claimed.

() Elementary Number Theory March 14, 2022 17 / 17


	Theorem 12.1. Gauss's Lemma
	Theorem 12.2
	Theorem 12.3
	Lemma 12.1
	Theorem 12.4. The Quadratic Reciprocity Theorem

