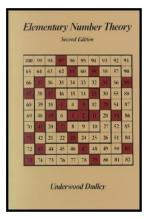
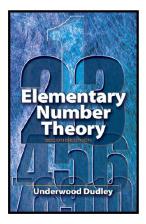
Elementary Number Theory

Section 15. Decimals—Proofs of Theorems





Theorem 15.1. If *a* and *b* are any nonnegative integers, then the decimal expansion of $1/(2^a 5^b)$ terminates.

Proof. Let $M = \max\{a, b\}$. Then $10^{M}(1/(2^{a}5^{b})) = 2^{M-a}5^{M-b}$ is an integer, say $n = 2^{M-a}5^{M-b}$. Then $n \le 10^{M}$ and so

$$\frac{1}{2^{a}5^{b}} = \frac{2^{M-a}5^{M-b}}{10^{M}} = \frac{n}{10^{M}},$$

so the decimal expansion of $1/(2^a 5^b)$ consists of the digits of *n*, perhaps preceded by some zeros.

Theorem 15.1. If *a* and *b* are any nonnegative integers, then the decimal expansion of $1/(2^a 5^b)$ terminates.

Proof. Let $M = \max\{a, b\}$. Then $10^{M}(1/(2^{a}5^{b})) = 2^{M-a}5^{M-b}$ is an integer, say $n = 2^{M-a}5^{M-b}$. Then $n \le 10^{M}$ and so

$$\frac{1}{2^{a}5^{b}} = \frac{2^{M-a}5^{M-b}}{10^{M}} = \frac{n}{10^{M}},$$

so the decimal expansion of $1/(2^a5^b)$ consists of the digits of *n*, perhaps preceded by some zeros.

Theorem 15.2. If 1/n has a terminating decimal expansion, then $n = 2^a 5^b$ for some nonnegative integers *a* and *b*.

Proof. Let the terminating decimal expansion of 1/n be

$$1/n = 0.d_1d_2\cdots d_k = \frac{d_1}{10} + \frac{d_2}{10^2} + \cdots + \frac{d_k}{10^k}$$
$$= \frac{d_110^{k-1} + d_210^{k-2} + \cdots + d_{k-1}10 + d_k}{10^k}.$$

Let $m = d_1 10^{k-1} + d_2 10^{k-2} + \cdots + d_{k-1} 10 + d_k$ (an integer). Then $1/n = m/10^k$ or $mn = 10^k$. The only prime divisors of 10^k are 2 and 5, so the only prime divisors of n are 2 and 5 by Euclid's Lemma (Lemma 2.5). Therefore, n is of the form $2^a 5^b$ for some nonnegative integers a and b, as claimed.

Theorem 15.2. If 1/n has a terminating decimal expansion, then $n = 2^a 5^b$ for some nonnegative integers *a* and *b*.

Proof. Let the terminating decimal expansion of 1/n be

$$1/n = 0.d_1d_2\cdots d_k = \frac{d_1}{10} + \frac{d_2}{10^2} + \cdots + \frac{d_k}{10^k}$$
$$= \frac{d_110^{k-1} + d_210^{k-2} + \cdots + d_{k-1}10 + d_k}{10^k}.$$

Let $m = d_1 10^{k-1} + d_2 10^{k-2} + \cdots + d_{k-1} 10 + d_k$ (an integer). Then $1/n = m/10^k$ or $mn = 10^k$. The only prime divisors of 10^k are 2 and 5, so the only prime divisors of n are 2 and 5 by Euclid's Lemma (Lemma 2.5). Therefore, n is of the form $2^a 5^b$ for some nonnegative integers a and b, as claimed.

Theorem 15.3. The length of the decimal period of 1/n is no longer than n-1.

Proof. Let t be such that $10^t < n < 10^{t+1}$. Then the Division Algorithm (Theorem 1.2) gives

 $\begin{array}{rcl} 10^{t+1} &=& d_1n + r_1 \text{ where } 0 < r_1 < n, \\ 10r_1 &=& d_2n + r_2 \text{ where } 0 \leq r_2 < n, \\ 10r_2 &=& d_3n + r_3 \text{ where } 0 \leq r_3 < n, \\ &\vdots \\ 10r_k &=& d_{k+1}n + r_{k+1} \text{ where } 0 \leq r_{k+1} < n, \end{array}$

Now each d_k is less than 10, because for $k \ge 2$ we have $d_k n = 10r_{k-1} - r_k \le 10r_{k-1} < 10n$ and $d_1 n = 10^{t+1} - r_1 < 10^{t+1} = 10 \cdot 10^t < 10n$.

