Elementary Number Theory

Section 15. Decimals—Proofs of Theorems

Table of contents

(1) Theorem 15.1
(2) Theorem 15.2
(3) Theorem 15.3
(4) Theorem 15.4

Theorem 15.1

Theorem 15.1. If a and b are any nonnegative integers, then the decimal expansion of $1 /\left(2^{a} 5^{b}\right)$ terminates.

Proof. Let $M=\max \{a, b\}$. Then $10^{M}\left(1 /\left(2^{a} 5^{b}\right)\right)=2^{M-a} 5^{M-b}$ is an integer, say $n=2^{M-a} 5^{M-b}$. Then $n \leq 10^{M}$ and so

$$
\frac{1}{2^{a} 5^{b}}=\frac{2^{M-a} 5^{M-b}}{10^{M}}=\frac{n}{10^{M}},
$$

so the decimal expansion of $1 /\left(2^{a} 5^{b}\right)$ consists of the digits of n, perhaps preceded by some zeros.

Theorem 15.1

Theorem 15.1. If a and b are any nonnegative integers, then the decimal expansion of $1 /\left(2^{a} 5^{b}\right)$ terminates.

Proof. Let $M=\max \{a, b\}$. Then $10^{M}\left(1 /\left(2^{a} 5^{b}\right)\right)=2^{M-a} 5^{M-b}$ is an integer, say $n=2^{M-a} 5^{M-b}$. Then $n \leq 10^{M}$ and so

$$
\frac{1}{2^{a} 5^{b}}=\frac{2^{M-a} 5^{M-b}}{10^{M}}=\frac{n}{10^{M}},
$$

so the decimal expansion of $1 /\left(2^{a} 5^{b}\right)$ consists of the digits of n, perhaps preceded by some zeros.

Theorem 15.2

Theorem 15.2. If $1 / n$ has a terminating decimal expansion, then $n=2^{a} 5^{b}$ for some nonnegative integers a and b.

Proof. Let the terminating decimal expansion of $1 / n$ be

$$
\begin{aligned}
& 1 / n=0 . d_{1} d_{2} \cdots d_{k}=\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\cdots+\frac{d_{k}}{10^{k}} \\
& =\frac{d_{1} 10^{k-1}+d_{2} 10^{k-2}+\cdots+d_{k-1} 10+d_{k}}{10^{k}}
\end{aligned}
$$

Let $m=d_{1} 10^{k-1}+d_{2} 10^{k-2}+\cdots d_{k-1} 10+d_{k}$ (an integer). Then $1 / n=m / 10^{k}$ or $m n=10^{k}$. The only prime divisors of 10^{k} are 2 and 5 , so the only prime divisors of n are 2 and 5 by Euclid's Lemma (Lemma 2.5). Therefore, n is of the form $2^{a} 5^{b}$ for some nonnegative integers a and b, as claimed.

Theorem 15.2

Theorem 15.2. If $1 / n$ has a terminating decimal expansion, then $n=2^{a} 5^{b}$ for some nonnegative integers a and b.

Proof. Let the terminating decimal expansion of $1 / n$ be

$$
\begin{aligned}
& 1 / n=0 . d_{1} d_{2} \cdots d_{k}=\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\cdots+\frac{d_{k}}{10^{k}} \\
& =\frac{d_{1} 10^{k-1}+d_{2} 10^{k-2}+\cdots+d_{k-1} 10+d_{k}}{10^{k}}
\end{aligned}
$$

Let $m=d_{1} 10^{k-1}+d_{2} 10^{k-2}+\cdots d_{k-1} 10+d_{k}$ (an integer). Then $1 / n=m / 10^{k}$ or $m n=10^{k}$. The only prime divisors of 10^{k} are 2 and 5 , so the only prime divisors of n are 2 and 5 by Euclid's Lemma (Lemma 2.5). Therefore, n is of the form $2^{a} 5^{b}$ for some nonnegative integers a and b, as claimed.

