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Theorem 13.1

Theorem 13.1

Theorem 13.1. Every positive integer can be written as a sum of distinct
powers of 2.

Proof. Let n be a positive integer. We prove the result by induction. For
base cases, we have 1 = 20, 2 = 21, and 3 = 21 + 20, so that the claim is
true if the integer is 1, 2, or 3. For the induction hypothesis suppose that
every integer k, with k ≤ n− 1, can be written as a sum of distinct powers
of 2. Consider integer k = n. Now there is an integer r such that
2r ≤ n < 2r+1 (because n lies between two distinct powers of 2). That is,
the largest power of 2 that is not larger than n is 2r .

Let n′ = n− 2r . Then
n′ ≤ n − 1 and so by the induction hypothesis we know that n′ can be
written as the sum of distinct powers of 2: n′ = 2e1 + 2e2 + · · ·+ 2ek where
ei 6= ej for i 6= j . Since n′ = n− 2r , we have n = 2r + 2e1 + 2e2 + · · ·+ 2ek

so that n can be written as a sum of powers of 2. Finally, we show that
the powers of 2 are distinct; that is, r 6= ei for i = 1, 2, . . . , k.
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Theorem 13.1

Theorem 13.1 (continued)

Theorem 13.1. Every positive integer can be written as a sum of distinct
powers of 2.

Proof (continued). ASSUME r = ej for some 1 ≤ j ≤ k. Then

n = 2r + 2e1 + 2e2 + · · ·+ 2ek

= 2e1 + 2e2 + · · ·+ 2ej−1 + 2 · 2r + 2ej+1 + · · ·+ 2ek .

But then 2 · 2r = 2r+1 ≤ n, CONTRADICTING the choice of r as the
largest exponent such that 2r ≤ n. So the assumption that r = ej for
some 1 ≤ j ≤ k is false. That is, n = 2r + 2e1 + 2e2 + · · ·+ 2ek is a sum of
distinct powers of 2. Therefore, by induction, we have that the claim holds
for every positive integer n, as claimed.
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Theorem 13.2

Theorem 13.2

Theorem 13.2. Every positive integer can be written as the sum of the
distinct powers of 2 in only one way.

Proof. Suppose that n has two representations as a sum of distinct
powers of 2. Then

n = d0 + d1 · 2 + d2 · 22 + · · · dk · 2k = e0 + e1 · 2 + e2 · 22 + · · ·+ ek · 2k ,

where each di and each ei is either 0 or 1 (representing absence or
presence, respectively, of the power of 2). Notice that we can assume
without loss of generality we can assume that both representations go up
to power k, since we can use coefficients of 0.

Subtracting the
representations gives

0 = (d0 − e0) + (d1 − e1) · 2 + (d2 − e2) · 22 + · · ·+ (dk − ek) · 2k . (∗)

By Lemma 2.1 we can conclude that 2 | (d0 − e0). But since d0 and e0 are
each either 0 or 1, then d0 − e0 ∈ {−1, 0, 1} and so we must have
d0 − e0 = 0, or d0 = e0.
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Theorem 13.2

Theorem 13.2 (continued)

Theorem 13.2. Every positive integer can be written as the sum of the
distinct powers of 2 in only one way.

Proof (continued). . . .

0 = (d0 − e0) + (d1 − e1) · 2 + (d2 − e2) · 22 + · · ·+ (dk − ek) · 2k . (∗)

Now we substitute d0 − e0 = 0 into (∗) and divide both sides by 2 to get

0 = (d1 − e1) + (d2 − e2) · 2 + · · ·+ (dk − ek) · 2k−1. (∗∗)

The same argument as above implies that d1 − e1 = 0. Iterating this
process, we similarly get di − ei = 0 for each 1 ≤ i ≤ k. That is, di = ei

for 1 ≤ i ≤ k and hence the two representations of n are the same. That
is, every positive integer can be written as the sum of the distinct powers
of 2 in at most one way, as claimed.
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Theorem 13.2 (continued)
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Theorem 13.3

Theorem 13.3

Theorem 13.3. Let b ≥ 2 be any integer (called the base). Any positive
integer n can be written uniquely in the base b; that is, in the form

n = d0 + d1 · b + d2 · b2 + · · ·+ dk · bk

for some k, with 0 ≤ di < b for i ∈ {0, 1, 2, . . . , k}.
Proof. Let n be a positive integer. We divide n by b to get, by the
Division Algorithm (Theorem 1.2), n = q1b + d0 where 0 ≤ d0 < b. Next,
we divide the quotient q1 by b to get q1 = q2b + d1 where 0 ≤ d1 < b.
Continuing the process we have

q2 = q3b + d2 where 0 ≤ d2 < b,

q3 = q4b + d3 where 0 ≤ d3 < b,

etc. Since n > q1 > q2 > · · · and each qi is nonnegative, then the
sequence of qi ’s must terminate at some i = k, where qk = 0 · b + dk

where 0 ≤ dk < b.
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Theorem 13.3

Theorem 13.3 (continued 1)

Theorem 13.3. Let b ≥ 2 be any integer (called the base). Any positive
integer n can be written uniquely in the base b; that is, in the form

n = d0 + d1 · b + d2 · b2 + · · ·+ dk · bk

for some k, with 0 ≤ di < b for i ∈ {0, 1, 2, . . . , k}.
Proof (continued). Combining these results gives

n = d0 + q1b = d0 + (d1 + q2b)b = d0 + d1b + q2b
2

= d0 + d1b + (d2 + d3b)b2 = d0 + d1b + d2b
2 + q3b

3

= d0 + d1b + d2b
2 + (d3 + d4b)b3 = d0 + d1b + d2b

2 + d3b
3 + d4b

4

...

= d0 + d1b + d2b
2 + d3b

3 + · · ·+ dkbk ,

so a representation exists.
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Theorem 13.3

Theorem 13.3 (continued 2)

Proof (continued). To show uniqueness of the representation, suppose
we have two representations of n base b,

n = d0+d1b+d2b
2+d3b

3+· · ·+dkbk = e0+e1b+e2b
2+e3b

3+· · ·+ekbk ,

where 0 ≤ di < b and 0 ≤ ei < b for i = 0, 1, 2, . . . , k. Subtracting the
representations gives

0 = (d0−e0)+(d1−e1)b+(d2−e2)b
2+(d3−e3)b

3+· · ·+(dk−ek)bk . (∗)

By Lemma 2.1 we can conclude that b | (d0 − e0). But since d0 and e0 are
each either 0, 1, 2, . . . , b − 1, then
d0 − e0 ∈ {−b + 1,−b + 2, . . . ,−1, 0, 1, . . . , b − 1} and so we must have
d0 − e0 = 0, or d0 = e0. Now we substitute d0 − e0 = 0 into (∗) and
divide both sides by b to get

0 = (d1 − e1) + (d2 − e2) · 2 + · · ·+ (dk − ek) · 2k−1. (∗∗)

The same argument as above implies that d1 − e1 = 0.
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Theorem 13.3

Theorem 13.3 (continued 3)

Theorem 13.3. Let b ≥ 2 be any integer (called the base). Any positive
integer n can be written uniquely in the base b; that is, in the form

n = d0 + d1 · b + d2 · b2 + · · ·+ dk · bk

for some k, with 0 ≤ di < b for i ∈ {0, 1, 2, . . . , k}.

Proof (continued). Iterating this process, we similarly get di − ei = 0 for
each 1 ≤ i ≤ k. That is, di = ei for 1 ≤ i ≤ k and hence the two
representations of n are the same. That is, every positive integer has a
unique representation base b, as claimed.
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