Elementary Number Theory

Section 12. Quadratic Reciprocity—Proofs of Theorems

Table of contents

(1) Theorem 12.1. Gauss's Lemma
(2) Theorem 12.2
(3) Theorem 12.3
(4) Lemma 12.1
(5) Theorem 12.4. The Quadratic Reciprocity Theorem

Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss's Lemma.

Suppose that p is an odd prime, $p \nmid a$, and there are among the least residues $(\bmod p)$ of

$$
a, 2 a, 3 a, \ldots,\left(\frac{p-1}{2}\right) a
$$

exactly g that are greater than $(p-1) / 2$. Then $x^{2} \equiv a(\bmod p)$ has a solution or no solution according as g is even or odd. That is, $(a / p)=(-1)^{g}$.

Proof. Let $r_{1}, r_{2}, \ldots, r_{k}$ denote the least residues $(\bmod p)$ of $a, 2 a, \ldots((p-1) / 2)) a$ that are less than or equal to $(p-1) / 2$, and let $s_{1}, s_{2}, \ldots, s_{g}$ denote those that are greater than $(p-1) / 2$ (so $k+g=(p-1) / 2)$. By Euler's Criterion (Theorem 11.2), the claim will follow if we show that $a^{(p-1) / 2} \equiv(-1)^{g}(\bmod p)$.

Theorem 12.1. Gauss's Lemma

Theorem 12.1. Gauss's Lemma.

Suppose that p is an odd prime, $p \nmid a$, and there are among the least residues $(\bmod p)$ of

$$
a, 2 a, 3 a, \ldots,\left(\frac{p-1}{2}\right) a
$$

exactly g that are greater than $(p-1) / 2$. Then $x^{2} \equiv a(\bmod p)$ has a solution or no solution according as g is even or odd. That is, $(a / p)=(-1)^{g}$.

Proof. Let $r_{1}, r_{2}, \ldots, r_{k}$ denote the least residues $(\bmod p)$ of $a, 2 a, \ldots((p-1) / 2)) a$ that are less than or equal to $(p-1) / 2$, and let $s_{1}, s_{2}, \ldots, s_{g}$ denote those that are greater than $(p-1) / 2$ (so $k+g=(p-1) / 2)$. By Euler's Criterion (Theorem 11.2), the claim will follow if we show that $a^{(p-1) / 2} \equiv(-1)^{g}(\bmod p)$.

Theorem 12.1. Gauss's Lemma (continued 1)

Proof (continued). ASSUME that two of $r_{1}, r_{2}, \ldots, r_{k}$ are equal. Then for some $k_{1} \neq k_{2}$ with $0 \leq k_{1}, k_{2} \leq(p-1) / 2$, we have $k_{1} a \equiv k_{2} a(\bmod p)$. Since $(a, p)=1$ then by Theorem 4.4 we have $k_{1} \equiv k_{2}(\bmod p)$ and hence $k_{1}=k_{2}$, a CONTRADICTION. So $r_{1}, r_{2}, \ldots, r_{k}$ must be distinct. Similarly, the $s_{1}, s_{2}, \ldots, s_{g}$ must be distinct. Now consider the set of number $\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$. Each integer n in the set satisfies $1 \leq n \leq(p-1) / 2$ and there are up to $k+g=(p-1) / 2$ distinct elements in the set. We now show that the numbers in the set are actually distinct.

ASSUME that for some $1 \leq i \leq k$ and $1 \leq j \leq g$ we have $r_{i} \equiv p-s_{j}$ $(\bmod p)$. Then $r_{i}+s_{j} \equiv p \equiv 0(\bmod p)$. Now $r_{i}=t a(\bmod p)$ and $s_{j}=u a(\bmod p)$ for some t and u positive integers less than or equal to $(p-1) / 2$. Then $r_{i}+s_{j} \equiv(t+u) a \equiv 0(\bmod p)$ and, since $(a, p)=1$ then by Theorem 4.4 we have $t+u \equiv 0(\bmod p)$. But this is a CONTRADICTION since $2 \leq t+u \leq p-1$. So the assumption that two of the elements in set $\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$ are equal is false, and hence the $k+g=(p-1) / 2$ elements of this set are distinct.