Theorem 15.3

Theorem 15.3. The length of the decimal period of $1 / n$ is no longer than $n-1$.

Proof. Let t be such that $10^{t}<n<10^{t+1}$. Then the Division Algorithm (Theorem 1.2) gives

$$
\begin{aligned}
10^{t+1} & =d_{1} n+r_{1} \text { where } 0<r_{1}<n \\
10 r_{1} & =d_{2} n+r_{2} \text { where } 0 \leq r_{2}<n \\
10 r_{2} & =d_{3} n+r_{3} \text { where } 0 \leq r_{3}<n \\
& \vdots \\
10 r_{k} & =d_{k+1} n+r_{k+1} \text { where } 0 \leq r_{k+1}<n
\end{aligned}
$$

> Now each d_{k} is less than 10, because for $k \geq 2$ we have $d_{k} n=10 r_{k-1}-r_{k} \leq 10 r_{k-1}<10 n$ and $d_{1} n=10^{t+1}-r_{1}<10^{t+1}=10 \cdot 10^{t}<10 n$.

Theorem 15.3

Theorem 15.3. The length of the decimal period of $1 / n$ is no longer than $n-1$.

Proof. Let t be such that $10^{t}<n<10^{t+1}$. Then the Division Algorithm (Theorem 1.2) gives

$$
\begin{aligned}
10^{t+1} & =d_{1} n+r_{1} \text { where } 0<r_{1}<n \\
10 r_{1} & =d_{2} n+r_{2} \text { where } 0 \leq r_{2}<n \\
10 r_{2} & =d_{3} n+r_{3} \text { where } 0 \leq r_{3}<n \\
& \vdots \\
10 r_{k} & =d_{k+1} n+r_{k+1} \text { where } 0 \leq r_{k+1}<n,
\end{aligned}
$$

Now each d_{k} is less than 10 , because for $k \geq 2$ we have $d_{k} n=10 r_{k-1}-r_{k} \leq 10 r_{k-1}<10 n$ and $d_{1} n=10^{t+1}-r_{1}<10^{t+1}=10 \cdot 10^{t}<10 n$.

Theorem 15.3 (continued 1)

Proof (continued). The Division Algorithm gave us $10 r_{k}=d_{k+1} n+r_{k+1}$ for $k \geq 1$ above, so dividing by $10 n$ on both sides we have

$$
\begin{equation*}
r_{k} / n=d_{k+1} / 10+r_{k+1} /(10 n) \tag{*}
\end{equation*}
$$

We also had $10^{t+1}=d_{1} n+r_{1}$, so dividing both sides by $10^{t+1} n$ gives

$$
1 / n=d_{1} / 10^{t+1}+r_{1} /\left(n 10^{t+1}\right)
$$

Starting with $(* *)$ and repeatedly applying (*) gives

$$
\begin{aligned}
1 / n & =d_{1} / 10^{t+1}+r_{1} /\left(n 10^{t+1}\right) \\
& =d_{1} 10^{t+1}+d_{2} / 10^{t+2}+r_{2} /\left(n 10^{t+2}\right) \\
& =d_{1} / 10^{t+1}+d_{2} / 10^{t+2}+d_{3} / 10^{t+3}+r_{3} /\left(n 10^{t+3}\right) \\
& \vdots \\
& =d_{1} / 10^{t+1}+d_{2} / 10^{t+2}+d_{3} / 10^{t+3}+d_{4} / 10^{t+4}+.
\end{aligned}
$$

Theorem 15.3 (continued 1)

Proof (continued). The Division Algorithm gave us $10 r_{k}=d_{k+1} n+r_{k+1}$ for $k \geq 1$ above, so dividing by $10 n$ on both sides we have

$$
\begin{equation*}
r_{k} / n=d_{k+1} / 10+r_{k+1} /(10 n) \tag{*}
\end{equation*}
$$

