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Lemma 16.1

Lemma 16.1. If a, b, ¢ is a fundamental solution of x? + y? = z°, then
exactly one of a and b is even.
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Lemma 16.1

Lemma 16.1. If a, b, ¢ is a fundamental solution of x? + y? = z°, then
exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both a and b even,

otherwise ¢ would need to be even and 2 would divide each of a, b, c,
contradicting the definition of “fundamental solution.”
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Lemma 16.1

Lemma 16.1. If a, b, ¢ is a fundamental solution of x? + y? = z°, then
exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both a and b even,
otherwise ¢ would need to be even and 2 would divide each of a, b, c,
contradicting the definition of “fundamental solution.” Next, ASSUME
both a and b are odd. Then we have a®> = 1 (mod 4) and b*> = 1 (mod 4),
so that ¢2 = a® + b®> = 2 (mod 4). But then ¢ must be even and ¢? =0
(mod 4), a CONTRADICTION. So the assumption that both a and b are
odd is false. Hence, exactly one of a and b is even, as claimed. O
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Lemma 16.2

Lemma 16.2. If r> = st and (s, t) = 1, then both s and t are squares.
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Lemma 16.2

Lemma 16.2

Lemma 16.2. If r> = st and (s, t) = 1, then both s and t are squares.

Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, “The

Unique Factorization Theorem™), we have the prime-pwer decompositions
of s at t:

f f fi
s=pi'py - pand t=ar'ay g

The hypothesis that s and t are relatively prime, (s, t) = 1, gives that no
prime appears in both decompositions.
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Lemma 16.2

Lemma 16.2. If r> = st and (s, t) = 1, then both s and t are squares.

Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, “The
Unique Factorization Theorem™), we have the prime-pwer decompositions
of s at t:

f f fi
s=pi'py - pand t=ar'ay g

The hypothesis that s and t are relatively prime, (s, t) = 1, gives that no
prime appears in both decompositions. So

fJ',

2 fi

r< = st = pflpgz .. .pqu11q22 . qj
(also by Theorem 2.2) and the p's and g's are distinct primes. Since r? is
a square, then all exponents e1, e, ..., e, fi,f,...f; are even. Hence, s
and t are squares, as claimed. []
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Lemma 16.3

Lemma 16.3

Lemma 16.3. Suppose that a, b, ¢ is a fundamental solution of
x? 4+ y? = 72, and suppose that a is even. Then there are positive integers

m and n with m > n, (m,n) =1, and m # n (mod 2) such that a = 2mn,
b=m?—n? and ¢ = m? + n?.
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Lemma 16.3

Lemma 16.3. Suppose that a, b, ¢ is a fundamental solution of
x? 4+ y? = 72, and suppose that a is even. Then there are positive integers
m and n with m > n, (m,n) =1, and m # n (mod 2) such that a = 2mn,

2_n2 and c = m? + n?.

b=m
Proof. Since a is even, say a = 2r for some positive integer r, then

a®> = 4r?. Since a® = c2 — b% we have 4r? = (c + b)(c — b). Now b is odd
by Lemma 16.1 and c is odd by Corollary 16.A, so ¢ + b and ¢ — b are
both even. So we have ¢ + b = 2s and ¢ — b = 2t for some positive
integers s and t. Solving these two equations for b and ¢ gives c =s+ ¢
(summing the two equations) and b = s — t (subtracting the two

equations).
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Lemma 16.3

Lemma 16.3. Suppose that a, b, ¢ is a fundamental solution of

x? 4+ y? = 72, and suppose that a is even. Then there are positive integers
m and n with m > n, (m,n) =1, and m # n (mod 2) such that a = 2mn,
b=m?—n? and c = m? + n?.

Proof. Since a is even, say a = 2r for some positive integer r, then

a®> = 4r?. Since a® = c2 — b% we have 4r? = (c + b)(c — b). Now b is odd
by Lemma 16.1 and c is odd by Corollary 16.A, so ¢ + b and ¢ — b are
both even. So we have ¢ + b = 2s and ¢ — b = 2t for some positive
integers s and t. Solving these two equations for b and ¢ gives c =s+ ¢
(summing the two equations) and b = s — t (subtracting the two
equations). Since ¢ + b = 2s and ¢ — b = 2t, then 4r?> = (c + b)(c — b)
implies 4r> = 4st or r> = st. We have that s and t are relatively prime,
since if d|s and d|t then d|,(s+t) and d|(s — t); thatis, d|c and s | b.
But (b, c) = 1 by Exercise 1 (on page 129: If (x,y) = 1 and x? + y? = z2,
then (y,z) = (x,z) = 1) so d = %1, and hence (s,t) = 1.
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Lemma 16.3 (continued)

Lemma 16.3. Suppose that a, b, ¢ is a fundamental solution of
x? 4+ y? = z?, and suppose that a is even. Then there are positive integers

m and n with m > n, (m,n) =1, and m # n (mod 2) such that a = 2mn,
b=m?—n? and c = m? + n?.