Theorem 12.1. Gauss's Lemma (continued 1)

Proof (continued). ASSUME that two of $r_{1}, r_{2}, \ldots, r_{k}$ are equal. Then for some $k_{1} \neq k_{2}$ with $0 \leq k_{1}, k_{2} \leq(p-1) / 2$, we have $k_{1} a \equiv k_{2} a(\bmod p)$. Since $(a, p)=1$ then by Theorem 4.4 we have $k_{1} \equiv k_{2}(\bmod p)$ and hence $k_{1}=k_{2}$, a CONTRADICTION. So $r_{1}, r_{2}, \ldots, r_{k}$ must be distinct. Similarly, the $s_{1}, s_{2}, \ldots, s_{g}$ must be distinct. Now consider the set of number $\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$. Each integer n in the set satisfies $1 \leq n \leq(p-1) / 2$ and there are up to $k+g=(p-1) / 2$ distinct elements in the set. We now show that the numbers in the set are actually distinct.
ASSUME that for some $1 \leq i \leq k$ and $1 \leq j \leq g$ we have $r_{i} \equiv p-s_{j}$ $(\bmod p)$. Then $r_{i}+s_{j} \equiv p \equiv 0(\bmod p)$. Now $r_{i}=t a(\bmod p)$ and $s_{j}=u a(\bmod p)$ for some t and u positive integers less than or equal to $(p-1) / 2$. Then $r_{i}+s_{j} \equiv(t+u) a \equiv 0(\bmod p)$ and, since $(a, p)=1$ then by Theorem 4.4 we have $t+u \equiv 0(\bmod p)$. But this is a
CONTRADICTION since $2 \leq t+u \leq p-1$. So the assumption that two of the elements in set $\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$ are equal is false, and hence the $k+g=(p-1) / 2$ elements of this set are distinct.

Theorem 12.1. Gauss's Lemma (continued 2)

Proof (continued). That is, the set $\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$ contains exactly the elements $1,2, \ldots,(p-1) / 2$. So

$$
r_{1} r_{2} \cdots r_{k}\left(p-s_{1}\right)\left(p-s_{2}\right) \cdots\left(p-s_{g}\right)=1 \cdot 2 \cdots((p-1) / 2) .
$$

Because $p-s_{j} \equiv-s_{j}(\bmod p)$ for all j, then we have

$$
\begin{equation*}
r_{1} r_{2} \cdots r_{k} s_{1} s_{2} \cdots s_{g}(-1)^{g} \equiv\left(\frac{p-1}{2}\right)!(\bmod p) . \tag{*}
\end{equation*}
$$

Next, since $r_{1}, r_{2}, \ldots, r_{k}, s_{1}, s_{2}, \ldots, s_{g}$ are (by construction) the least residues $(\bmod p)$ of $a, 2 a, \ldots,((p-1) / 2) a$, then the product $r_{1} r_{2} \cdots r_{k} s_{1} s_{2} \cdots s_{g}$ is congruent modulo p to $a(2 a)(3 a) \cdots((p-1) / 2) a=a^{(p-1) / 2}\left(\frac{p-1}{2}\right)!$. So by $(*)$ we have

$$
a^{(p-1) / 2}(-1)^{g}\left(\frac{p-1}{2}\right)!\equiv\left(\frac{p-1}{2}\right)!(\bmod p) .
$$

Theorem 12.1. Gauss's Lemma (continued 2)

Proof (continued). That is, the set
$\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$ contains exactly the elements $1,2, \ldots,(p-1) / 2$. So

$$
r_{1} r_{2} \cdots r_{k}\left(p-s_{1}\right)\left(p-s_{2}\right) \cdots\left(p-s_{g}\right)=1 \cdot 2 \cdots((p-1) / 2) .
$$

Because $p-s_{j} \equiv-s_{j}(\bmod p)$ for all j, then we have

$$
\begin{equation*}
r_{1} r_{2} \cdots r_{k} s_{1} s_{2} \cdots s_{g}(-1)^{g} \equiv\left(\frac{p-1}{2}\right)!(\bmod p) . \tag{*}
\end{equation*}
$$

Next, since $r_{1}, r_{2}, \ldots, r_{k}, s_{1}, s_{2}, \ldots, s_{g}$ are (by construction) the least residues $(\bmod p)$ of $a, 2 a, \ldots,((p-1) / 2) a$, then the product $r_{1} r_{2} \cdots r_{k} s_{1} s_{2} \cdots s_{g}$ is congruent modulo p to $a(2 a)(3 a) \cdots((p-1) / 2) a=a^{(p-1) / 2}\left(\frac{p-1}{2}\right)!$. So by $(*)$ we have

$$
a^{(p-1) / 2}(-1)^{g}\left(\frac{p-1}{2}\right)!\equiv\left(\frac{p-1}{2}\right)!(\bmod p) .
$$

Theorem 12.1. Gauss's Lemma (continued 3)

Theorem 12.1. Gauss's Lemma.

