## Elementary Number Theory

Section 13. Numbers in Other Bases—Proofs of Theorems


## Table of contents

(1) Theorem 13.1
(2) Theorem 13.2
(3) Theorem 13.3

## Theorem 13.1

Theorem 13.1. Every positive integer can be written as a sum of distinct powers of 2 .

Proof. Let $n$ be a positive integer. We prove the result by induction. For base cases, we have $1=2^{0}, 2=2^{1}$, and $3=2^{1}+2^{0}$, so that the claim is true if the integer is 1,2 , or 3 . For the induction hypothesis suppose that every integer $k$, with $k \leq n-1$, can be written as a sum of distinct powers of 2. Consider integer $k=n$. Now there is an integer $r$ such that $2^{r} \leq n<2^{r+1}$ (because $n$ lies between two distinct powers of 2 ). That is, the largest power of 2 that is not larger than $n$ is $2^{r}$

## Theorem 13.1

Theorem 13.1. Every positive integer can be written as a sum of distinct powers of 2 .

Proof. Let $n$ be a positive integer. We prove the result by induction. For base cases, we have $1=2^{0}, 2=2^{1}$, and $3=2^{1}+2^{0}$, so that the claim is true if the integer is 1,2 , or 3 . For the induction hypothesis suppose that every integer $k$, with $k \leq n-1$, can be written as a sum of distinct powers of 2. Consider integer $k=n$. Now there is an integer $r$ such that $2^{r} \leq n<2^{r+1}$ (because $n$ lies between two distinct powers of 2 ). That is, the largest power of 2 that is not larger than $n$ is $2^{r}$. Let $n^{\prime}=n-2^{r}$. Then $n^{\prime} \leq n-1$ and so by the induction hypothesis we know that $n^{\prime}$ can be written as the sum of distinct powers of $2: n^{\prime}=2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{k}}$ where $e_{i} \neq e_{j}$ for $i \neq j$. Since $n^{\prime}=n-2^{r}$, we have $n=2^{r}+2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{k}}$
so that $n$ can be written as a sum of powers of 2. Finally, we show that the powers of 2 are distinct; that is, $r \neq e_{i}$ for $i=1,2, \ldots, k$.

## Theorem 13.1

Theorem 13.1. Every positive integer can be written as a sum of distinct powers of 2 .

Proof. Let $n$ be a positive integer. We prove the result by induction. For base cases, we have $1=2^{0}, 2=2^{1}$, and $3=2^{1}+2^{0}$, so that the claim is true if the integer is 1,2 , or 3 . For the induction hypothesis suppose that every integer $k$, with $k \leq n-1$, can be written as a sum of distinct powers of 2. Consider integer $k=n$. Now there is an integer $r$ such that $2^{r} \leq n<2^{r+1}$ (because $n$ lies between two distinct powers of 2 ). That is, the largest power of 2 that is not larger than $n$ is $2^{r}$. Let $n^{\prime}=n-2^{r}$. Then $n^{\prime} \leq n-1$ and so by the induction hypothesis we know that $n^{\prime}$ can be written as the sum of distinct powers of $2: n^{\prime}=2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{k}}$ where $e_{i} \neq e_{j}$ for $i \neq j$. Since $n^{\prime}=n-2^{r}$, we have $n=2^{r}+2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{k}}$ so that $n$ can be written as a sum of powers of 2 . Finally, we show that the powers of 2 are distinct; that is, $r \neq e_{i}$ for $i=1,2, \ldots, k$.

## Theorem 13.1 (continued)

Theorem 13.1. Every positive integer can be written as a sum of distinct powers of 2 .

Proof (continued). ASSUME $r=e_{j}$ for some $1 \leq j \leq k$. Then

$$
\begin{aligned}
n & =2^{r}+2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{k}} \\
& =2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{j-1}}+2 \cdot 2^{r}+2^{e_{j+1}}+\cdots+2^{e_{k}} .
\end{aligned}
$$

But then $2 \cdot 2^{r}=2^{r+1} \leq n$, CONTRADICTING the choice of $r$ as the largest exponent such that $2^{r} \leq n$. So the assumption that $r=e_{j}$ for some $1 \leq j \leq k$ is false. That is, $n=2^{r}+2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{k}}$ is a sum of distinct powers of 2 . Therefore, by induction, we have that the claim holds for every positive integer $n$, as claimed.

## Theorem 13.2

Theorem 13.2. Every positive integer can be written as the sum of the distinct powers of 2 in only one way.