Theorem 15.3. The length of the decimal period of 1/n is no longer than n-1.

Proof. Let t be such that $10^t < n < 10^{t+1}$. Then the Division Algorithm (Theorem 1.2) gives

 $\begin{array}{rcl} 10^{t+1} &=& d_1n + r_1 \text{ where } 0 < r_1 < n, \\ 10r_1 &=& d_2n + r_2 \text{ where } 0 \leq r_2 < n, \\ 10r_2 &=& d_3n + r_3 \text{ where } 0 \leq r_3 < n, \\ &\vdots \\ 10r_k &=& d_{k+1}n + r_{k+1} \text{ where } 0 \leq r_{k+1} < n, \end{array}$

Now each d_k is less than 10, because for $k \ge 2$ we have $d_k n = 10r_{k-1} - r_k \le 10r_{k-1} < 10n$ and $d_1 n = 10^{t+1} - r_1 < 10^{t+1} = 10 \cdot 10^t < 10n$.

Theorem 15.3 (continued 1)

Proof (continued). The Division Algorithm gave us $10r_k = d_{k+1}n + r_{k+1}$ for $k \ge 1$ above, so dividing by 10n on both sides we have

$$r_k/n = d_{k+1}/10 + r_{k+1}/(10n).$$
 (*)

We also had $10^{t+1} = d_1n + r_1$, so dividing both sides by $10^{t+1}n$ gives

$$1/n = d_1/10^{t+1} + r_1/(n10^{t+1}).$$
 (**)

Starting with (**) and repeatedly applying (*) gives

$$1/n = d_1/10^{t+1} + r_1/(n10^{t+1})$$

= $d_110^{t+1} + d_2/10^{t+2} + r_2/(n10^{t+2})$
= $d_1/10^{t+1} + d_2/10^{t+2} + d_3/10^{t+3} + r_3/(n10^{t+3})$
:
= $d_1/10^{t+1} + d_2/10^{t+2} + d_3/10^{t+3} + d_4/10^{t+4} + \cdots$

Theorem 15.3 (continued 1)

Proof (continued). The Division Algorithm gave us $10r_k = d_{k+1}n + r_{k+1}$ for $k \ge 1$ above, so dividing by 10n on both sides we have

$$r_k/n = d_{k+1}/10 + r_{k+1}/(10n).$$
 (*)

We also had $10^{t+1} = d_1n + r_1$, so dividing both sides by $10^{t+1}n$ gives

$$1/n = d_1/10^{t+1} + r_1/(n10^{t+1}).$$
 (**)

Starting with (**) and repeatedly applying (*) gives

$$\begin{aligned} 1/n &= d_1/10^{t+1} + r_1/(n10^{t+1}) \\ &= d_110^{t+1} + d_2/10^{t+2} + r_2/(n10^{t+2}) \\ &= d_1/10^{t+1} + d_2/10^{t+2} + d_3/10^{t+3} + r_3/(n10^{t+3}) \\ &\vdots \\ &= d_1/10^{t+1} + d_2/10^{t+2} + d_3/10^{t+3} + d_4/10^{t+4} + \cdots . \end{aligned}$$

Theorem 15.3 (continued 2)

Theorem 15.3. The length of the decimal period of 1/n is no longer than n-1.

Proof (continued). Therefore the digits in the decimal expansion of 1/nhas the digits d_1, d_2, d_3, \ldots Each of the remainders r_1, r_2, \ldots is one of the *n* values $0, 1, 2, \ldots, n-1$. However, if one of the remainders is 0 then the all the decimals from that point on are 0 and the decimal expansion terminates (so that by Theorem 15.2 we must have $n = 2^{a}5^{b}$ for some nonnegative a and b). Hence if the decimal period is not 0 (in which case the claim holds), then the remainders are among the n-1 values $1, 2, \ldots, n-1$. So among the *n* integers r_1, r_2, \ldots, r_n there must be two that are equal (this follows from the Pigeonhole Principle; see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles). If $r_i = r_k$, then $d_{k+1} = d_{i+1}, d_{k+2} = d_{i+2}, \ldots$, since d_{k+1} and r_{k+1} are determined by the value of r_k . So the decimal repeats with period no longer than n-1, as

- ()

Theorem 15.3 (continued 2)

Theorem 15.3. The length of the decimal period of 1/n is no longer than n-1.