Suppose that p is an odd prime, $p \nmid a$, and there are among the least residues $(\bmod p)$ of $a, 2 a, 3 a, \ldots,\left(\frac{p-1}{2}\right)$ a exactly g that are greater than $(p-1) / 2$. Then $x^{2} \equiv a(\bmod p)$ has a solution or no solution according as g is even or odd. That is, $(a / p)=(-1)^{g}$.

Proof (continued). ...

$$
a^{(p-1) / 2}(-1)^{g}\left(\frac{p-1}{2}\right)!\equiv\left(\frac{p-1}{2}\right)!(\bmod p) .
$$

Since $((p-1) / 2)$! is relatively prime to p, then by Theorem 4.4 we have $a^{(p-1) / 2}(-1)^{g} \equiv 1(\bmod p)$, or (multiplying both sides by $\left.(-1)^{g}\right)$ $a^{(p-1) / 2} \equiv(-1)^{g}(\bmod p)$. But we know that $a^{(p-1) / 2} \equiv(a / p)(\bmod p)$ by Euler's Criterion (Theorem 4.11), so $(a / p) \equiv(-1)^{g}(\bmod p)$. Since p is an odd prime, this implies $(a / p)=(-1)^{g}$ as claimed.

Theorem 12.2

Theorem 12.2. If p is an odd prime, then
$(2 / p)=1$ if $p \equiv 1$ or $7(\bmod 8)$, or $(2 / p)=-1$ if $p \equiv 3$ or $5(\bmod 8)$.

Proof. We will use Thereom 12.1, and so we consider the multiples of 2 of $2,4, \ldots, p-1$. Let 2 a be the first even integer greater than $(p-1) / 2$. So between 2 and $(p-1) / 2$ inclusive) there are $a-1$ even integers, namely $2,4,6, \ldots, 2 a-2$. Now the total number of even integers between 2 and $p-1$ is $(p-1) / 2$, so the number of even numbers greater than $(p-1) / 2$ and less than or equal to $p-1$ is $g=(p-1) / 2-(a-1)$.

Theorem 12.2

Theorem 12.2. If p is an odd prime, then
$(2 / p)=1$ if $p \equiv 1$ or $7(\bmod 8)$, or $(2 / p)=-1$ if $p \equiv 3$ or $5(\bmod 8)$.

Proof. We will use Thereom 12.1, and so we consider the multiples of 2 of $2,4, \ldots, p-1$. Let 2 a be the first even integer greater than $(p-1) / 2$. So between 2 and $(p-1) / 2$ inclusive) there are $a-1$ even integers, namely $2,4,6, \ldots, 2 a-2$. Now the total number of even integers between 2 and $p-1$ is $(p-1) / 2$, so the number of even numbers greater than $(p-1) / 2$ and less than or equal to $p-1$ is $g=(p-1) / 2-(a-1)$. But since $2 a$ is the smallest integer greater than $(p-1) / 2$, then a is the smallest integer greater than $(p-1) / 4$ and hence $a-1$ is the smallest integer greater than $(p-5) / 4$. This implies that $-(a-1)$ is the largest integer less than $-(p-5) / 4$, and so $g=(p-1) / 2-(a-1)$ is the largest integer less than $(p+3) / 4$.

Theorem 12.2

Theorem 12.2. If p is an odd prime, then

$$
(2 / p)=1 \text { if } p \equiv 1 \text { or } 7(\bmod 8), \text { or }(2 / p)=-1 \text { if } p \equiv 3 \text { or } 5(\bmod 8) .
$$

Proof. We will use Thereom 12.1, and so we consider the multiples of 2 of $2,4, \ldots, p-1$. Let 2 a be the first even integer greater than $(p-1) / 2$. So between 2 and $(p-1) / 2$ inclusive) there are $a-1$ even integers, namely $2,4,6, \ldots, 2 a-2$. Now the total number of even integers between 2 and $p-1$ is $(p-1) / 2$, so the number of even numbers greater than $(p-1) / 2$ and less than or equal to $p-1$ is $g=(p-1) / 2-(a-1)$. But since $2 a$ is the smallest integer greater than $(p-1) / 2$, then a is the smallest integer greater than $(p-1) / 4$ and hence $a-1$ is the smallest integer greater than $(p-5) / 4$. This implies that $-(a-1)$ is the largest integer less than $-(p-5) / 4$, and so $g=(p-1) / 2-(a-1)$ is the largest integer less than $(p+3) / 4$.

