Elementary Number Theory

Section 16. Pythagorean Triangles—Proofs of Theorems

Table of contents

(1) Lemma 16.1
(2) Lemma 16.2
(3) Lemma 16.3

4 Lemma 16.4

Lemma 16.1

Lemma 16.1. If a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, then exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both a and b even, otherwise c would need to be even and 2 would divide each of a, b, c, contradicting the definition of "fundamental solution."

Lemma 16.1

Lemma 16.1. If a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, then exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both a and b even, otherwise c would need to be even and 2 would divide each of a, b, c, contradicting the definition of "fundamental solution." Next, ASSUME both a and b are odd. Then we have $a^{2} \equiv 1(\bmod 4)$ and $b^{2} \equiv 1(\bmod 4)$, so that $c^{2}=a^{2}+b^{2} \equiv 2(\bmod 4)$. But then c must be even and $c^{2} \equiv 0$ $(\bmod 4)$, a CONTRADICTION. So the assumption that both a and b are odd is false. Hence, exactly one of a and b is even, as claimed.

Lemma 16.1

Lemma 16.1. If a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, then exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both a and b even, otherwise c would need to be even and 2 would divide each of a, b, c, contradicting the definition of "fundamental solution." Next, ASSUME both a and b are odd. Then we have $a^{2} \equiv 1(\bmod 4)$ and $b^{2} \equiv 1(\bmod 4)$, so that $c^{2}=a^{2}+b^{2} \equiv 2(\bmod 4)$. But then c must be even and $c^{2} \equiv 0$ $(\bmod 4)$, a CONTRADICTION. So the assumption that both a and b are odd is false. Hence, exactly one of a and b is even, as claimed.

Lemma 16.2

Lemma 16.2. If $r^{2}=s t$ and $(s, t)=1$, then both s and t are squares.
Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, "The Unique Factorization Theorem"), we have the prime-pwer decompositions of s at t :

$$
s=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \text { and } t=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{j}^{f_{j}} .
$$

The hypothesis that s and t are relatively prime, $(s, t)=1$, gives that no prime appears in both decompositions.

Lemma 16.2

Lemma 16.2. If $r^{2}=s t$ and $(s, t)=1$, then both s and t are squares.
Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, "The Unique Factorization Theorem"), we have the prime-pwer decompositions of s at t :

$$
s=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \text { and } t=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{j}^{f_{j}} .
$$

The hypothesis that s and t are relatively prime, $(s, t)=1$, gives that no prime appears in both decompositions.

$$
r^{2}=s t=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{j}^{f_{j}}
$$

(also by Theorem 2.2) and the p 's and q 's are distinct primes. Since r^{2} is a square, then all exponents $e_{1}, e_{2}, \ldots, e_{k}, f_{1}, f_{2}, \ldots f_{j}$ are even. Hence, s and t are squares, as claimed.

Lemma 16.2

Lemma 16.2. If $r^{2}=s t$ and $(s, t)=1$, then both s and t are squares.
Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, "The Unique Factorization Theorem"), we have the prime-pwer decompositions of s at t :

$$
s=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \text { and } t=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{j}^{f_{j}} .
$$

The hypothesis that s and t are relatively prime, $(s, t)=1$, gives that no prime appears in both decompositions. So

$$
r^{2}=s t=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{j}^{f_{j}}
$$

(also by Theorem 2.2) and the p 's and q 's are distinct primes. Since r^{2} is a square, then all exponents $e_{1}, e_{2}, \ldots, e_{k}, f_{1}, f_{2}, \ldots f_{j}$ are even. Hence, s and t are squares, as claimed.

Lemma 16.3

Lemma 16.3. Suppose that a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, and suppose that a is even. Then there are positive integers m and n with $m>n,(m, n)=1$, and $m \not \equiv n(\bmod 2)$ such that $a=2 m n$, $b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.

Proof. Since a is even, say $a=2 r$ for some positive integer r, then $a^{2}=4 r^{2}$. Since $a^{2}=c^{2}-b^{2}$ we have $4 r^{2}=(c+b)(c-b)$. Now b is odd by Lemma 16.1 and c is odd by Corollary 16.A, so $c+b$ and $c-b$ are both even. So we have $c+b=2 s$ and $c-b=2 t$ for some positive integers s and t. Solving these two equations for b and c gives $c=s+t$ (summing the two equations) and $b=s-t$ (subtracting the two equations).

Lemma 16.3

Lemma 16.3. Suppose that a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, and suppose that a is even. Then there are positive integers m and n with $m>n,(m, n)=1$, and $m \not \equiv n(\bmod 2)$ such that $a=2 m n$, $b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.

