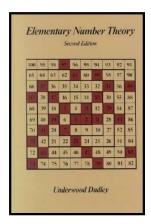
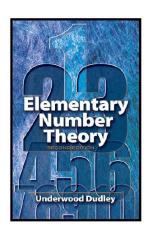
Lemma

Elementary Number Theory

Section 18. Sums of Two Squares—Proofs of Theorems





)

Elementary Number Theory

March 23, 2022 1 /

Elementary Number Theory

March 23, 2022

Lemma 18.A

Lemma 18.A (continued)

Lemma 18.A. If the prime-power decomposition of n contains a prime congruent to 3 (mod 4) which is raised to an odd power, then n cannot be written as the sum of two squares.

Proof (continued). Since p divides n_1 , then

$$0 \equiv n_1 \equiv x_1^2 + y_1^2 \equiv x_1^2 + (ux_1)^2 \equiv x_1^2(1+u^2) \pmod{p}.$$

Since $(x_1, p) = 1$, then by Theorem 4.4 we can cancel the factors of x_1 to get $1 + u^2 \equiv 0 \pmod{p}$. That is, $u^2 \equiv -1 \pmod{p}$. But by Theorem 11.5, we have that the Legendre symbol (-1/p) = -1 since $p \equiv 3 \pmod{4}$ so that -1 is not a quadratic residue \pmod{p} . So no such u exists, a CONTRADICTION. So the assumption that $n = x^2 + y^2$ for some integers x and y is false, as claimed.

Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime congruent to 3 (mod 4) which is raised to an odd power, then n cannot be written as the sum of two squares.

Proof. Suppose p is prime, where $p \equiv 3 \pmod 4$, which appears in the prime-power decomposition of n to an odd power. That is, for some integer $e \ge 0$ we have $p^{2e+1} \mid n$ and $2^{2e+2} \nmid n$. ASSUME that $n = x^2 + y^2$ for some integers x and y. Let d = (x, y), $x_1 = x/d$, y_1y/d , and $n_1 = n/d^2$. Then $x_1^2 + y_1^2 = n_1$ and $(x_1, y_1) = 1$. If p^f is the highest power of p that divides d, then n_1 is divisible by $p^{2e-2f+1}$. Since the exponent 2e - 2f + 1 is nonnegative, then it is at least 1. Thus $p \mid n_1$. If $p \mid x_1$ then (since $x_1^2 + y_1^2 = n_1$) $p \mid y_1$; but $(x_1, y_1) = 1$ so we must have that $p \nmid x_1$ and hence $(x_1, p) = 1$. Hence, by Lemma 5.2, there is (unique) u such that $x_1u \equiv y_1 \pmod p$.

Lemma 18.

Lemma 18.3

Lemma 18.3. Any integer n can be written in the form $n = k^2 p_1 p_2 \cdots p_r$, were k is an integer and the p's are different primes.

Proof. Let the prime-power decomposition of n be $n=q_1^{e_1}q_2p^{e_2}\cdots q_\ell^{e_\ell}$. Let set A consist of the powers of q_i 's with even exponents: $A=\{q_i^{e_i}\mid e_i \text{ is even}\}$. Let set B consist of the powers of q_i 's with exponents 1: $B=\{q_i^{e_i}\mid e_i=1\}$. Let set C be the following powers of q_i 's: $C=\{q_i^{e_i-1}\mid e_i\geq 3, e_i \text{ is odd}\}$. Define k^2 to be the product of the elements of sets A and $C\colon k^2=\prod_{p\in A\cup B}p$. Then $k=\prod_{p\in A}p^{1/2}\prod_{p\in C}p^{1/2}$ (since e_i is even for each element of A, and A0. Let A1 is even for each element of A2, then A3 is a positive integer power of A4. Let A4 be denote the elements of set A5. Then A6 is the product the elements in $A\cup B\cup C$ 6, so that A6 is a positive integer power claimed.

Elementary Number Theory

Elementary Number Theory March 23, 2022 4 / 11

March 23, 2022 5

Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime p, where $p \equiv 3 \pmod{4}$, to an odd power, then $n = k^2 p_1 p_2 \cdots p_r$ or $n = 2k^2p_1p_2\cdots p_r$ for some k and r, where each p is congruent to 1 (mod

Proof. By Lemma 8.3, any integer n can be written in the form $n = k^2 p_1 p_2 \cdots p_r$ where the p's are different. If n is odd, then no p_i is 2 and since no p_i is 3 (mod 4), then each p_i must be 1 (mod 4), as claimed. If n is even and one of the p_i is 2, say $p_i = 2$, then we have $n = 2k^2p_1p_2\cdots p_{i-1}p_{i+1}p_{i+2}\cdots p_r$. Since the prime-power decomposition contains no prime which is 3 (mod 4), then none of $p_1, p_2, \dots, p_{i-1}, p_{i+1}, p_{i+2}, \dots, p_r$ is 3 (mod 3) (so that each is 1 (mod 4)) and the claim holds. If n is even and none of the p_i is 2 then we have $n = k^2 p_1 p_2 \cdots p_r$ where each p_1, p_2, \dots, p_r is odd and 1 (mod 4), as claimed.