Proof. Suppose that $n$ has two representations as a sum of distinct powers of 2. Then
$n=d_{0}+d_{1} \cdot 2+d_{2} \cdot 2^{2}+\cdots d_{k} \cdot 2^{k}=e_{0}+e_{1} \cdot 2+e_{2} \cdot 2^{2}+\cdots+e_{k} \cdot 2^{k}$,
where each $d_{i}$ and each $e_{i}$ is either 0 or 1 (representing absence or presence, respectively, of the power of 2). Notice that we can assume without loss of generality we can assume that both representations go up to power $k$, since we can use coefficients of 0 .

## Theorem 13.2

Theorem 13.2. Every positive integer can be written as the sum of the distinct powers of 2 in only one way.

Proof. Suppose that $n$ has two representations as a sum of distinct powers of 2. Then
$n=d_{0}+d_{1} \cdot 2+d_{2} \cdot 2^{2}+\cdots d_{k} \cdot 2^{k}=e_{0}+e_{1} \cdot 2+e_{2} \cdot 2^{2}+\cdots+e_{k} \cdot 2^{k}$,
where each $d_{i}$ and each $e_{i}$ is either 0 or 1 (representing absence or presence, respectively, of the power of 2 ). Notice that we can assume without loss of generality we can assume that both representations go up to power $k$, since we can use coefficients of 0 . Subtracting the representations gives


By Lemma 2.1 we can conclude that $2 \mid\left(d_{0}-e_{0}\right)$. But since $d_{0}$ and $e_{0}$ are each either 0 or 1 , then $d_{0}-e_{0} \in\{-1,0,1\}$ and so we must have $d_{0}-e_{0}=0$, or $d_{0}=e_{0}$.

## Theorem 13.2

Theorem 13.2. Every positive integer can be written as the sum of the distinct powers of 2 in only one way.

Proof. Suppose that $n$ has two representations as a sum of distinct powers of 2. Then
$n=d_{0}+d_{1} \cdot 2+d_{2} \cdot 2^{2}+\cdots d_{k} \cdot 2^{k}=e_{0}+e_{1} \cdot 2+e_{2} \cdot 2^{2}+\cdots+e_{k} \cdot 2^{k}$,
where each $d_{i}$ and each $e_{i}$ is either 0 or 1 (representing absence or presence, respectively, of the power of 2). Notice that we can assume without loss of generality we can assume that both representations go up to power $k$, since we can use coefficients of 0 . Subtracting the representations gives

$$
\begin{equation*}
0=\left(d_{0}-e_{0}\right)+\left(d_{1}-e_{1}\right) \cdot 2+\left(d_{2}-e_{2}\right) \cdot 2^{2}+\cdots+\left(d_{k}-e_{k}\right) \cdot 2^{k} \tag{*}
\end{equation*}
$$

By Lemma 2.1 we can conclude that $2 \mid\left(d_{0}-e_{0}\right)$. But since $d_{0}$ and $e_{0}$ are each either 0 or 1 , then $d_{0}-e_{0} \in\{-1,0,1\}$ and so we must have $d_{0}-e_{0}=0$, or $d_{0}=e_{0}$.

## Theorem 13.2 (continued)

Theorem 13.2. Every positive integer can be written as the sum of the distinct powers of 2 in only one way.

## Proof (continued). . .

$$
\begin{equation*}
0=\left(d_{0}-e_{0}\right)+\left(d_{1}-e_{1}\right) \cdot 2+\left(d_{2}-e_{2}\right) \cdot 2^{2}+\cdots+\left(d_{k}-e_{k}\right) \cdot 2^{k} . \tag{*}
\end{equation*}
$$

Now we substitute $d_{0}-e_{0}=0$ into $(*)$ and divide both sides by 2 to get

$$
0=\left(d_{1}-e_{1}\right)+\left(d_{2}-e_{2}\right) \cdot 2+\cdots+\left(d_{k}-e_{k}\right) \cdot 2^{k-1} . \quad(* *)
$$

The same argument as above implies that $d_{1}-e_{1}=0$. Iterating this process, we similarly get $d_{i}-e_{i}=0$ for each $1 \leq i \leq k$. That is, $d_{i}=e_{i}$ for $1 \leq i \leq k$ and hence the two representations of $n$ are the same. That is, every positive integer can be written as the sum of the distinct powers of 2 in at most one way, as claimed.

## Theorem 13.2 (continued)

Theorem 13.2. Every positive integer can be written as the sum of the distinct powers of 2 in only one way.

