Elementary Number Theory

Section 16. Pythagorean Triangles—Proofs of Theorems

Lemma 16.1. If a, b, c is a fundamental solution of $x^2 + y^2 = z^2$, then exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both a and b even, otherwise c would need to be even and 2 would divide each of a, b, c, contradicting the definition of "fundamental solution."

Lemma 16.1. If a, b, c is a fundamental solution of $x^2 + y^2 = z^2$, then exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both *a* and *b* even, otherwise *c* would need to be even and 2 would divide each of *a*, *b*, *c*, contradicting the definition of "fundamental solution." Next, ASSUME both *a* and *b* are odd. Then we have $a^2 \equiv 1 \pmod{4}$ and $b^2 \equiv 1 \pmod{4}$, so that $c^2 = a^2 + b^2 \equiv 2 \pmod{4}$. But then *c* must be even and $c^2 \equiv 0 \pmod{4}$, a CONTRADICTION. So the assumption that both *a* and *b* are odd is false. Hence, exactly one of *a* and *b* is even, as claimed.

Lemma 16.1. If a, b, c is a fundamental solution of $x^2 + y^2 = z^2$, then exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both *a* and *b* even, otherwise *c* would need to be even and 2 would divide each of *a*, *b*, *c*, contradicting the definition of "fundamental solution." Next, ASSUME both *a* and *b* are odd. Then we have $a^2 \equiv 1 \pmod{4}$ and $b^2 \equiv 1 \pmod{4}$, so that $c^2 = a^2 + b^2 \equiv 2 \pmod{4}$. But then *c* must be even and $c^2 \equiv 0 \pmod{4}$, a CONTRADICTION. So the assumption that both *a* and *b* are odd is false. Hence, exactly one of *a* and *b* is even, as claimed.

Lemma 16.2. If $r^2 = st$ and (s, t) = 1, then both s and t are squares.

Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, "The Unique Factorization Theorem"), we have the prime-pwer decompositions of s at t:

$$s = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$
 and $t = q_1^{f_1} q_2^{f_2} \cdots q_j^{f_j}$.

The hypothesis that s and t are relatively prime, (s, t) = 1, gives that no prime appears in both decompositions.

Lemma 16.2. If $r^2 = st$ and (s, t) = 1, then both s and t are squares.

Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, "The Unique Factorization Theorem"), we have the prime-pwer decompositions of s at t:

$$s = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$
 and $t = q_1^{f_1} q_2^{f_2} \cdots q_j^{f_j}.$

The hypothesis that s and t are relatively prime, (s, t) = 1, gives that no prime appears in both decompositions. So

$$r^2 = st = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} q_1^{f_1} q_2^{f_2} \cdots q_j^{f_j}$$

(also by Theorem 2.2) and the *p*'s and *q*'s are distinct primes. Since r^2 is a square, then all exponents $e_1, e_2, \ldots, e_k, f_1, f_2, \ldots, f_j$ are even. Hence, *s* and *t* are squares, as claimed.

Lemma 16.2. If $r^2 = st$ and (s, t) = 1, then both s and t are squares.

Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, "The Unique Factorization Theorem"), we have the prime-pwer decompositions of s at t:

$$s = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$
 and $t = q_1^{f_1} q_2^{f_2} \cdots q_j^{f_j}$.

The hypothesis that s and t are relatively prime, (s, t) = 1, gives that no prime appears in both decompositions. So

$$r^2 = st = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} q_1^{f_1} q_2^{f_2} \cdots q_j^{f_j}$$

(also by Theorem 2.2) and the *p*'s and *q*'s are distinct primes. Since r^2 is a square, then all exponents $e_1, e_2, \ldots, e_k, f_1, f_2, \ldots, f_j$ are even. Hence, *s* and *t* are squares, as claimed.

Lemma 16.3. Suppose that *a*, *b*, *c* is a fundamental solution of $x^2 + y^2 = z^2$, and suppose that *a* is even. Then there are positive integers *m* and *n* with m > n, (m, n) = 1, and $m \not\equiv n \pmod{2}$ such that a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$.

Proof. Since *a* is even, say a = 2r for some positive integer *r*, then $a^2 = 4r^2$. Since $a^2 = c^2 - b^2$ we have $4r^2 = (c+b)(c-b)$. Now *b* is odd by Lemma 16.1 and *c* is odd by Corollary 16.A, so c + b and c - b are both even. So we have c + b = 2s and c - b = 2t for some positive integers *s* and *t*. Solving these two equations for *b* and *c* gives c = s + t (summing the two equations) and b = s - t (subtracting the two equations).