Proof. Since a is even, say $a=2 r$ for some positive integer r, then $a^{2}=4 r^{2}$. Since $a^{2}=c^{2}-b^{2}$ we have $4 r^{2}=(c+b)(c-b)$. Now b is odd by Lemma 16.1 and c is odd by Corollary 16.A, so $c+b$ and $c-b$ are both even. So we have $c+b=2 s$ and $c-b=2 t$ for some positive integers s and t. Solving these two equations for b and c gives $c=s+t$ (summing the two equations) and $b=s-t$ (subtracting the two equations). Since $c+b=2 s$ and $c-b=2 t$, then $4 r^{2}=(c+b)(c-b)$ implies $4 r^{2}=4 s t$ or $r^{2}=s t$. We have that s and t are relatively prime, since if $d \mid s$ and $d \mid t$ then $d \mid,(s+t)$ and $d \mid(s-t)$; that is, $d \mid c$ and $s \mid b$. But $(b, c)=1$ by Exercise 1 (on page 129: If $(x, y)=1$ and $x^{2}+y^{2}=z^{2}$, then $(y, z)=(x, z)=1)$ so $d= \pm 1$, and hence $(s, t)=1$.

Lemma 16.3

Lemma 16.3. Suppose that a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, and suppose that a is even. Then there are positive integers m and n with $m>n,(m, n)=1$, and $m \not \equiv n(\bmod 2)$ such that $a=2 m n$, $b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.
Proof. Since a is even, say $a=2 r$ for some positive integer r, then $a^{2}=4 r^{2}$. Since $a^{2}=c^{2}-b^{2}$ we have $4 r^{2}=(c+b)(c-b)$. Now b is odd by Lemma 16.1 and c is odd by Corollary 16.A, so $c+b$ and $c-b$ are both even. So we have $c+b=2 s$ and $c-b=2 t$ for some positive integers s and t. Solving these two equations for b and c gives $c=s+t$ (summing the two equations) and $b=s-t$ (subtracting the two equations). Since $c+b=2 s$ and $c-b=2 t$, then $4 r^{2}=(c+b)(c-b)$ implies $4 r^{2}=4 s t$ or $r^{2}=s t$. We have that s and t are relatively prime, since if $d \mid s$ and $d \mid t$ then $d \mid,(s+t)$ and $d \mid(s-t)$; that is, $d \mid c$ and $s \mid b$. But $(b, c)=1$ by Exercise 1 (on page 129: If $(x, y)=1$ and $x^{2}+y^{2}=z^{2}$, then $(y, z)=(x, z)=1)$ so $d= \pm 1$, and hence $(s, t)=1$.

Lemma 16.3 (continued)

Lemma 16.3. Suppose that a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, and suppose that a is even. Then there are positive integers m and n with $m>n,(m, n)=1$, and $m \not \equiv n(\bmod 2)$ such that $a=2 m n$, $b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.

Proof (continued). Since s and t are relatively prime, then Lemma 16.2 implies that s and t are both squares. Say $s=m^{2}$ and $t=n^{2}$ for some positive integers m and n. Since $a=2 r, a^{2}=4 r^{2}$, and $r^{2}=s t$, then we have $a^{2}=4 r^{2}=4 s t=4 m^{2} n^{2}$ or $a=2 m n$. Hence $c=s+t=m^{2}+n^{2}$ and $b=s-t=m^{2}-n^{2}$; so a, b, and c are as claimed in terms of m and n. $m \not \equiv n(\bmod 2)$, as claimed. Finally, suppose $d \mid m$ and $d \mid n$. Then $d \mid$ a since $a=2 m n$, and $d \mid b$ since $b=m^{2}-n^{2}$. But because we have a fundamental solution, then $(a, b)=1$ and so $d= \pm 1$. Therefore $(m, n)=1$, as claimed.

Lemma 16.3 (continued)

Lemma 16.3. Suppose that a, b, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, and suppose that a is even. Then there are positive integers m and n with $m>n,(m, n)=1$, and $m \not \equiv n(\bmod 2)$ such that $a=2 m n$, $b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.

Proof (continued). Since s and t are relatively prime, then Lemma 16.2 implies that s and t are both squares. Say $s=m^{2}$ and $t=n^{2}$ for some positive integers m and n. Since $a=2 r, a^{2}=4 r^{2}$, and $r^{2}=s t$, then we have $a^{2}=4 r^{2}=4 s t=4 m^{2} n^{2}$ or $a=2 m n$. Hence $c=s+t=m^{2}+n^{2}$ and $b=s-t=m^{2}-n^{2}$; so a, b, and c are as claimed in terms of m and n. Next, since b is positive then $m>n$, as claimed. Since b is odd, then $m \not \equiv n(\bmod 2)$, as claimed. Finally, suppose $d \mid m$ and $d \mid n$. Then $d \mid a$ since $a=2 m n$, and $d \mid b$ since $b=m^{2}-n^{2}$. But because we have a fundamental solution, then $(a, b)=1$ and so $d= \pm 1$. Therefore $(m, n)=1$, as claimed.