We also had $10^{t+1}=d_{1} n+r_{1}$, so dividing both sides by $10^{t+1} n$ gives

$$
1 / n=d_{1} / 10^{t+1}+r_{1} /\left(n 10^{t+1}\right)
$$

Starting with $(* *)$ and repeatedly applying ($*$) gives

$$
\begin{aligned}
1 / n & =d_{1} / 10^{t+1}+r_{1} /\left(n 10^{t+1}\right) \\
& =d_{1} 10^{t+1}+d_{2} / 10^{t+2}+r_{2} /\left(n 10^{t+2}\right) \\
& =d_{1} / 10^{t+1}+d_{2} / 10^{t+2}+d_{3} / 10^{t+3}+r_{3} /\left(n 10^{t+3}\right) \\
& \vdots \\
& =d_{1} / 10^{t+1}+d_{2} / 10^{t+2}+d_{3} / 10^{t+3}+d_{4} / 10^{t+4}+\cdots
\end{aligned}
$$

Theorem 15.3 (continued 2)

Theorem 15.3. The length of the decimal period of $1 / n$ is no longer than $n-1$.

Proof (continued). Therefore the digits in the decimal expansion of $1 / n$ has the digits $d_{1}, d_{2}, d_{3}, \ldots$. Each of the remainders r_{1}, r_{2}, \ldots is one of the n values $0,1,2, \ldots, n-1$. However, if one of the remainders is 0 then the all the decimals from that point on are 0 and the decimal expansion terminates (so that by Theorem 15.2 we must have $n=2^{a} 5^{b}$ for some nonnegative a and b). Hence if the decimal period is not 0 (in which case the claim holds), then the remainders are among the $n-1$ values $1,2, \ldots, n-1$. So among the n integers $r_{1}, r_{2}, \ldots, r_{n}$ there must be two that are equal (this follows from the Pigeonhole Principle; see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1 Cardinality; Fundamental Counting Principles). If $r_{j}=r_{k}$, then $d_{k+1}=d_{j+1}, d_{k+2}=d_{j+2}, \ldots$, since d_{k+1} and r_{k+1} are determined by the value of r_{k}. So the decimal repeats with period no longer than $n-1$, as claimed

Theorem 15.3 (continued 2)

Theorem 15.3. The length of the decimal period of $1 / n$ is no longer than $n-1$.

Proof (continued). Therefore the digits in the decimal expansion of $1 / n$ has the digits $d_{1}, d_{2}, d_{3}, \ldots$. Each of the remainders r_{1}, r_{2}, \ldots is one of the n values $0,1,2, \ldots, n-1$. However, if one of the remainders is 0 then the all the decimals from that point on are 0 and the decimal expansion terminates (so that by Theorem 15.2 we must have $n=2^{a} 5^{b}$ for some nonnegative a and b). Hence if the decimal period is not 0 (in which case the claim holds), then the remainders are among the $n-1$ values $1,2, \ldots, n-1$. So among the n integers $r_{1}, r_{2}, \ldots, r_{n}$ there must be two that are equal (this follows from the Pigeonhole Principle; see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles). If $r_{j}=r_{k}$, then $d_{k+1}=d_{j+1}, d_{k+2}=d_{j+2}, \ldots$, since d_{k+1} and r_{k+1} are determined by the value of r_{k}. So the decimal repeats with period no longer than $n-1$, as claimed.

Theorem 15.4

Theorem 15.4. If $(n, 10)=1$, then the period of $1 / n$ is r, where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$.

