Elementary Number Theory

Section 17. Infinite Descent and Fermat's Conjecture—Proofs of Theorems

Elementary Number Theory

March 19, 2022

Elementary Number Theory

Theorem 17.1 (continued 1)

Theorem 17.1. There are no nontrivial solutions of $x^4 + y^4 = z^2$.

Proof (continued). Since a and b are relatively prime, then both cannot be even. So one of a and b is even and the other is odd. Let a be the even one and b the odd one. Then a^2 , b^2 , c is a fundamental solution of $x^2 + y^2 = z^2$, where $(a^2, b^2) = 1$, a^2 is even, and b^2 is odd. Hence, by Lemma 16.3 there are integers m and n, m > n, relatively prime and of opposite parity, such that $a^2 = 2mn$, $b^2 = m^2 - n^2$, and $c = m^2 + n^2$.

We now show that n must be even. ASSUME that n is odd, so that mmust be even. Then as mentioned above, $n^2 \equiv 1 \pmod{4}$ and $m \equiv 0 \pmod{4}$ 4). But then $b^2 = m^2 - n^2 \equiv -1 \pmod{4}$. This is a CONTRADICTION because there $x^1 \equiv -1 \pmod{4}$ has no solution. So the assumption that n is odd is false, and hence n is even (so that m is odd).

Theorem 17.1

Theorem 17.1. There are no nontrivial solutions of $x^4 + y^4 = z^2$.

Proof. ASSUME that a nontrivial solution to $x^4 + v^4 = z^2$ exists. Among the nontrivial solutions, there is one with a smallest value of z^2 (since $z^2 \in \mathbb{N}$; this is part of the definition of \mathbb{N} is a set theoretic setting). Let c^2 denote this value of z^2 . Let a and b be corresponding values of x and y, respectively. (Our strategy is to construct x = r, y = s, z = t that also satisfy $x^2 + y^4 = z^2$ with $t^2 < c^2$, given a contradiction.) Notice that we may suppose that a and b are relatively prime, for if prime p divides a and b then p^2 divides c^2 (by Lemma 1.1) and we have $(a/p)^4 + (b/p)^4 = (c/p^2)^2$, contradicting the minimality of c.

Notice that if a and b are both odd, that is $a \equiv b \equiv 1 \pmod{2}$, then $a^2 \equiv b^2 \equiv 1 \pmod{4}$ and $a^4 \equiv b^4 \equiv 1 \pmod{16}$. So $a^4 + b^4 \equiv 2 \pmod{4}$ 16). So with $a^4 + b^4 = c^2$ then c must be even, but if $c \equiv 0 \pmod{2}$ then $c^2 \equiv 0 \pmod{4} \equiv 2 \pmod{16}$. Hence, we cannot have both a and b odd.

Theorem 17.1 (continued 2)

Theorem 17.1. There are no nontrivial solutions of $x^4 + v^4 = z^2$.

Proof (continued). Since *n* is even, say n = 2a, so that $a^2 = 2mn = 4mq$, or $(a/2)^2 = mq$. Next, we show that m and q are relatively prime. ASSUME $(m, q) \neq 1$, say prime $p \mid m$ and $p \mid q$. Then $p \mid 2q$ which means that $p \mid n$. But then prime p divides both m and n, CONTRADICTING the fact that m and n are relatively prime. So the assumption that (m, q) = 1 is false, and hence m and q are relatively prime. Therefore, by Lemma 16.2, m and q are both squares, say $m=t^2$ and $q = v^2$. Since (m, q) = 1 then $(t^2, v^2) = 1$ and hence (t, v) = 1. We saw above that m is odd, so t is also odd.

Since $n^2 + (m^2 - n^2) = m^2$ (D'uh!) then, because $n = 2q = 2v^2$, $m^2 - n^2 = b^2$, and $m = t^2$, we have $(2v^2)^2 + b^2 = (t^2)^2$. That is, $(2v^2, b, t^2)$ form a Pythagorean triple.

Theorem 17.1 (continued 3)

Theorem 17.1. There are no nontrivial solutions of $x^4 + y^4 = z^2$.

Proof (continued). If $p \mid 2v^2$ and $p \mid b$, then $p \mid n$ (since $n = 2v^2$) and $p \mid b$; and if $p \mid n$ and $p \mid b$, then $p \mid n$ and $p \mid m$ (since $m^2 = b^2 + n^2$). That is, if p divides both $2v^2$ and $p \mid m$ (since $p \mid m$ and $p \mid m$ (since $p \mid m$ and $p \mid m$ (since $p \mid m$ and $p \mid m$ and hence there is no $p \mid m$ dividing $p \mid m$ and $p \mid m$ and

By Lemma 16.3, there are integers M and N, with (M,N)=1 and $M \not\equiv N \pmod{2}$, such that $2v^2=2MN$, $b=M^2-N^2$, and $t^2=M^2+N^2$. So $v^2=MN$ where (M,N)=1. By Lemma 16.2, we have that $M=r^2$ and $N=s^2$ for some integers r and s. Since $t^2=M^2+N^2$, then we have $t^2=(r^2)^2+(s^2)^2$, or $r^4+s^4=t^2$.

Theorem 17.1 (continued 4)

Theorem 17.1. There are no nontrivial solutions of $x^4 + y^4 = z^2$.

Proof (continued). But then we have another solution of $x^4 + y^4 = z^2$ and in this solution we have $t^2 = m \le m^2 < m^2 + n^2 = c \le c^2$. But this is a CONTRADICTION to the fact that c^2 was a minimal value of z^2 among all solutions to $x^4 + y^4 = z^2$. This contradiction shows that the original assumption that there exists a nontrivial solution to $x^4 + y^4 = z^2$ is false. Hence, there are no nontrivial solutions to this equation, as originally claimed.