Theorem 12.2 (continued 1)

Theorem 12.2. If p is an odd prime, then

$$
(2 / p)=1 \text { if } p \equiv 1 \text { or } 7(\bmod 8), \text { or }(2 / p)=-1 \text { if } p \equiv 3 \text { or } 5(\bmod 8) .
$$

Proof (continued). Consider the case when $p \equiv 1(\bmod 8)$. Then $p=8 k+1$ for some k, and $(p+3) / 4=(8 k+4) / 4=2 k+1$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k$ and $(-1)^{g}=(-1)^{2 k}=1$. By Theorem 12.1, $(2 / p)=1$ if $p \equiv 1(\bmod 8)$. Consider the case when $p \equiv 3(\bmod 8)$. Then $p=8 k+3$ for some k, and $(p+3) / 4=(8 k+6) / 4=2 k+3 / 2$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k+1$ and $(-1)^{g}=(-1)^{2 k+1}=-1$. By Theorem 12.1, $(2 / p)=-1$ if $p \equiv 3(\bmod 8)$.

Theorem 12.2 (continued 1)

Theorem 12.2. If p is an odd prime, then

$$
(2 / p)=1 \text { if } p \equiv 1 \text { or } 7(\bmod 8), \text { or }(2 / p)=-1 \text { if } p \equiv 3 \text { or } 5(\bmod 8)
$$

Proof (continued). Consider the case when $p \equiv 1(\bmod 8)$. Then $p=8 k+1$ for some k, and $(p+3) / 4=(8 k+4) / 4=2 k+1$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k$ and $(-1)^{g}=(-1)^{2 k}=1$. By Theorem 12.1, $(2 / p)=1$ if $p \equiv 1(\bmod 8)$.

Consider the case when $p \equiv 3(\bmod 8)$. Then $p=8 k+3$ for some k, and $(p+3) / 4=(8 k+6) / 4=2 k+3 / 2$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k+1$ and $(-1)^{g}=(-1)^{2 k+1}=-1$. By Theorem 12.1, $(2 / p)=-1$ if $p \equiv 3(\bmod 8)$.

Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then
$(2 / p)=1$ if $p \equiv 1$ or $7(\bmod 8)$, or $(2 / p)=-1$ if $p \equiv 3$ or $5(\bmod 8)$.

Proof (continued). Consider the case when $p \equiv 5(\bmod 8)$. Then $p=8 k+4$ for some k, and $(p+3) / 4=(8 k+8) / 4=2 k+2$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k+1$ and $(-1)^{g}=(-1)^{2 k+1}=-1$. By Theorem 12.1, $(2 / p)=-1$ if $p \equiv 5(\bmod$ 8).

Consider the case when $p \equiv 7(\bmod 8)$. Then $p=8 k+7$ for some k, and $(p+3) / 4=(8 k+10) / 4=2 k+5 / 2$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k+2$ and $(-1)^{g}=(-1)^{2 k+2}=1$. By Theorem 12.1, $(2 / p)=1$ if $p \equiv 7(\bmod 8)$.

Theorem 12.2 (continued 2)

Theorem 12.2. If p is an odd prime, then
$(2 / p)=1$ if $p \equiv 1$ or $7(\bmod 8)$, or $(2 / p)=-1$ if $p \equiv 3$ or $5(\bmod 8)$.

Proof (continued). Consider the case when $p \equiv 5(\bmod 8)$. Then $p=8 k+4$ for some k, and $(p+3) / 4=(8 k+8) / 4=2 k+2$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k+1$ and $(-1)^{g}=(-1)^{2 k+1}=-1$. By Theorem 12.1, $(2 / p)=-1$ if $p \equiv 5(\bmod$ 8).