## Proof (continued). . .

$$
\begin{equation*}
0=\left(d_{0}-e_{0}\right)+\left(d_{1}-e_{1}\right) \cdot 2+\left(d_{2}-e_{2}\right) \cdot 2^{2}+\cdots+\left(d_{k}-e_{k}\right) \cdot 2^{k} . \tag{*}
\end{equation*}
$$

Now we substitute $d_{0}-e_{0}=0$ into $(*)$ and divide both sides by 2 to get

$$
0=\left(d_{1}-e_{1}\right)+\left(d_{2}-e_{2}\right) \cdot 2+\cdots+\left(d_{k}-e_{k}\right) \cdot 2^{k-1} . \quad(* *)
$$

The same argument as above implies that $d_{1}-e_{1}=0$. Iterating this process, we similarly get $d_{i}-e_{i}=0$ for each $1 \leq i \leq k$. That is, $d_{i}=e_{i}$ for $1 \leq i \leq k$ and hence the two representations of $n$ are the same. That is, every positive integer can be written as the sum of the distinct powers of 2 in at most one way, as claimed.

## Theorem 13.3

Theorem 13.3. Let $b \geq 2$ be any integer (called the base). Any positive integer $n$ can be written uniquely in the base $b$; that is, in the form

$$
n=d_{0}+d_{1} \cdot b+d_{2} \cdot b^{2}+\cdots+d_{k} \cdot b^{k}
$$

for some $k$, with $0 \leq d_{i}<b$ for $i \in\{0,1,2, \ldots, k\}$.
Proof. Let $n$ be a positive integer. We divide $n$ by $b$ to get, by the Division Algorithm (Theorem 1.2), $n=q_{1} b+d_{0}$ where $0 \leq d_{0}<b$. Next, we divide the quotient $q_{1}$ by $b$ to get $q_{1}=q_{2} b+d_{1}$ where $0 \leq d_{1}<b$. Continuing the process we have

$$
\begin{aligned}
& q_{2}=q_{3} b+d_{2} \text { where } 0 \leq d_{2}<b, \\
& q_{3}=q_{4} b+d_{3} \text { where } 0 \leq d_{3}<b,
\end{aligned}
$$

etc. Since $n>q_{1}>q_{2}>\cdots$ and each $q_{i}$ is nonnegative, then the sequence of $q_{i}$ 's must terminate at some $i=k$, where $q_{k}=0 \cdot b+d_{k}$ where $0 \leq d_{k}<b$.

## Theorem 13.3

Theorem 13.3. Let $b \geq 2$ be any integer (called the base). Any positive integer $n$ can be written uniquely in the base $b$; that is, in the form

$$
n=d_{0}+d_{1} \cdot b+d_{2} \cdot b^{2}+\cdots+d_{k} \cdot b^{k}
$$

for some $k$, with $0 \leq d_{i}<b$ for $i \in\{0,1,2, \ldots, k\}$.
Proof. Let $n$ be a positive integer. We divide $n$ by $b$ to get, by the Division Algorithm (Theorem 1.2), $n=q_{1} b+d_{0}$ where $0 \leq d_{0}<b$. Next, we divide the quotient $q_{1}$ by $b$ to get $q_{1}=q_{2} b+d_{1}$ where $0 \leq d_{1}<b$. Continuing the process we have

$$
\begin{aligned}
& q_{2}=q_{3} b+d_{2} \text { where } 0 \leq d_{2}<b, \\
& q_{3}=q_{4} b+d_{3} \text { where } 0 \leq d_{3}<b,
\end{aligned}
$$

etc. Since $n>q_{1}>q_{2}>\cdots$ and each $q_{i}$ is nonnegative, then the sequence of $q_{i}$ 's must terminate at some $i=k$, where $q_{k}=0 \cdot b+d_{k}$ where $0 \leq d_{k}<b$.

## Theorem 13.3 (continued 1)

Theorem 13.3. Let $b \geq 2$ be any integer (called the base). Any positive integer $n$ can be written uniquely in the base $b$; that is, in the form

$$
n=d_{0}+d_{1} \cdot b+d_{2} \cdot b^{2}+\cdots+d_{k} \cdot b^{k}
$$

for some $k$, with $0 \leq d_{i}<b$ for $i \in\{0,1,2, \ldots, k\}$.
Proof (continued). Combining these results gives

$$
\begin{aligned}
n & =d_{0}+q_{1} b=d_{0}+\left(d_{1}+q_{2} b\right) b=d_{0}+d_{1} b+q_{2} b^{2} \\
& =d_{0}+d_{1} b+\left(d_{2}+d_{3} b\right) b^{2}=d_{0}+d_{1} b+d_{2} b^{2}+q_{3} b^{3} \\
& =d_{0}+d_{1} b+d_{2} b^{2}+\left(d_{3}+d_{4} b\right) b^{3}=d_{0}+d_{1} b+d_{2} b^{2}+d_{3} b^{3}+d_{4} b^{4} \\
& \vdots \\
& =d_{0}+d_{1} b+d_{2} b^{2}+d_{3} b^{3}+\cdots+d_{k} b^{k},
\end{aligned}
$$

so a representation exists.