Elementary Number Theory

March 23, 2022

Lemma 18.4 (continued 1)

Proof (continued). ...

$$\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv \left(\frac{(p+1)}{2}\frac{p(p+3)}{2}\cdots(p-3)(p-2)(p-1)\right)$$

$$\times \left(\frac{p-1}{2}\frac{p-3}{2}\cdots(3)(2)(1)\right) \text{ since } (p-1)/2 \text{ is even}$$

$$\equiv (p-1)! \equiv -1 \pmod{p} \text{ by Theorem 10.B.}$$

Let k be the least positive integer such that $x^2 + y^2 = kp$ has some integer solution x and y. If we can show that k = 1, then we have $x^2 + y^2 = p$, as desired. For $x^2 + y^2 = kp$, define integers r and s by:

$$r \equiv x \pmod{k}$$
, $s \equiv y \pmod{k}$, where $-\frac{k}{2} < r \le \frac{k}{2}$, $-\frac{k}{2} < s \le \frac{k}{2}$.

By Lemma 4.1 we have $r^2 + s^2 \equiv x^2 + y^2 \pmod{k}$.

Lemma 18.4

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a sum of two squares.

Proof. Since $p \equiv 1 \pmod{4}$, by Theorem 11.5, we have that the Legendre symbol (-1/p) = 1 since $p \equiv 1 \pmod{4}$ so that -1 is a quadratic residue (mod p). Hence there is u such that $u^2 \equiv -1 \pmod{p}$. That is $p \mid (u^2 + 1)$, and so $u^2 + 1 = kp$ for some k > 1. Hence $x^2 + y^2 = kp$ has a solution for some k > 1. In fact, we can take v = 1 and u = ((p-1)/2)! because

$$\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv \left(\frac{p-1}{2}\frac{p-3}{2}\cdots(3)(2)(1)\right)^{2} \\
\equiv \left((-1)^{(p-1)/2}\frac{-(p-1)}{2}\frac{-(p-3)}{2}\cdots(-3)(-2)(-1)\right) \\
\times \left(\frac{p-1}{2}\frac{p-3}{2}\cdots(3)(2)(1)\right)\dots$$

Elementary Number Theory

Lemma 18.4 (continued 2)

Proof (continued). Since $x^2 + y^2 = kp$ and $r^2 + s^2 \equiv x^2 + y^2 \pmod{k}$, then $r^2 + s^2 \equiv 0 \pmod{k}$, or $r^2 + s^2 = k_1 k$ for some k_1 . It follows that $(r^2 + s^2)(x^2 + v^2) = (k_1 k)(kp) = k_1 k^2 p$. By Lemma 18.1, $(r^2 + s^2)(x^2 + y^2) = (rx + sy)^2 + (ry - sx)^2$. Thus

$$k_1k^2p = (rx + sy)^2 + (ry - sx)^2.$$
 (*)

Since $r \equiv x \pmod{k}$ and $s \equiv v \pmod{k}$ then we have $rx + sy \equiv r^2 + s^2 \equiv 0 \pmod{k}$, and $ry - sx \equiv rs - sr \equiv 0 \pmod{k}$. Thus k^2 divides $(rx + sy)^2$ and $(ry - sx)^2$, and so from (*) we have

$$\left(\frac{rx+sy}{k}\right)^2+\left(\frac{ry-sx}{k}\right)^2=k_1p,$$

an equation in integers. Let $x_1 = (rx + sy)/k$ and $y_1 = (ry - sx)/k$, so that $x_1^2 + y_1^2 = k_1 p$.

March 23, 2022 7 / 11

sum of two squares.

Proof (continued). Since we chose r and s such that $-k/2 < r \le k/2$ and $-k/2 < s \le k/2$., then we have $r^2 + s^2 \le (k/2)^2 + (k/2)^2 = k^2/2$. But $r^2 + s^2 = k_1 k$ as shown above, so $k_1 k < k^2/2$ or $k_1 < k/2$. Hence $k_1 < k$.

If $k_1 > 1$, then we have $1 < k_1 < k$ and that $x^2 + y^2 = k_1 p$ has a solution for $x = x_1$ and $y = y_1$. But this contradicts the fact that k is a minimal value for which $x^2 + y^2 = kp$ has a solution for some x and y. So we must have $k_1 = 0$. Then we have r = s = 0. Since $r \equiv x \pmod{k}$ and $s \equiv y$ (mod k), we have $k \mid x$ and $k \mid y$. So $k^2 \mid (x^2 + y^2)$ and, since $x^2 + y^2 = kp$, then $k \mid p$. Hence k = 1 or k = p. If k = p, then $u^2 + 1 = p^2$, a contradiction because there are no consecutive positive square numbers. Therefore k = 1 and $x^2 + y^2 = kp = p$ has a solution, as claimed.

Theorem 18.1. Integer n cannot be written as the sum of two squares if and only if the prime-power decomposition of n contains a prime congruent to 3 (mod 4) to an odd power.

Proof. By Lemma 18.A, if the prime-power decomposition of *n* contains a prime congruent to 3 (mod 4) which is raised to an odd power, then ncannot be written as the sum of two squares, as claimed.

Now assume the prime-power decomposition of n contains no prime p to an odd power, where $p \equiv 3 \pmod{4}$. Then by Exercise 18.3, we have that either $n = k^2 p_1 p_2 \cdots p_r$ or $n = 2k^2 p_1 p_2 \cdots p_r$ for some k and r, where each p_i is congruent to 1 (mod 4). Now $2 = 1^2 + 1^2$ and each p_i can be written as a sum of two squares by lemma 18.4. So by Note 18.A, both $p_1 p_2 \cdots p_r$ and $2p_1 p_2 \cdots p_r$, where each p_i is congruent to 1 (mod 4), can be written as a sum of two squares. Lemma 18.3 then implies that for any k, $k^2 p_1 p_2 \cdots p_r$ and $2k^2 p_1 p_2 \cdots p_r$ can be written as a sum of two squares. Since n must be of one of these two forms, then n can be written as a sum of two squares, as claimed.

Elementary Number Theory

10 / 11

Elementary Number Theory