Lemma 16.3. Suppose that *a*, *b*, *c* is a fundamental solution of $x^2 + y^2 = z^2$, and suppose that *a* is even. Then there are positive integers *m* and *n* with m > n, (m, n) = 1, and $m \not\equiv n \pmod{2}$ such that a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$.

Proof. Since *a* is even, say a = 2r for some positive integer *r*, then $a^{2} = 4r^{2}$. Since $a^{2} = c^{2} - b^{2}$ we have $4r^{2} = (c + b)(c - b)$. Now b is odd by Lemma 16.1 and c is odd by Corollary 16.A, so c + b and c - b are both even. So we have c + b = 2s and c - b = 2t for some positive integers s and t. Solving these two equations for b and c gives c = s + t(summing the two equations) and b = s - t (subtracting the two equations). Since c + b = 2s and c - b = 2t, then $4r^2 = (c + b)(c - b)$ implies $4r^2 = 4st$ or $r^2 = st$. We have that s and t are relatively prime, since if $d \mid s$ and $d \mid t$ then $d \mid (s+t)$ and $d \mid (s-t)$; that is, $d \mid c$ and $s \mid b$. But (b, c) = 1 by Exercise 1 (on page 129: If (x, y) = 1 and $x^2 + y^2 = z^2$, then (y, z) = (x, z) = 1 so $d = \pm 1$, and hence (s, t) = 1.

Lemma 16.3. Suppose that *a*, *b*, *c* is a fundamental solution of $x^2 + y^2 = z^2$, and suppose that *a* is even. Then there are positive integers *m* and *n* with m > n, (m, n) = 1, and $m \not\equiv n \pmod{2}$ such that a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$.

Proof. Since *a* is even, say a = 2r for some positive integer *r*, then $a^{2} = 4r^{2}$. Since $a^{2} = c^{2} - b^{2}$ we have $4r^{2} = (c + b)(c - b)$. Now b is odd by Lemma 16.1 and c is odd by Corollary 16.A, so c + b and c - b are both even. So we have c + b = 2s and c - b = 2t for some positive integers s and t. Solving these two equations for b and c gives c = s + t(summing the two equations) and b = s - t (subtracting the two equations). Since c + b = 2s and c - b = 2t, then $4r^2 = (c + b)(c - b)$ implies $4r^2 = 4st$ or $r^2 = st$. We have that s and t are relatively prime, since if $d \mid s$ and $d \mid t$ then $d \mid (s+t)$ and $d \mid (s-t)$; that is, $d \mid c$ and $s \mid b$. But (b, c) = 1 by Exercise 1 (on page 129: If (x, y) = 1 and $x^2 + y^2 = z^2$, then (y, z) = (x, z) = 1 so $d = \pm 1$, and hence (s, t) = 1.

()

Lemma 16.3 (continued)

Lemma 16.3. Suppose that *a*, *b*, *c* is a fundamental solution of $x^2 + y^2 = z^2$, and suppose that *a* is even. Then there are positive integers *m* and *n* with m > n, (m, n) = 1, and $m \not\equiv n \pmod{2}$ such that a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$.

Proof (continued). Since *s* and *t* are relatively prime, then Lemma 16.2 implies that *s* and *t* are both squares. Say $s = m^2$ and $t = n^2$ for some positive integers *m* and *n*. Since a = 2r, $a^2 = 4r^2$, and $r^2 = st$, then we have $a^2 = 4r^2 = 4st = 4m^2n^2$ or a = 2mn. Hence $c = s + t = m^2 + n^2$ and $b = s - t = m^2 - n^2$; so *a*, *b*, and *c* are as claimed in terms of *m* and *n*. Next, since *b* is positive then m > n, as claimed. Since *b* is odd, then $m \neq n \pmod{2}$, as claimed. Finally, suppose $d \mid m$ and $d \mid n$. Then $d \mid a$ since a = 2mn, and $d \mid b$ since $b = m^2 - n^2$. But because we have a fundamental solution, then (a, b) = 1 and so $d = \pm 1$. Therefore (m, n) = 1, as claimed.

Lemma 16.3 (continued)

Lemma 16.3. Suppose that *a*, *b*, *c* is a fundamental solution of $x^2 + y^2 = z^2$, and suppose that *a* is even. Then there are positive integers *m* and *n* with m > n, (m, n) = 1, and $m \not\equiv n \pmod{2}$ such that a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$.