Proof (continued). Since s and t are relatively prime, then Lemma 16.2
implies that s and t are both squares. Say s = m? and t = n® for some
positive integers m and n. Since a = 2r, a®> = 4r?, and r? = st, then we
have a® = 4r? = 4st = 4m°n® or a=2mn. Hence c = s+t = m? + n?
and b=s—t=m?—n? soa, b, and c are as claimed in terms of m and
n.
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Lemma 16.3 (continued)

Lemma 16.3. Suppose that a, b, ¢ is a fundamental solution of

x? 4+ y? = z?, and suppose that a is even. Then there are positive integers
m and n with m > n, (m,n) =1, and m # n (mod 2) such that a = 2mn,
b=m?—n? and c = m? + n?.

Proof (continued). Since s and t are relatively prime, then Lemma 16.2
implies that s and t are both squares. Say s =m? and t = n? for some
positive integers m and n. Since a = 2r, a®> = 4r?, and r? = st, then we
have a® = 4r? = 4st = 4m?n? or a = 2mn. HenceC—s+t—m +n?
and b=s—t=m?—n? so a, b, and c are as claimed in terms of m and
n. Next, since b is positive then m > n, as claimed. Since b is odd, then
m # n (mod 2), as claimed. Finally, suppose d|mand d|n. Then d|a
since a = 2mn, and d| b since b = m? — n?. But because we have a
fundamental solution, then (a, b) =1 and so d = £1. Therefore

(m,n) =1, as claimed. O
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Lemma 16.4

Lemma 16.4

Lemma 16.4. If a=2mn, b= m? — n?, and ¢ = m? + n?, then a, b, c is

a solution of x2 + y2 = 22 If in addition, m > n, m and n are positive,
(m,n) =1, and m # n (mod 2), then a, b, ¢ is a fundamental solution.
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Lemma 16.4

Lemma 16.4

Lemma 16.4. If a=2mn, b= m? — n?, and ¢ = m? + n?, then a, b, c is
a solution of x2 + y2 = 22 If in addition, m > n, m and n are positive,
(m,n) =1, and m # n (mod 2), then a, b, ¢ is a fundamental solution.

Proof. It is straightforward to verify that a, b, ¢ is a solution:

a4+ b2 = (2mn)?*+ (m? = n®)? =4m?’n® + m* — 2m?n® + n*
= m*+2m?n® + n* = (m* 4+ n?)? =2
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Lemma 16.4

Lemma 16.4. If a=2mn, b= m? — n?, and ¢ = m? + n?, then a, b, c is

a solution of x2 + y2 = 22 If in addition, m > n, m and n are positive,
(m,n) =1, and m # n (mod 2), then a, b, ¢ is a fundamental solution.

Proof. It is straightforward to verify that a, b, ¢ is a solution:

a4+ b2 = (2mn)?*+ (m? = n®)? =4m?’n® + m* — 2m?n® + n*
= m*+2m?n® +n* = (m? + n?)? =2

To show that a, b, ¢ is a fundamental solution, ASSUME p is an odd prime
such that p|a and p|b. Since ¢ = a® + b? then p|c. Since p|b and p|c
then p|(b+c) and p|(b—c). But b+ c=2m? and b — c = —2n? (by
hypothesis). So p|2m? and p|2n?. Since p is odd, then p| m? and p| n?
and hence p| m and p|n. But this is a CONTRADICTION, since m and n
are relatively prime.
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Lemma 16.4 (continued)

Lemma 16.4. If a=2mn, b= m? — n?, and ¢ = m? + n?, then a, b, c is
a solution of x2 + y2 = z2. If in addition, m > n, m and n are positive,
(m,n) =1, and m # n (mod 2), then a, b, ¢ is a fundamental solution.

Proof (continued). So the assumption that there is an odd prime p
which divides both a and b is false (and 2 does not divide b since

b = m? — n? where m # n (mod 2), and so b is odd), so that a and b
have no common factors and (a, b) = 1. Notice that since m and n are
positive by hypothesis then a = 2mn is positive, and since m > n by
hypothesis then b = m? — n? is positive. That is, a, b, ¢ is a fundamental
solution, as claimed. O
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