Consider the case when $p \equiv 7(\bmod 8)$. Then $p=8 k+7$ for some k, and $(p+3) / 4=(8 k+10) / 4=2 k+5 / 2$. Since g is the largest integer less than $(p+3) / 4$, then $g=2 k+2$ and $(-1)^{g}=(-1)^{2 k+2}=1$. By Theorem $12.1,(2 / p)=1$ if $p \equiv 7(\bmod 8)$.

Theorem 12.3

Theorem 12.3. If p and $4 p+1$ are both primes, then 2 is a primitive root of $4 p+1$.

Proof. Let $q=4 p+1$. Since q is prime by hypothesis, then
$\varphi(q)=q-1=4 p$. By Theorem 10.2, the order of 2 divides $\varphi(q)$ so that 2 has order $1,2,4, p, 2 p$, or $4 p(\bmod q)$.

Theorem 12.3

Theorem 12.3. If p and $4 p+1$ are both primes, then 2 is a primitive root of $4 p+1$.

Proof. Let $q=4 p+1$. Since q is prime by hypothesis, then $\varphi(q)=q-1=4 p$. By Theorem 10.2, the order of 2 divides $\varphi(q)$ so that 2 has order $1,2,4, p, 2 p$, or $4 p(\bmod q)$. Now by Euler's Criterion (Theorem 11.2) $2^{2 p} \equiv 2^{(q-1) / 2} \equiv(2 / q)(\bmod q)$. But p is odd, so $4 p \equiv 4(\bmod 8)$, and $q \equiv 4 p+1 \equiv 5(\bmod 8)$ so that by Theorem 12.2 we have that $(2 / q)=-1$ and hence $2^{2 p} \not \equiv 1(\bmod q)$. That is, the order of 2 is not $2 p$. Next, the order of $2(\bmod q)$ cannot be a divisor of $2 p$ or else $2^{2 p} \equiv 1(\bmod q)$ (by Theorem 10.1$)$, which we just saw is not the case. Finally, the order of $2(\bmod q)$ cannot be 4 , since $2^{4} \equiv 1(\bmod q)$ implies that prime q is 3 or 5 , neither of which can be the case since $q=4 p+1$ where p is prime. So the only possible value for the order of 2 is $q-1=4 p$ and so (by definition of "primitive root") 2 is a primitive root of $q=4 p+1$, as claimed.

Theorem 12.3

Theorem 12.3. If p and $4 p+1$ are both primes, then 2 is a primitive root of $4 p+1$.

Proof. Let $q=4 p+1$. Since q is prime by hypothesis, then $\varphi(q)=q-1=4 p$. By Theorem 10.2, the order of 2 divides $\varphi(q)$ so that 2 has order $1,2,4, p, 2 p$, or $4 p(\bmod q)$.

Now by Euler's Criterion (Theorem 11.2) $2^{2 p} \equiv 2^{(q-1) / 2} \equiv(2 / q)(\bmod q)$. But p is odd, so $4 p \equiv 4(\bmod 8)$, and $q \equiv 4 p+1 \equiv 5(\bmod 8)$ so that by Theorem 12.2 we have that $(2 / q)=-1$ and hence $2^{2 p} \not \equiv 1(\bmod q)$. That is, the order of 2 is not $2 p$. Next, the order of $2(\bmod q)$ cannot be a divisor of $2 p$ or else $2^{2 p} \equiv 1(\bmod q)$ (by Theorem 10.1$)$, which we just saw is not the case. Finally, the order of $2(\bmod q)$ cannot be 4 , since $2^{4} \equiv 1(\bmod q)$ implies that prime q is 3 or 5 , neither of which can be the case since $q=4 p+1$ where p is prime. So the only possible value for the order of 2 is $q-1=4 p$ and so (by definition of "primitive root") 2 is a primitive root of $q=4 p+1$, as claimed.

Lemma 12.1

Lemma 12.1. If p and q are different odd primes, then

$$
\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]+\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

Here, [•] denotes the greatest integer function.

Lemma 12.1

Lemma 12.1. If p and q are different odd primes, then

$$
\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]+\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

Here, [•] denotes the greatest integer function.

Proof.

 has $(p-1)(q-1) / 4$ points with integer coordinates. Such points lie below the line $y=p x / q$ if their x coordinate is greater

Lemma 12.1

Lemma 12.1. If p and q are different odd primes, then

$$
\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]+\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

Here, [•] denotes the greatest integer function.

Proof.

