Elementary Number Theory

Section 17. Infinite Descent and Fermat's Conjecture—Proofs of Theorems

Table of contents

(1) Theorem 17.1

Theorem 17.1

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof. ASSUME that a nontrivial solution to $x^{4}+y^{4}=z^{2}$ exists. Among the nontrivial solutions, there is one with a smallest value of z^{2} (since $z^{2} \in \mathbb{N}$; this is part of the definition of \mathbb{N} is a set theoretic setting). Let c^{2} denote this value of z^{2}. Let a and b be corresponding values of x and y, respectively. (Our strategy is to construct $x=r, y=s, z=t$ that also satisfy $x^{2}+y^{4}=z^{2}$ with $t^{2}<c^{2}$, given a contradiction.) Notice that we may suppose that a and b are relatively prime, for if prime p divides a and b then p^{2} divides c^{2} (by Lemma 1.1) and we have $(a / p)^{4}+(b / p)^{4}=\left(c / p^{2}\right)^{2}$, contradicting the minimality of c.

Theorem 17.1

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof. ASSUME that a nontrivial solution to $x^{4}+y^{4}=z^{2}$ exists. Among the nontrivial solutions, there is one with a smallest value of z^{2} (since $z^{2} \in \mathbb{N}$; this is part of the definition of \mathbb{N} is a set theoretic setting). Let c^{2} denote this value of z^{2}. Let a and b be corresponding values of x and y, respectively. (Our strategy is to construct $x=r, y=s, z=t$ that also satisfy $x^{2}+y^{4}=z^{2}$ with $t^{2}<c^{2}$, given a contradiction.) Notice that we may suppose that a and b are relatively prime, for if prime p divides a and b then p^{2} divides c^{2} (by Lemma 1.1) and we have $(a / p)^{4}+(b / p)^{4}=\left(c / p^{2}\right)^{2}$, contradicting the minimality of c. Notice that if a and b are both odd, that is $a \equiv b \equiv 1(\bmod 2)$, then $a^{2} \equiv b^{2} \equiv 1(\bmod 4)$ and $a^{4} \equiv b^{4} \equiv 1(\bmod 16)$. So $a^{4}+b^{4} \equiv 2(\bmod$ 16). So with $a^{4}+b^{4}=c^{2}$ then c must be even, but if $c \equiv 0(\bmod 2)$ then $c^{2} \equiv 0(\bmod 4) \equiv 2(\bmod 16)$. Hence, we cannot have both a and b odd.

Theorem 17.1

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof. ASSUME that a nontrivial solution to $x^{4}+y^{4}=z^{2}$ exists. Among the nontrivial solutions, there is one with a smallest value of z^{2} (since $z^{2} \in \mathbb{N}$; this is part of the definition of \mathbb{N} is a set theoretic setting). Let c^{2} denote this value of z^{2}. Let a and b be corresponding values of x and y, respectively. (Our strategy is to construct $x=r, y=s, z=t$ that also satisfy $x^{2}+y^{4}=z^{2}$ with $t^{2}<c^{2}$, given a contradiction.) Notice that we may suppose that a and b are relatively prime, for if prime p divides a and b then p^{2} divides c^{2} (by Lemma 1.1) and we have $(a / p)^{4}+(b / p)^{4}=\left(c / p^{2}\right)^{2}$, contradicting the minimality of c.

Notice that if a and b are both odd, that is $a \equiv b \equiv 1(\bmod 2)$, then $a^{2} \equiv b^{2} \equiv 1(\bmod 4)$ and $a^{4} \equiv b^{4} \equiv 1(\bmod 16)$. So $a^{4}+b^{4} \equiv 2(\bmod$ 16). So with $a^{4}+b^{4}=c^{2}$ then c must be even, but if $c \equiv 0(\bmod 2)$ then $c^{2} \equiv 0(\bmod 4) \equiv 2(\bmod 16)$. Hence, we cannot have both a and b odd.