Proof. Since $(n, 10)=1$ then $10^{\varphi}(n) \equiv 1(\bmod n)$ by Euler's Theorem (Theorem 9.1), so r exists with $10^{r} \equiv 1(\bmod n)$. The least residues (mod n) of $1,10,10^{2}, 10^{3}, \ldots, 10^{n-1}$ may only be the values $1,2,3, \ldots, n-1$ because no power of 10 is divisible by n since $(n, 10)=1$. Now the n residues $(\bmod n)$ of $1,10,10^{2}, 10^{3}, \ldots, 10^{n-1}$ can only take on $n-1$ possible values and so, by the Pigeonhole Principle (see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles), two of the residues are the same.

Theorem 15.4

Theorem 15.4. If $(n, 10)=1$, then the period of $1 / n$ is r, where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$.
Proof. Since $(n, 10)=1$ then $10^{\varphi}(n) \equiv 1(\bmod n)$ by Euler's Theorem (Theorem 9.1), so r exists with $10^{r} \equiv 1(\bmod n)$. The least residues (mod n) of $1,10,10^{2}, 10^{3}, \ldots, 10^{n-1}$ may only be the values $1,2,3, \ldots, n-1$ because no power of 10 is divisible by n since $(n, 10)=1$. Now the n residues $(\bmod n)$ of $1,10,10^{2}, 10^{3}, \ldots, 10^{n-1}$ can only take on $n-1$ possible values and so, by the Pigeonhole Principle (see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles), two of the residues are the same. That is, there are distinct nonnegative integers a and b (say $a<b$), both less than n, such that $10^{a}=10^{b}(\bmod n)$. Dividing both sides of this congruence by 10^{a} gives (by Theorem 4.4) $10^{b-a} \equiv 1(\bmod n)$. So we have that when digits in two positions a and b are the same, then we have that $r=b-a$ satisfies $10^{r} \equiv 1(\bmod n)$. In particular, if r is the period of $1 / n$ then $10^{r} \equiv 1(\bmod n)$

Theorem 15.4

Theorem 15.4. If $(n, 10)=1$, then the period of $1 / n$ is r, where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$.
Proof. Since $(n, 10)=1$ then $10^{\varphi}(n) \equiv 1(\bmod n)$ by Euler's Theorem (Theorem 9.1), so r exists with $10^{r} \equiv 1(\bmod n)$. The least residues (mod n) of $1,10,10^{2}, 10^{3}, \ldots, 10^{n-1}$ may only be the values $1,2,3, \ldots, n-1$ because no power of 10 is divisible by n since $(n, 10)=1$. Now the n residues $(\bmod n)$ of $1,10,10^{2}, 10^{3}, \ldots, 10^{n-1}$ can only take on $n-1$ possible values and so, by the Pigeonhole Principle (see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles), two of the residues are the same. That is, there are distinct nonnegative integers a and b (say $a<b$), both less than n, such that $10^{a}=10^{b}(\bmod n)$. Dividing both sides of this congruence by 10^{a} gives (by Theorem 4.4) $10^{b-a} \equiv 1(\bmod n)$. So we have that when digits in two positions a and b are the same, then we have that $r=b-a$ satisfies $10^{r} \equiv 1(\bmod n)$. In particular, if r is the period of $1 / n$ then $10^{r} \equiv 1(\bmod n)$.

Theorem 15.4 (continued 1)

Theorem 15.4. If $(n, 10)=1$, then the period of $1 / n$ is r, where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$.

Proof (continued). Since $10^{r} \equiv 1(\bmod n)$, then $10^{r}-1=k n$ for some integer k. So $k<10^{r}$ and in base $10, k$ has at most r digits. Let

$$
k=\left(d_{r-1} d_{r-2} \cdots d_{1} d_{0}\right)_{10}=d_{r-1} 10^{r-1}+d_{r-2} 10^{r-2}+\cdots d_{1} 10+d_{0}
$$

where $0 \leq d_{k}<10$ for $k=0,1, \ldots, r$. Since $10^{r}-1=k n$ then

$=0 . \overline{d_{r-1} d_{r-2} \cdots d_{1} d_{0}}$.
So the period of $1 / n$ is at most r.