Proof (continued). Therefore the digits in the decimal expansion of 1/nhas the digits d_1, d_2, d_3, \ldots Each of the remainders r_1, r_2, \ldots is one of the *n* values $0, 1, 2, \ldots, n-1$. However, if one of the remainders is 0 then the all the decimals from that point on are 0 and the decimal expansion terminates (so that by Theorem 15.2 we must have $n = 2^{a}5^{b}$ for some nonnegative a and b). Hence if the decimal period is not 0 (in which case the claim holds), then the remainders are among the n-1 values $1, 2, \ldots, n-1$. So among the *n* integers r_1, r_2, \ldots, r_n there must be two that are equal (this follows from the Pigeonhole Principle; see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles). If $r_i = r_k$, then $d_{k+1} = d_{i+1}, d_{k+2} = d_{i+2}, \ldots$, since d_{k+1} and r_{k+1} are determined by the value of r_k . So the decimal repeats with period no longer than n-1, as claimed.

- ()

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$.

Proof. Since (n, 10) = 1 then $10^{\varphi}(n) \equiv 1 \pmod{n}$ by Euler's Theorem (Theorem 9.1), so *r* exists with $10^r \equiv 1 \pmod{n}$. The least residues (mod *n*) of $1, 10, 10^2, 10^3, \ldots, 10^{n-1}$ may only be the values $1, 2, 3, \ldots, n-1$ because no power of 10 is divisible by *n* since (n, 10) = 1. Now the *n* residues (mod *n*) of $1, 10, 10^2, 10^3, \ldots, 10^{n-1}$ can only take on n-1 possible values and so, by the Pigeonhole Principle (see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles), two of the residues are the same.

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$.

Proof. Since (n, 10) = 1 then $10^{\varphi}(n) \equiv 1 \pmod{n}$ by Euler's Theorem (Theorem 9.1), so r exists with $10^r \equiv 1 \pmod{n}$. The least residues (mod n) of $1, 10, 10^2, 10^3, \ldots, 10^{n-1}$ may only be the values $1, 2, 3, \ldots, n-1$ because no power of 10 is divisible by n since (n, 10) = 1. Now the n residues (mod *n*) of $1, 10, 10^2, 10^3, ..., 10^{n-1}$ can only take on n-1possible values and so, by the Pigeonhole Principle (see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles), two of the residues are the same. That is, there are distinct nonnegative integers a and b (say a < b), both less than *n*, such that $10^a = 10^b \pmod{n}$. Dividing both sides of this congruence by 10^{*a*} gives (by Theorem 4.4) $10^{b-a} \equiv 1 \pmod{n}$. So we have that when digits in two positions *a* and *b* are the same, then we have that r = b - a satisfies $10^r \equiv 1 \pmod{n}$. In particular, if r is the period of 1/n then $10^r \equiv 1 \pmod{n}$.

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$.

Proof. Since (n, 10) = 1 then $10^{\varphi}(n) \equiv 1 \pmod{n}$ by Euler's Theorem (Theorem 9.1), so r exists with $10^r \equiv 1 \pmod{n}$. The least residues (mod n) of $1, 10, 10^2, 10^3, \ldots, 10^{n-1}$ may only be the values $1, 2, 3, \ldots, n-1$ because no power of 10 is divisible by n since (n, 10) = 1. Now the n residues (mod *n*) of $1, 10, 10^2, 10^3, ..., 10^{n-1}$ can only take on n-1possible values and so, by the Pigeonhole Principle (see my online notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles), two of the residues are the same. That is, there are distinct nonnegative integers a and b (say a < b), both less than n, such that $10^a = 10^b \pmod{n}$. Dividing both sides of this congruence by 10^a gives (by Theorem 4.4) $10^{b-a} \equiv 1 \pmod{n}$. So we have that when digits in two positions a and b are the same, then we have that r = b - a satisfies $10^r \equiv 1 \pmod{n}$. In particular, if r is the period of 1/n then $10^r \equiv 1 \pmod{n}$.

()

Theorem 15.4 (continued 1)

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$.