Theorem 17.1 (continued 1)

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof (continued). Since a and b are relatively prime, then both cannot be even. So one of a and b is even and the other is odd. Let a be the even one and b the odd one. Then a^{2}, b^{2}, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, where $\left(a^{2}, b^{2}\right)=1, a^{2}$ is even, and b^{2} is odd. Hence, by Lemma 16.3 there are integers m and $n, m>n$, relatively prime and of opposite parity, such that $a^{2}=2 m n, b^{2}=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.

We now show that n must be even. ASSUME that n is odd, so that m must be even. Then as mentioned above, $n^{2} \equiv 1(\bmod 4)$ and $m \equiv 0(\bmod$ 4). But then $b^{2}=m^{2}-n^{2} \equiv-1(\bmod 4)$. This is a CONTRADICTION because there $x^{1} \equiv-1(\bmod 4)$ has no solution. So the assumption that n is odd is false, and hence n is even (so that m is odd).

Theorem 17.1 (continued 1)

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof (continued). Since a and b are relatively prime, then both cannot be even. So one of a and b is even and the other is odd. Let a be the even one and b the odd one. Then a^{2}, b^{2}, c is a fundamental solution of $x^{2}+y^{2}=z^{2}$, where $\left(a^{2}, b^{2}\right)=1, a^{2}$ is even, and b^{2} is odd. Hence, by Lemma 16.3 there are integers m and $n, m>n$, relatively prime and of opposite parity, such that $a^{2}=2 m n, b^{2}=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.

We now show that n must be even. ASSUME that n is odd, so that m must be even. Then as mentioned above, $n^{2} \equiv 1(\bmod 4)$ and $m \equiv 0(\bmod$ 4). But then $b^{2}=m^{2}-n^{2} \equiv-1(\bmod 4)$. This is a CONTRADICTION because there $x^{1} \equiv-1(\bmod 4)$ has no solution. So the assumption that n is odd is false, and hence n is even (so that m is odd).

Theorem 17.1 (continued 2)

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof (continued). Since n is even, say $n=2 q$, so that $a^{2}=2 m n=4 m q$, or $(a / 2)^{2}=m q$. Next, we show that m and q are relatively prime. ASSUME $(m, q) \neq 1$, say prime $p \mid m$ and $p \mid q$. Then $p \mid 2 q$ which means that $p \mid n$. But then prime p divides both m and n, CONTRADICTING the fact that m and n are relatively prime. So the assumption that $(m, q)=1$ is false, and hence m and q are relatively prime. Therefore, by Lemma $16.2, m$ and q are both squares, say $m=t^{2}$ and $q=v^{2}$. Since $(m, q)=1$ then $\left(t^{2}, v^{2}\right)=1$ and hence $(t, v)=1$. We saw above that m is odd, so t is also odd.

Since $n^{2}+\left(m^{2}-n^{2}\right)=m^{2}$ (D'uh!) then, because $n=2 q=2 v^{2}$, $m^{2}-n^{2}=b^{2}$, and $m=t^{2}$, we have $\left(2 v^{2}\right) 2+b^{2}=\left(t^{2}\right)^{2}$. That is, $\left(2 v^{2}, b, t^{2}\right)$ form a Pythagorean triple.

Theorem 17.1 (continued 2)

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof (continued). Since n is even, say $n=2 q$, so that $a^{2}=2 m n=4 m q$, or $(a / 2)^{2}=m q$. Next, we show that m and q are relatively prime. ASSUME $(m, q) \neq 1$, say prime $p \mid m$ and $p \mid q$. Then $p \mid 2 q$ which means that $p \mid n$. But then prime p divides both m and n, CONTRADICTING the fact that m and n are relatively prime. So the assumption that $(m, q)=1$ is false, and hence m and q are relatively prime. Therefore, by Lemma $16.2, m$ and q are both squares, say $m=t^{2}$ and $q=v^{2}$. Since $(m, q)=1$ then $\left(t^{2}, v^{2}\right)=1$ and hence $(t, v)=1$. We saw above that m is odd, so t is also odd.