Proof (continued). Since *s* and *t* are relatively prime, then Lemma 16.2 implies that *s* and *t* are both squares. Say $s = m^2$ and $t = n^2$ for some positive integers *m* and *n*. Since a = 2r, $a^2 = 4r^2$, and $r^2 = st$, then we have $a^2 = 4r^2 = 4st = 4m^2n^2$ or a = 2mn. Hence $c = s + t = m^2 + n^2$ and $b = s - t = m^2 - n^2$; so *a*, *b*, and *c* are as claimed in terms of *m* and *n*. Next, since *b* is positive then m > n, as claimed. Since *b* is odd, then $m \neq n \pmod{2}$, as claimed. Finally, suppose $d \mid m$ and $d \mid n$. Then $d \mid a$ since a = 2mn, and $d \mid b$ since $b = m^2 - n^2$. But because we have a fundamental solution, then (a, b) = 1 and so $d = \pm 1$. Therefore (m, n) = 1, as claimed.

Lemma 16.4

Lemma 16.4. If a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$, then a, b, c is a solution of $x^2 + y^2 = z^2$. If in addition, m > n, m and n are positive, (m, n) = 1, and $m \neq n \pmod{2}$, then a, b, c is a fundamental solution.

Proof. It is straightforward to verify that *a*, *b*, *c* is a solution:

$$a^{2} + b^{2} = (2mn)^{2} + (m^{2} - n^{2})^{2} = 4m^{2}n^{2} + m^{4} - 2m^{2}n^{2} + n^{4}$$

= $m^{4} + 2m^{2}n^{2} + n^{4} = (m^{2} + n^{2})^{2} = c^{2}$.

Lemma 16.4

Lemma 16.4. If a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$, then a, b, c is a solution of $x^2 + y^2 = z^2$. If in addition, m > n, m and n are positive, (m, n) = 1, and $m \not\equiv n \pmod{2}$, then a, b, c is a fundamental solution.

Proof. It is straightforward to verify that *a*, *b*, *c* is a solution:

$$a^{2} + b^{2} = (2mn)^{2} + (m^{2} - n^{2})^{2} = 4m^{2}n^{2} + m^{4} - 2m^{2}n^{2} + n^{4}$$

= $m^{4} + 2m^{2}n^{2} + n^{4} = (m^{2} + n^{2})^{2} = c^{2}.$

To show that *a*, *b*, *c* is a *fundamental* solution, ASSUME *p* is an odd prime such that $p \mid a$ and $p \mid b$. Since $c^2 = a^2 + b^2$ then $p \mid c$. Since $p \mid b$ and $p \mid c$ then $p \mid (b + c)$ and $p \mid (b - c)$. But $b + c = 2m^2$ and $b - c = -2n^2$ (by hypothesis). So $p \mid 2m^2$ and $p \mid 2n^2$. Since *p* is odd, then $p \mid m^2$ and $p \mid n^2$ and hence $p \mid m$ and $p \mid n$. But this is a CONTRADICTION, since *m* and *n* are relatively prime.

Lemma 16.4

Lemma 16.4. If a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$, then a, b, c is a solution of $x^2 + y^2 = z^2$. If in addition, m > n, m and n are positive, (m, n) = 1, and $m \not\equiv n \pmod{2}$, then a, b, c is a fundamental solution.

Proof. It is straightforward to verify that *a*, *b*, *c* is a solution:

$$a^{2} + b^{2} = (2mn)^{2} + (m^{2} - n^{2})^{2} = 4m^{2}n^{2} + m^{4} - 2m^{2}n^{2} + n^{4}$$

= $m^{4} + 2m^{2}n^{2} + n^{4} = (m^{2} + n^{2})^{2} = c^{2}.$

To show that *a*, *b*, *c* is a *fundamental* solution, ASSUME *p* is an odd prime such that $p \mid a$ and $p \mid b$. Since $c^2 = a^2 + b^2$ then $p \mid c$. Since $p \mid b$ and $p \mid c$ then $p \mid (b + c)$ and $p \mid (b - c)$. But $b + c = 2m^2$ and $b - c = -2n^2$ (by hypothesis). So $p \mid 2m^2$ and $p \mid 2n^2$. Since *p* is odd, then $p \mid m^2$ and $p \mid n^2$ and hence $p \mid m$ and $p \mid n$. But this is a CONTRADICTION, since *m* and *n* are relatively prime.

Lemma 16.4 (continued)

Lemma 16.4. If a = 2mn, $b = m^2 - n^2$, and $c = m^2 + n^2$, then a, b, c is a solution of $x^2 + y^2 = z^2$. If in addition, m > n, m and n are positive, (m, n) = 1, and $m \neq n \pmod{2}$, then a, b, c is a fundamental solution.

Proof (continued). So the assumption that there is an odd prime p which divides both a and b is false (and 2 does not divide b since $b = m^2 - n^2$ where $m \not\equiv n \pmod{2}$, and so b is odd), so that a and b have no common factors and (a, b) = 1. Notice that since m and n are positive by hypothesis then a = 2mn is positive, and since m > n by hypothesis then $b = m^2 - n^2$ is positive. That is, a, b, c is a fundamental solution, as claimed.