## Theorem 13.3 (continued 2)

Proof (continued). To show uniqueness of the representation, suppose we have two representations of $n$ base $b$,
$n=d_{0}+d_{1} b+d_{2} b^{2}+d_{3} b^{3}+\cdots+d_{k} b^{k}=e_{0}+e_{1} b+e_{2} b^{2}+e_{3} b^{3}+\cdots+e_{k} b^{k}$,
where $0 \leq d_{i}<b$ and $0 \leq e_{i}<b$ for $i=0,1,2, \ldots, k$. Subtracting the representations gives
$0=\left(d_{0}-e_{0}\right)+\left(d_{1}-e_{1}\right) b+\left(d_{2}-e_{2}\right) b^{2}+\left(d_{3}-e_{3}\right) b^{3}+\cdots+\left(d_{k}-e_{k}\right) b^{k}$.
By Lemma 2.1 we can conclude that $b \mid\left(d_{0}-e_{0}\right)$. But since $d_{0}$ and $e_{0}$ are each either $0,1,2, \ldots, b-1$, then
$d_{0}-e_{0} \in\{-b+1,-b+2, \ldots,-1,0,1, \ldots, b-1\}$ and so we must have $d_{0}-e_{0}=0$, or $d_{0}=e_{0}$. Now we substitute $d_{0}-e_{0}=0$ into $(*)$ and divide both sides by $b$ to get

$$
0=\left(d_{1}-e_{1}\right)+\left(d_{2}-e_{2}\right) \cdot 2+\cdots+\left(d_{k}-e_{k}\right) \cdot 2^{k-1} \cdot \quad(* *)
$$

The same argument as above implies that $d_{1}-e_{1}=0$.

## Theorem 13.3 (continued 2)

Proof (continued). To show uniqueness of the representation, suppose we have two representations of $n$ base $b$,
$n=d_{0}+d_{1} b+d_{2} b^{2}+d_{3} b^{3}+\cdots+d_{k} b^{k}=e_{0}+e_{1} b+e_{2} b^{2}+e_{3} b^{3}+\cdots+e_{k} b^{k}$,
where $0 \leq d_{i}<b$ and $0 \leq e_{i}<b$ for $i=0,1,2, \ldots, k$. Subtracting the representations gives

$$
\begin{equation*}
0=\left(d_{0}-e_{0}\right)+\left(d_{1}-e_{1}\right) b+\left(d_{2}-e_{2}\right) b^{2}+\left(d_{3}-e_{3}\right) b^{3}+\cdots+\left(d_{k}-e_{k}\right) b^{k} . \tag{*}
\end{equation*}
$$

By Lemma 2.1 we can conclude that $b \mid\left(d_{0}-e_{0}\right)$. But since $d_{0}$ and $e_{0}$ are each either $0,1,2, \ldots, b-1$, then
$d_{0}-e_{0} \in\{-b+1,-b+2, \ldots,-1,0,1, \ldots, b-1\}$ and so we must have $d_{0}-e_{0}=0$, or $d_{0}=e_{0}$. Now we substitute $d_{0}-e_{0}=0$ into $(*)$ and divide both sides by $b$ to get

$$
0=\left(d_{1}-e_{1}\right)+\left(d_{2}-e_{2}\right) \cdot 2+\cdots+\left(d_{k}-e_{k}\right) \cdot 2^{k-1} . \quad(* *)
$$

The same argument as above implies that $d_{1}-e_{1}=0$.

## Theorem 13.3 (continued 3)

Theorem 13.3. Let $b \geq 2$ be any integer (called the base). Any positive integer $n$ can be written uniquely in the base $b$; that is, in the form

$$
n=d_{0}+d_{1} \cdot b+d_{2} \cdot b^{2}+\cdots+d_{k} \cdot b^{k}
$$

for some $k$, with $0 \leq d_{i}<b$ for $i \in\{0,1,2, \ldots, k\}$.

Proof (continued). Iterating this process, we similarly get $d_{i}-e_{i}=0$ for each $1 \leq i \leq k$. That is, $d_{i}=e_{i}$ for $1 \leq i \leq k$ and hence the two representations of $n$ are the same. That is, every positive integer has a unique representation base $b$, as claimed.

