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Theorem 15.1

Theorem 15.1

Theorem 15.1. If a and b are any nonnegative integers, then the decimal
expansion of 1/(2a5b) terminates.

Proof. Let M = max{a, b}. Then 10M(1/(2a5b)) = 2M−a5M−b is an
integer, say n = 2M−a5M−b. Then n ≤ 10M and so

1

2a5b
=

2M−a5M−b

10M
=

n

10M
,

so the decimal expansion of 1/(2a5b) consists of the digits of n, perhaps
preceded by some zeros.
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Theorem 15.2

Theorem 15.2

Theorem 15.2. If 1/n has a terminating decimal expansion, then
n = 2a5b for some nonnegative integers a and b.

Proof. Let the terminating decimal expansion of 1/n be

1/n = 0.d1d2 · · · dk =
d1

10
+

d2

102
+ · · ·+ dk

10k

=
d110k−1 + d210k−2 + · · ·+ dk−110 + dk

10k
.

Let m = d110k−1 + d210k−2 + · · · dk−110 + dk (an integer). Then
1/n = m/10k or mn = 10k . The only prime divisors of 10k are 2 and 5, so
the only prime divisors of n are 2 and 5 by Euclid’s Lemma (Lemma 2.5).
Therefore, n is of the form 2a5b for some nonnegative integers a and b, as
claimed.
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Theorem 15.3

Theorem 15.3

Theorem 15.3. The length of the decimal period of 1/n is no longer than
n − 1.

Proof. Let t be such that 10t < n < 10t+1. Then the Division Algorithm
(Theorem 1.2) gives

10t+1 = d1n + r1 where 0 < r1 < n,

10r1 = d2n + r2 where 0 ≤ r2 < n,

10r2 = d3n + r3 where 0 ≤ r3 < n,
...

10rk = dk+1n + rk+1 where 0 ≤ rk+1 < n,
...

Now each dk is less than 10, because for k ≥ 2 we have
dkn = 10rk−1 − rk ≤ 10rk−1 < 10n and
d1n = 10t+1 − r1 < 10t+1 = 10 · 10t < 10n.
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Theorem 15.3

Theorem 15.3 (continued 1)

Proof (continued). The Division Algorithm gave us 10rk = dk+1n + rk+1

for k ≥ 1 above, so dividing by 10n on both sides we have

rk/n = dk+1/10 + rk+1/(10n). (∗)

We also had 10t+1 = d1n + r1, so dividing both sides by 10t+1n gives

1/n = d1/10t+1 + r1/(n10t+1). (∗∗)

Starting with (∗∗) and repeatedly applying (∗) gives

1/n = d1/10t+1 + r1/(n10t+1)

= d110t+1 + d2/10t+2 + r2/(n10t+2)

= d1/10t+1 + d2/10t+2 + d3/10t+3 + r3/(n10t+3)
...

= d1/10t+1 + d2/10t+2 + d3/10t+3 + d4/10t+4 + · · · .
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Theorem 15.3

Theorem 15.3 (continued 2)

Theorem 15.3. The length of the decimal period of 1/n is no longer than
n − 1.

Proof (continued). Therefore the digits in the decimal expansion of 1/n
has the digits d1, d2, d3, . . .. Each of the remainders r1, r2, . . . is one of the
n values 0, 1, 2, . . . , n − 1. However, if one of the remainders is 0 then the
all the decimals from that point on are 0 and the decimal expansion
terminates (so that by Theorem 15.2 we must have n = 2a5b for some
nonnegative a and b). Hence if the decimal period is not 0 (in which case
the claim holds), then the remainders are among the n − 1 values
1, 2, . . . , n − 1. So among the n integers r1, r2, . . . , rn there must be two
that are equal (this follows from the Pigeonhole Principle; see my online
notes for Mathematical Reasoning [MATH 3000] on Section 4.1.
Cardinality; Fundamental Counting Principles). If rj = rk , then
dk+1 = dj+1, dk+2 = dj+2, . . . , since dk+1 and rk+1 are determined by the
value of rk . So the decimal repeats with period no longer than n − 1, as
claimed.
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Theorem 15.4

Theorem 15.4

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r , where r is the
smallest positive integer such that 10r ≡ 1 (mod n).

Proof. Since (n, 10) = 1 then 10ϕ(n) ≡ 1 (mod n) by Euler’s Theorem
(Theorem 9.1), so r exists with 10r ≡ 1 (mod n). The least residues (mod
n) of 1, 10, 102, 103, . . . , 10n−1 may only be the values 1, 2, 3, . . . , n − 1
because no power of 10 is divisible by n since (n, 10) = 1. Now the n
residues (mod n) of 1, 10, 102, 103, . . . , 10n−1 can only take on n − 1
possible values and so, by the Pigeonhole Principle (see my online notes
for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality;
Fundamental Counting Principles), two of the residues are the same.

That
is, there are distinct nonnegative integers a and b (say a < b), both less
than n, such that 10a = 10b (mod n). Dividing both sides of this
congruence by 10a gives (by Theorem 4.4) 10b−a ≡ 1 (mod n). So we
have that when digits in two positions a and b are the same, then we have
that r = b − a satisfies 10r ≡ 1 (mod n). In particular, if r is the period of
1/n then 10r ≡ 1 (mod n).
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Theorem 15.4

Theorem 15.4 (continued 1)

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r , where r is the
smallest positive integer such that 10r ≡ 1 (mod n).

Proof (continued). Since 10r ≡ 1 (mod n), then 10r − 1 = kn for some
integer k. So k < 10r and in base 10, k has at most r digits. Let

k = (dr−1dr−2 · · · d1d0)10 = dr−110r−1 + dr−210r−2 + · · · d110 + d0,

where 0 ≤ dk < 10 for k = 0, 1, . . . , r . Since 10r − 1 = kn then

1

n
=

k

10r − 1
=

(dr−1dr−2 · · · d1d0)10
10r

· 1

1− 10−r

= (0.dr−1dr−2 · · · d1d0)10(1 + 10−r + 10−2r + 10−3r + · · · )

since
1

1− 10−r
is the sum of a geometric series with ratio 10−r

= 0.dr−1dr−2 · · · d1d0.

So the period of 1/n is at most r .
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Theorem 15.4

Theorem 15.4 (continued 2)

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r , where r is the
smallest positive integer such that 10r ≡ 1 (mod n).

Proof (continued). Suppose the period of 1/n is some value s. That is,
1/n = 0.es−1es−2 · · · e1e0 for some integers e0, e1, . . . , es−1. Then

1

n
= (0.es−1es−2 · · · e1e0)(1 + 10−s + 10−2s + · · · )

=
(es−1es−2 · · · e1e0)10

10s
· 1

1− 10−s

=
(es−1es−2 · · · e1e0)10

10s − 1
.

With k ′ = (es−1es−2 · · · e1e0)10, we have nk ′ = 10s − 1, so 10s ≡ 1 (mod
n). With r as the smallest positive integer such that 10r ≡ 1 (mod n),
then s ≥ r . We have that the period of 1/n is at most r and at least r ,
and so the period of 1/n is equal to r where r is the smallest positive
integer such that 10r ≡ 1 (mod n), as claimed.
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