Since $n^{2}+\left(m^{2}-n^{2}\right)=m^{2}$ (D'uh!) then, because $n=2 q=2 v^{2}$, $m^{2}-n^{2}=b^{2}$, and $m=t^{2}$, we have $\left(2 v^{2}\right) 2+b^{2}=\left(t^{2}\right)^{2}$. That is, $\left(2 v^{2}, b, t^{2}\right)$ form a Pythagorean triple.

Theorem 17.1 (continued 3)

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof (continued). If $p \mid 2 v^{2}$ and $p \mid b$, then $p \mid n\left(\right.$ since $n=2 v^{2}$) and $p \mid b$; and if $p \mid n$ and $p \mid b$, then $p \mid n$ and $p \mid m$ (since $m^{2}=b^{2}+n^{2}$). That is, if p divides both $2 v^{2}$ and b, then p divides both n and m. Since $(m, n)=1$, then there is not p dividing both n and m, and hence there is no p dividing $2 v^{2}$ and b. That is, $\left(2 v^{2}, b\right)=1$. Hence, $2 v^{2}, b, t^{2}$ is a fundamental solution to $x^{2}+y^{2}=z^{2}$ (i.e., $\left(2 v^{2}, b, t^{2}\right)$ is a primitive Pythagorean triple).

By Lemma 16.3, there are integers M and N, with $(M, N)=1$ and $M \not \equiv N(\bmod 2)$, such that $2 v^{2}=2 M N, b=M^{2}-N^{2}$, and $t^{2}=M^{2}+N^{2}$. So $v^{2}=M N$ where $(M, N)=1$. By Lemma 16.2, we have that $M=r^{2}$ and $N=s^{2}$ for some integers r and s. Since $t^{2}=M^{2}+N^{2}$ then we have $t^{2}=\left(r^{2}\right)^{2}+\left(s^{2}\right)^{2}$, or $r^{4}+s^{4}=t^{2}$.

Theorem 17.1 (continued 3)

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof (continued). If $p \mid 2 v^{2}$ and $p \mid b$, then $p \mid n$ (since $n=2 v^{2}$) and $p \mid b$; and if $p \mid n$ and $p \mid b$, then $p \mid n$ and $p \mid m$ (since $m^{2}=b^{2}+n^{2}$). That is, if p divides both $2 v^{2}$ and b, then p divides both n and m. Since $(m, n)=1$, then there is not p dividing both n and m, and hence there is no p dividing $2 v^{2}$ and b. That is, $\left(2 v^{2}, b\right)=1$. Hence, $2 v^{2}, b, t^{2}$ is a fundamental solution to $x^{2}+y^{2}=z^{2}$ (i.e., $\left(2 v^{2}, b, t^{2}\right)$ is a primitive Pythagorean triple).

By Lemma 16.3, there are integers M and N, with $(M, N)=1$ and $M \not \equiv N(\bmod 2)$, such that $2 v^{2}=2 M N, b=M^{2}-N^{2}$, and $t^{2}=M^{2}+N^{2}$. So $v^{2}=M N$ where $(M, N)=1$. By Lemma 16.2, we have that $M=r^{2}$ and $N=s^{2}$ for some integers r and s. Since $t^{2}=M^{2}+N^{2}$, then we have $t^{2}=\left(r^{2}\right)^{2}+\left(s^{2}\right)^{2}$, or $r^{4}+s^{4}=t^{2}$.

Theorem 17.1 (continued 4)

Theorem 17.1. There are no nontrivial solutions of $x^{4}+y^{4}=z^{2}$.
Proof (continued). But then we have another solution of $x^{4}+y^{4}=z^{2}$ and in this solution we have $t^{2}=m \leq m^{2}<m^{2}+n^{2}=c \leq c^{2}$. But this is a CONTRADICTION to the fact that c^{2} was a minimal value of z^{2} among all solutions to $x^{4}+y^{4}=z^{2}$. This contradiction shows that the original assumption that there exists a nontrivial solution to $x^{4}+y^{4}=z^{2}$ is false. Hence, there are no nontrivial solutions to this equation, as originally claimed.