Theorem 15.4 (continued 1)

Theorem 15.4. If $(n, 10)=1$, then the period of $1 / n$ is r, where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$.

Proof (continued). Since $10^{r} \equiv 1(\bmod n)$, then $10^{r}-1=k n$ for some integer k. So $k<10^{r}$ and in base $10, k$ has at most r digits. Let

$$
k=\left(d_{r-1} d_{r-2} \cdots d_{1} d_{0}\right)_{10}=d_{r-1} 10^{r-1}+d_{r-2} 10^{r-2}+\cdots d_{1} 10+d_{0}
$$

where $0 \leq d_{k}<10$ for $k=0,1, \ldots, r$. Since $10^{r}-1=k n$ then

$$
\begin{aligned}
\frac{1}{n}= & \frac{k}{10^{r}-1}=\frac{\left(d_{r-1} d_{r-2} \cdots d_{1} d_{0}\right)_{10}}{10^{r}} \cdot \frac{1}{1-10^{-r}} \\
= & \left(0 . d_{r-1} d_{r-2} \cdots d_{1} d_{0}\right)_{10}\left(1+10^{-r}+10^{-2 r}+10^{-3 r}+\cdots\right) \\
& \text { since } \frac{1}{1-10^{-r}} \text { is the sum of a geometric series with ratio } 10^{-r} \\
= & 0 . \frac{d_{r-1} d_{r-2} \cdots d_{1} d_{0}}{} .
\end{aligned}
$$

So the period of $1 / n$ is at most r.

Theorem 15.4 (continued 2)

Theorem 15.4. If $(n, 10)=1$, then the period of $1 / n$ is r, where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$.

Proof (continued). Suppose the period of $1 / n$ is some value s. That is, $1 / n=0 . \overline{e_{s-1} e_{s-2} \cdots e_{1} e_{0}}$ for some integers $e_{0}, e_{1}, \ldots, e_{s-1}$. Then

$$
\begin{aligned}
\frac{1}{n} & =\left(0 . e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)\left(1+10^{-s}+10^{-2 s}+\cdots\right) \\
& =\frac{\left(e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)_{10}}{10^{s}} \cdot \frac{1}{1-10^{-s}} \\
& =\frac{\left(e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)_{10}}{10^{s}-1} .
\end{aligned}
$$

With $k^{\prime}=\left(e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)_{10}$, we have $n k^{\prime}=10^{s}-1$, so $10^{s} \equiv 1(\bmod$ $n)$. With r as the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$, then $s \geq r$. We have that the period of $1 / n$ is at most r and at least r, and so the period of $1 / n$ is equal to r where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$, as claimed.

Theorem 15.4 (continued 2)

Theorem 15.4. If $(n, 10)=1$, then the period of $1 / n$ is r, where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$.

Proof (continued). Suppose the period of $1 / n$ is some value s. That is, $1 / n=0 . \overline{e_{s-1} e_{s-2} \cdots e_{1} e_{0}}$ for some integers $e_{0}, e_{1}, \ldots, e_{s-1}$. Then

$$
\begin{aligned}
\frac{1}{n} & =\left(0 . e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)\left(1+10^{-s}+10^{-2 s}+\cdots\right) \\
& =\frac{\left(e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)_{10}}{10^{s}} \cdot \frac{1}{1-10^{-s}} \\
& =\frac{\left(e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)_{10}}{10^{s}-1} .
\end{aligned}
$$

With $k^{\prime}=\left(e_{s-1} e_{s-2} \cdots e_{1} e_{0}\right)_{10}$, we have $n k^{\prime}=10^{s}-1$, so $10^{s} \equiv 1(\bmod$ $n)$. With r as the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$, then $s \geq r$. We have that the period of $1 / n$ is at most r and at least r, and so the period of $1 / n$ is equal to r where r is the smallest positive integer such that $10^{r} \equiv 1(\bmod n)$, as claimed.

