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Lemma 16.1

Lemma 16.1

Lemma 16.1. If a, b, c is a fundamental solution of x2 + y2 = z2, then
exactly one of a and b is even.

Proof. In a fundamental solution, we cannot have both a and b even,
otherwise c would need to be even and 2 would divide each of a, b, c ,
contradicting the definition of “fundamental solution.”

Next, ASSUME
both a and b are odd. Then we have a2 ≡ 1 (mod 4) and b2 ≡ 1 (mod 4),
so that c2 = a2 + b2 ≡ 2 (mod 4). But then c must be even and c2 ≡ 0
(mod 4), a CONTRADICTION. So the assumption that both a and b are
odd is false. Hence, exactly one of a and b is even, as claimed.
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Lemma 16.2

Lemma 16.2

Lemma 16.2. If r2 = st and (s, t) = 1, then both s and t are squares.

Proof. Use the Fundamental Theorem of Arithmetic (Theorem 2.2, “The
Unique Factorization Theorem”), we have the prime-pwer decompositions
of s at t:

s = pe1
1 pe2

2 · · · pek
k and t = qf1

1 qf2
2 · · · qfj

j .

The hypothesis that s and t are relatively prime, (s, t) = 1, gives that no
prime appears in both decompositions.

So

r2 = st = pe1
1 pe2

2 · · · pek
k qf1

1 qf2
2 · · · qfj

j

(also by Theorem 2.2) and the p’s and q’s are distinct primes. Since r2 is
a square, then all exponents e1, e2, . . . , ek , f1, f2, . . . fj are even. Hence, s
and t are squares, as claimed.
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Lemma 16.3

Lemma 16.3

Lemma 16.3. Suppose that a, b, c is a fundamental solution of
x2 + y2 = z2, and suppose that a is even. Then there are positive integers
m and n with m > n, (m, n) = 1, and m 6≡ n (mod 2) such that a = 2mn,
b = m2 − n2, and c = m2 + n2.

Proof. Since a is even, say a = 2r for some positive integer r , then
a2 = 4r2. Since a2 = c2 − b2 we have 4r2 = (c + b)(c − b). Now b is odd
by Lemma 16.1 and c is odd by Corollary 16.A, so c + b and c − b are
both even. So we have c + b = 2s and c − b = 2t for some positive
integers s and t. Solving these two equations for b and c gives c = s + t
(summing the two equations) and b = s − t (subtracting the two
equations).

Since c + b = 2s and c − b = 2t, then 4r2 = (c + b)(c − b)
implies 4r2 = 4st or r2 = st. We have that s and t are relatively prime,
since if d | s and d | t then d |, (s + t) and d |(s − t); that is, d | c and s | b.
But (b, c) = 1 by Exercise 1 (on page 129: If (x , y) = 1 and x2 + y2 = z2,
then (y , z) = (x , z) = 1) so d = ±1, and hence (s, t) = 1.
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Lemma 16.3

Lemma 16.3 (continued)

Lemma 16.3. Suppose that a, b, c is a fundamental solution of
x2 + y2 = z2, and suppose that a is even. Then there are positive integers
m and n with m > n, (m, n) = 1, and m 6≡ n (mod 2) such that a = 2mn,
b = m2 − n2, and c = m2 + n2.

Proof (continued). Since s and t are relatively prime, then Lemma 16.2
implies that s and t are both squares. Say s = m2 and t = n2 for some
positive integers m and n. Since a = 2r , a2 = 4r2, and r2 = st, then we
have a2 = 4r2 = 4st = 4m2n2 or a = 2mn. Hence c = s + t = m2 + n2

and b = s − t = m2 − n2; so a, b, and c are as claimed in terms of m and
n. Next, since b is positive then m > n, as claimed. Since b is odd, then
m 6≡ n (mod 2), as claimed. Finally, suppose d |m and d | n. Then d | a
since a = 2mn, and d | b since b = m2 − n2. But because we have a
fundamental solution, then (a, b) = 1 and so d = ±1. Therefore
(m, n) = 1, as claimed.
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Lemma 16.4

Lemma 16.4

Lemma 16.4. If a = 2mn, b = m2 − n2, and c = m2 + n2, then a, b, c is
a solution of x2 + y2 = z2. If in addition, m > n, m and n are positive,
(m, n) = 1, and m 6≡ n (mod 2), then a, b, c is a fundamental solution.

Proof. It is straightforward to verify that a, b, c is a solution:

a2 + b2 = (2mn)2 + (m2 − n2)2 = 4m2n2 + m4 − 2m2n2 + n4

= m4 + 2m2n2 + n4 = (m2 + n2)2 = c2.

To show that a, b, c is a fundamental solution, ASSUME p is an odd prime
such that p | a and p | b. Since c2 = a2 + b2 then p | c . Since p | b and p | c
then p | (b + c) and p | (b − c). But b + c = 2m2 and b − c = −2n2 (by
hypothesis). So p | 2m2 and p | 2n2. Since p is odd, then p |m2 and p | n2

and hence p |m and p | n. But this is a CONTRADICTION, since m and n
are relatively prime.
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Lemma 16.4

Lemma 16.4 (continued)

Lemma 16.4. If a = 2mn, b = m2 − n2, and c = m2 + n2, then a, b, c is
a solution of x2 + y2 = z2. If in addition, m > n, m and n are positive,
(m, n) = 1, and m 6≡ n (mod 2), then a, b, c is a fundamental solution.

Proof (continued). So the assumption that there is an odd prime p
which divides both a and b is false (and 2 does not divide b since
b = m2 − n2 where m 6≡ n (mod 2), and so b is odd), so that a and b
have no common factors and (a, b) = 1. Notice that since m and n are
positive by hypothesis then a = 2mn is positive, and since m > n by
hypothesis then b = m2 − n2 is positive. That is, a, b, c is a fundamental
solution, as claimed.
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