Lemma 16.4

Lemma 16.4. If $a=2 m n, b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$, then a, b, c is a solution of $x^{2}+y^{2}=z^{2}$. If in addition, $m>n, m$ and n are positive, $(m, n)=1$, and $m \not \equiv n(\bmod 2)$, then a, b, c is a fundamental solution.

Proof. It is straightforward to verify that a, b, c is a solution:

$$
\begin{aligned}
a^{2}+b^{2} & =(2 m n)^{2}+\left(m^{2}-n^{2}\right)^{2}=4 m^{2} n^{2}+m^{4}-2 m^{2} n^{2}+n^{4} \\
& =m^{4}+2 m^{2} n^{2}+n^{4}=\left(m^{2}+n^{2}\right)^{2}=c^{2} .
\end{aligned}
$$

Lemma 16.4

Lemma 16.4. If $a=2 m n, b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$, then a, b, c is a solution of $x^{2}+y^{2}=z^{2}$. If in addition, $m>n, m$ and n are positive, $(m, n)=1$, and $m \not \equiv n(\bmod 2)$, then a, b, c is a fundamental solution.

Proof. It is straightforward to verify that a, b, c is a solution:

$$
\begin{aligned}
a^{2}+b^{2} & =(2 m n)^{2}+\left(m^{2}-n^{2}\right)^{2}=4 m^{2} n^{2}+m^{4}-2 m^{2} n^{2}+n^{4} \\
& =m^{4}+2 m^{2} n^{2}+n^{4}=\left(m^{2}+n^{2}\right)^{2}=c^{2}
\end{aligned}
$$

To show that a, b, c is a fundamental solution, ASSUME p is an odd prime such that $p \mid a$ and $p \mid b$. Since $c^{2}=a^{2}+b^{2}$ then $p \mid c$. Since $p \mid b$ and $p \mid c$ then $p \mid(b+c)$ and $p \mid(b-c)$. But $b+c=2 m^{2}$ and $b-c=-2 n^{2}$ (by hypothesis). So $p \mid 2 m^{2}$ and $p \mid 2 n^{2}$. Since p is odd, then $p \mid m^{2}$ and $p \mid n^{2}$ and hence $p \mid m$ and $p \mid n$. But this is a CONTRADICTION, since m and n are relatively prime.

Lemma 16.4

Lemma 16.4. If $a=2 m n, b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$, then a, b, c is a solution of $x^{2}+y^{2}=z^{2}$. If in addition, $m>n, m$ and n are positive, $(m, n)=1$, and $m \not \equiv n(\bmod 2)$, then a, b, c is a fundamental solution.

Proof. It is straightforward to verify that a, b, c is a solution:

$$
\begin{aligned}
a^{2}+b^{2} & =(2 m n)^{2}+\left(m^{2}-n^{2}\right)^{2}=4 m^{2} n^{2}+m^{4}-2 m^{2} n^{2}+n^{4} \\
& =m^{4}+2 m^{2} n^{2}+n^{4}=\left(m^{2}+n^{2}\right)^{2}=c^{2}
\end{aligned}
$$

To show that a, b, c is a fundamental solution, ASSUME p is an odd prime such that $p \mid a$ and $p \mid b$. Since $c^{2}=a^{2}+b^{2}$ then $p \mid c$. Since $p \mid b$ and $p \mid c$ then $p \mid(b+c)$ and $p \mid(b-c)$. But $b+c=2 m^{2}$ and $b-c=-2 n^{2}$ (by hypothesis). So $p \mid 2 m^{2}$ and $p \mid 2 n^{2}$. Since p is odd, then $p \mid m^{2}$ and $p \mid n^{2}$ and hence $p \mid m$ and $p \mid n$. But this is a CONTRADICTION, since m and n are relatively prime.

Lemma 16.4 (continued)

Lemma 16.4. If $a=2 m n, b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$, then a, b, c is a solution of $x^{2}+y^{2}=z^{2}$. If in addition, $m>n, m$ and n are positive, $(m, n)=1$, and $m \not \equiv n(\bmod 2)$, then a, b, c is a fundamental solution.

Proof (continued). So the assumption that there is an odd prime p which divides both a and b is false (and 2 does not divide b since $b=m^{2}-n^{2}$ where $m \not \equiv n(\bmod 2)$, and so b is odd), so that a and b have no common factors and $(a, b)=1$. Notice that since m and n are positive by hypothesis then $a=2 m n$ is positive, and since $m>n$ by hypothesis then $b=m^{2}-n^{2}$ is positive. That is, a, b, c is a fundamental solution, as claimed.