Let $S(p, q)=\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]$. Then the
claim is $S(p, q)+S(q, p)=\frac{(p-1)(q-1)}{4}$. We give a geometric proof. The figure here has $(p-1)(q-1) / 4$ points with integer coordinates. Such points lie below the line $y=p x / q$ if their x coordinate is greater than their y-coordinate.

Lemma 12.1 (continued 1)

Proof (continued). The x coordinates of the lattice points are $1,2, \ldots,(p-1) / 2$ and the y coordinates are $1,2, \ldots(q-1) / 2$. There are $(q-1) / 2$ lattice points with fixed x coordinate k where $1 \leq k \leq(p-1) / 2$. Consider the line segment $\{(x, y) \mid x=k, 0 \leq y \leq(q-1) / 2\}$. This segment intersects the line $y=q x / p$ at the point $(k, q k / p)$, and the part of the line segment below line $y=q x / p$ is $\{(x, y) \mid x=k, 0 \leq y \leq \min \{(q-1) / 2, q k / p\}\}$. Since $1 \leq k \leq(p-1) / 2$, then $q k / p \leq q(p-1) /(2 p)<q / 2$ and so $[q k / p] \leq(q-1) / 2$. So the number of lattice points with x coordinate k is $[q k / p]$. Since k ranges from 1 to $(p-1) / 2$, the total number of lattice points below the line is $S(p, q)=$

Interchanging p and q, a similar argument shows
that the points to the left of the line is $S(q, p)=$

Lemma 12.1 (continued 1)

Proof (continued). The x coordinates of the lattice points are $1,2, \ldots,(p-1) / 2$ and the y coordinates are $1,2, \ldots(q-1) / 2$. There are $(q-1) / 2$ lattice points with fixed x coordinate k where $1 \leq k \leq(p-1) / 2$. Consider the line segment $\{(x, y) \mid x=k, 0 \leq y \leq(q-1) / 2\}$. This segment intersects the line $y=q x / p$ at the point $(k, q k / p)$, and the part of the line segment below line $y=q x / p$ is $\{(x, y) \mid x=k, 0 \leq y \leq \min \{(q-1) / 2, q k / p\}\}$. Since $1 \leq k \leq(p-1) / 2$, then $q k / p \leq q(p-1) /(2 p)<q / 2$ and so $[q k / p] \leq(q-1) / 2$. So the number of lattice points with x coordinate k is $[q k / p]$. Since k ranges from 1 to $(p-1) / 2$, the total number of lattice points below the line is $S(p, q)=\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]$. Interchanging p and q, a similar argument shows that the points to the left of the line is $S(q, p)=\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]$.

Lemma 12.1 (continued 2)

Lemma 12.1. If p and q are different odd primes, then

$$
\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]+\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

Here, [•] denotes the greatest integer function.
Proof (continued). $\operatorname{ASSUME}(a, b)$ is a lattice point on the line $y=q x / p$. The $b=q a / p$ or $b p=q a$; hence $p \mid q a$ and since $(p, q)=1$ then $p \mid a$ by Euclid's Lemma (Lemma 2.5); that is, a is a multiple of p. But $1 \leq a \leq(p-1) / 2$ since this is a lattice point, and there are no multiples of p satisfying these inequalities, a CONTRADICTION. So the assumption that there are lattice points on the line $y=q x / p$ is false, and the total number of points in the lattice is the sum of the number of those below the line $y=q x / p$ plus the number of those above the line. Since the lattice contains $(p-1)(q-1) / 4$, the claim follows.

Lemma 12.1 (continued 2)

Lemma 12.1. If p and q are different odd primes, then

$$
\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]+\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

Here, [•] denotes the greatest integer function.
Proof (continued). $\operatorname{ASSUME}(a, b)$ is a lattice point on the line $y=q x / p$. The $b=q a / p$ or $b p=q a$; hence $p \mid q a$ and since $(p, q)=1$ then $p \mid a$ by Euclid's Lemma (Lemma 2.5); that is, a is a multiple of p. But $1 \leq a \leq(p-1) / 2$ since this is a lattice point, and there are no multiples of p satisfying these inequalities, a CONTRADICTION. So the assumption that there are lattice points on the line $y=q x / p$ is false, and the total number of points in the lattice is the sum of the number of those below the line $y=q x / p$ plus the number of those above the line. Since the lattice contains $(p-1)(q-1) / 4$, the claim follows.

Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem. If p and q are odd primes, then $(p / q)(q / p)=(-1)^{(p-1)(q-1) / 4}$.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider least residues modulo p of multiples of $q, q, 2 q, 3 q, \ldots((p-1) / 2) q$. Denote these multiples of q less than or equal to $(p-1) / 2$ as $r_{1}, r_{2}, \ldots, r_{k}$ and denote those greater than $(p-1) / 2$ as $s_{1}, s_{2}, \ldots, 2_{g}$. The $k+g=(p-1) / 2$ and by Gauss's Lemma we have that the Legendre symbol satisfies $(q / p)=(-1)^{g}$.

Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem. If p and q are odd primes, then $(p / q)(q / p)=(-1)^{(p-1)(q-1) / 4}$.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider least residues modulo p of multiples of $q, q, 2 q, 3 q, \ldots((p-1) / 2) q$. Denote these multiples of q less than or equal to $(p-1) / 2$ as $r_{1}, r_{2}, \ldots, r_{k}$ and denote those greater than $(p-1) / 2$ as $s_{1}, s_{2}, \ldots, 2_{g}$. The $k+g=(p-1) / 2$ and by Gauss's Lemma we have that the Legendre symbol satisfies $(q / p)=(-1)^{g}$. Let R and S denote the sums $R=r_{1}+r_{2}+\cdots+r_{k}$ and $S=s_{1}+s_{2}+\cdots+s_{g}$. It was shown in the proof of Gauss's Lemma the set $\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$ contains exactly the elements $1,2, \ldots,(p-1) / 2$. Summing these two representations of the same numbers we get:

Theorem 12.4. Quadratic Reciprocity Theorem

Theorem 12.4. The Quadratic Reciprocity Theorem. If p and q are odd primes, then $(p / q)(q / p)=(-1)^{(p-1)(q-1) / 4}$.

Proof. As with the proof of Gauss's Lemma (Theorem 12.1), we consider least residues modulo p of multiples of $q, q, 2 q, 3 q, \ldots((p-1) / 2) q$. Denote these multiples of q less than or equal to $(p-1) / 2$ as $r_{1}, r_{2}, \ldots, r_{k}$ and denote those greater than $(p-1) / 2$ as $s_{1}, s_{2}, \ldots, 2_{g}$. The $k+g=(p-1) / 2$ and by Gauss's Lemma we have that the Legendre symbol satisfies $(q / p)=(-1)^{g}$. Let R and S denote the sums $R=r_{1}+r_{2}+\cdots+r_{k}$ and $S=s_{1}+s_{2}+\cdots+s_{g}$. It was shown in the proof of Gauss's Lemma the set $\left\{r_{1}, r_{2}, \ldots, r_{k}, p-s_{1}, p-s_{2}, \ldots, p-s_{g}\right\}$ contains exactly the elements $1,2, \ldots,(p-1) / 2$. Summing these two representations of the same numbers we get:

$$
\sum_{j=1}^{k} r_{j}+\sum_{j=1}^{g}\left(p-s_{j}\right)=R+p g-S \ldots
$$

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).

$$
\sum_{j=1}^{(p-1) / 2} j=\frac{((p-1) / 2)((p-1) / 2+1)}{2}=\frac{(p-1)(p+1)}{8}=\frac{p^{2}-1}{8},
$$

so that $R+g p-S=\left(p^{2}-1\right) / 8$ or $R=S-g p+\left(p^{2}-1\right) / 8$. The least residue modulo p of $j q$ (where $j \in\{1,2, \ldots,(p-1) / 2\}$) is the remainder when we divide $j q$ by p. We can use the greatest integer function to find the quotient as $[j q / p]$, so that $j q=[j q / p] p+t_{j}$ where t_{j} denotes the least residue $(\bmod p)$ of $j q$. So $\sum_{j=1}^{(p-1) / 2} t_{j}$ is the sum of the least residues of $q, 2 q, \ldots,((p-1) / 2) q$, and hence

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 1)

Proof (continued).