Proof (continued). Since $10^r \equiv 1 \pmod{n}$, then $10^r - 1 = kn$ for some integer k. So $k < 10^r$ and in base 10, k has at most r digits. Let

$$k = (d_{r-1}d_{r-2}\cdots d_1d_0)_{10} = d_{r-1}10^{r-1} + d_{r-2}10^{r-2} + \cdots + d_110 + d_0,$$

where $0 \le d_k < 10$ for $k = 0, 1, \dots, r$. Since $10^r - 1 = kn$ then

$$\frac{1}{n} = \frac{k}{10^{r} - 1} = \frac{(d_{r-1}d_{r-2}\cdots d_{1}d_{0})_{10}}{10^{r}} \cdot \frac{1}{1 - 10^{-r}}$$

$$= (0.d_{r-1}d_{r-2}\cdots d_{1}d_{0})_{10}(1 + 10^{-r} + 10^{-2r} + 10^{-3r} + \cdots)$$
since $\frac{1}{1 - 10^{-r}}$ is the sum of a geometric series with ratio 10^{-r}

$$= 0.\overline{d_{r-1}d_{r-2}\cdots d_{1}d_{0}}.$$

So the period of 1/n is at most r.

Theorem 15.4 (continued 1)

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$.

Proof (continued). Since $10^r \equiv 1 \pmod{n}$, then $10^r - 1 = kn$ for some integer k. So $k < 10^r$ and in base 10, k has at most r digits. Let

$$k = (d_{r-1}d_{r-2}\cdots d_1d_0)_{10} = d_{r-1}10^{r-1} + d_{r-2}10^{r-2} + \cdots d_110 + d_0,$$

where $0 \le d_k < 10$ for $k = 0, 1, \dots, r$. Since $10^r - 1 = kn$ then

$$\frac{1}{n} = \frac{k}{10^{r} - 1} = \frac{(d_{r-1}d_{r-2}\cdots d_{1}d_{0})_{10}}{10^{r}} \cdot \frac{1}{1 - 10^{-r}} \\
= (0.d_{r-1}d_{r-2}\cdots d_{1}d_{0})_{10}(1 + 10^{-r} + 10^{-2r} + 10^{-3r} + \cdots) \\
\text{since } \frac{1}{1 - 10^{-r}} \text{ is the sum of a geometric series with ratio } 10^{-r} \\
= 0.\overline{d_{r-1}d_{r-2}\cdots d_{1}d_{0}}.$$

So the period of 1/n is at most r.

Theorem 15.4 (continued 2)

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$.

Proof (continued). Suppose the period of 1/n is some value *s*. That is, $1/n = 0.\overline{e_{s-1}e_{s-2}\cdots e_{1}e_{0}}$ for some integers $e_{0}, e_{1}, \dots, e_{s-1}$. Then $\frac{1}{n} = (0.e_{s-1}e_{s-2}\cdots e_{1}e_{0})(1+10^{-s}+10^{-2s}+\cdots)$ $= \frac{(e_{s-1}e_{s-2}\cdots e_{1}e_{0})_{10}}{10^{s}} \cdot \frac{1}{1-10^{-s}}$ $= \frac{(e_{s-1}e_{s-2}\cdots e_{1}e_{0})_{10}}{10^{s}-1}.$

With $k' = (e_{s-1}e_{s-2}\cdots e_1e_0)_{10}$, we have $nk' = 10^s - 1$, so $10^s \equiv 1 \pmod{n}$. With r as the smallest positive integer such that $10^r \equiv 1 \pmod{n}$, then $s \ge r$. We have that the period of 1/n is at most r and at least r, and so the period of 1/n is equal to r where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$, as claimed.

Theorem 15.4 (continued 2)

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$.

Proof (continued). Suppose the period of 1/n is some value *s*. That is, $1/n = 0.\overline{e_{s-1}e_{s-2}\cdots e_{1}e_{0}}$ for some integers $e_{0}, e_{1}, \dots, e_{s-1}$. Then $\frac{1}{n} = (0.e_{s-1}e_{s-2}\cdots e_{1}e_{0})(1+10^{-s}+10^{-2s}+\cdots)$ $= \frac{(e_{s-1}e_{s-2}\cdots e_{1}e_{0})_{10}}{10^{s}} \cdot \frac{1}{1-10^{-s}}$ $= \frac{(e_{s-1}e_{s-2}\cdots e_{1}e_{0})_{10}}{10^{s}-1}.$

With $k' = (e_{s-1}e_{s-2}\cdots e_1e_0)_{10}$, we have $nk' = 10^s - 1$, so $10^s \equiv 1 \pmod{n}$. With r as the smallest positive integer such that $10^r \equiv 1 \pmod{n}$, then $s \ge r$. We have that the period of 1/n is at most r and at least r, and so the period of 1/n is equal to r where r is the smallest positive integer such that $10^r \equiv 1 \pmod{n}$, as claimed.