$$
\sum_{j=1}^{(p-1) / 2} j=\frac{((p-1) / 2)((p-1) / 2+1)}{2}=\frac{(p-1)(p+1)}{8}=\frac{p^{2}-1}{8}
$$

so that $R+g p-S=\left(p^{2}-1\right) / 8$ or $R=S-g p+\left(p^{2}-1\right) / 8$. The least residue modulo p of $j q$ (where $j \in\{1,2, \ldots,(p-1) / 2\}$) is the remainder when we divide $j q$ by p. We can use the greatest integer function to find the quotient as $[j q / p]$, so that $j q=[j q / p] p+t_{j}$ where t_{j} denotes the least residue $(\bmod p)$ of $j q$. So $\sum_{j=1}^{(p-1) / 2} t_{j}$ is the sum of the least residues of $q, 2 q, \ldots,((p-1) / 2) q$, and hence

$$
\sum_{j=1}^{(p-1) / 2} t_{j}=r_{1}+r_{2}+\cdots r_{k}+s_{1}+s_{2}+\cdots+s_{g}=R+S
$$

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of $j q=[j q / p] p+t_{j}$ gives

$$
\begin{gathered}
\sum_{j=1}^{(p-1) / 2} j q=\sum_{j=1}^{(p-1) / 2}[j q / p] p+\sum_{j=1}^{(p-1) / 2} t_{j} \\
\text { or } q \sum_{j=1}^{(p-1) / 2} j q=p \sum_{j=1}^{(p-1) / 2}[j q / p]+R+S
\end{gathered}
$$

or $q\left(p^{2}-1\right) / 8=p S(p, q)+R+S$, where $S(p, q)$ is defined in Lemma 12.1. From above, $R=S-g p+\left(p^{2}-1\right) / 8$, we now have $q\left(p^{2}-1\right) / 8=p S(p, q)+2 S-g p+\left(p^{2}-1\right) / 8$ or

$$
\begin{equation*}
(q-1)\left(p^{2}-1\right) / 8=p(S(p, q)-g)+2 S . \tag{*}
\end{equation*}
$$

Since $\sum_{j=1}^{(p-1) / 2} j=\left(p^{2}-1\right) / 8$, then $\left(p^{2}-1\right) / 8$ is an integer and so the left-hand side of $(*)$ is even.

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 2)

Proof (continued). Summing both sides of $j q=[j q / p] p+t_{j}$ gives

$$
\begin{gathered}
\sum_{j=1}^{(p-1) / 2} j q=\sum_{j=1}^{(p-1) / 2}[j q / p] p+\sum_{j=1}^{(p-1) / 2} t_{j} \\
\text { or } q \sum_{j=1}^{(p-1) / 2} j q=p \sum_{j=1}^{(p-1) / 2}[j q / p]+R+S
\end{gathered}
$$

or $q\left(p^{2}-1\right) / 8=p S(p, q)+R+S$, where $S(p, q)$ is defined in Lemma 12.1. From above, $R=S-g p+\left(p^{2}-1\right) / 8$, we now have $q\left(p^{2}-1\right) / 8=p S(p, q)+2 S-g p+\left(p^{2}-1\right) / 8$ or

$$
\begin{equation*}
(q-1)\left(p^{2}-1\right) / 8=p(S(p, q)-g)+2 S . \tag{*}
\end{equation*}
$$

Since $\sum_{j=1}^{(p-1) / 2} j=\left(p^{2}-1\right) / 8$, then $\left(p^{2}-1\right) / 8$ is an integer and so the left-hand side of $(*)$ is even.

Theorem 12.4. Quadratic Reciprocity Theorem (cont. 3)

Theorem 12.4. The Quadratic Reciprocity Theorem.
If p and q are odd primes, then $(p / q)(q / p)=(-1)^{(p-1)(q-1) / 4}$.

Proof (continued). So the right-hand side of $(*), p(S(p, q)-g)+2 S$, is even and hence $S(p, q)-g$ is even. Hence $(-1)^{S(p, q)-g}=1$, or $(-1)^{S(p, q)}=(-1)^{g}$. Since the Legendre symbol satisfies $(-1)^{g}=(q / p)$ by Gauss's Lemma (Theorem 12.1, with $a=q$), then $(-1)^{S(p, q)}=(-1)^{g}=(q / p)$. Interchanging p and q, we also get that $(-1)^{S(q, p)}=(p / q)$. Multiplying these last two equations gives $(-1)^{S(p, q)+S(q, p)}=(p / q)(q / p)$ or, by Lemma 12.1,

$$
(-1)^{(p-1)(q-1) / 4}=(p / q)(q / p)
$$

as claimed.

