Elementary Number Theory

Section 18. Sums of Two Squares—Proofs of Theorems

Table of contents

(1) Lemma 18.A
(2) Lemma 18.3
(3) Exercise 18.3
(4) Lemma 18.4
(5) Theorem 18.1

Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares.

Proof. Suppose p is prime, where $p \equiv 3(\bmod 4)$, which appears in the prime-power decomposition of n to an odd power. That is, for some integer $e \geq 0$ we have $p^{2 e+1} \mid n$ and $2^{2 e+2} \nmid n$. ASSUME that $n=x^{2}+y^{2}$ for some integers x and y. Let $d=(x, y), x_{1}=x / d, y_{1} y / d$, and $n_{1}=n / d^{2}$. Then $x_{1}^{2}+y_{1}^{2}=n_{1}$ and $\left(x_{1}, y_{1}\right)=1$. If p^{f} is the highest power of p that divides d, then n_{1} is divisible by $p^{2 e-2 f+1}$. Since the exponent $2 e-2 f+1$ is nonnegative, then it is at least 1 . Thus $p \mid n_{1}$.

Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares.

Proof. Suppose p is prime, where $p \equiv 3(\bmod 4)$, which appears in the prime-power decomposition of n to an odd power. That is, for some integer $e \geq 0$ we have $p^{2 e+1} \mid n$ and $2^{2 e+2} \nmid n$. ASSUME that $n=x^{2}+y^{2}$ for some integers x and y. Let $d=(x, y), x_{1}=x / d, y_{1} y / d$, and $n_{1}=n / d^{2}$. Then $x_{1}^{2}+y_{1}^{2}=n_{1}$ and $\left(x_{1}, y_{1}\right)=1$. If p^{f} is the highest power of p that divides d, then n_{1} is divisible by $p^{2 e-2 f+1}$. Since the exponent $2 e-2 f+1$ is nonnegative, then it is at least 1 . Thus $p \mid n_{1}$. If $p \mid x_{1}$ then
 and hence $\left(x_{1}, p\right)=1$. Hence, by Lemma 5.2, there is (unique) u such that $x_{1} u \equiv y_{1}(\bmod p)$.

Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares.

Proof. Suppose p is prime, where $p \equiv 3(\bmod 4)$, which appears in the prime-power decomposition of n to an odd power. That is, for some integer $e \geq 0$ we have $p^{2 e+1} \mid n$ and $2^{2 e+2} \nmid n$. ASSUME that $n=x^{2}+y^{2}$ for some integers x and y. Let $d=(x, y), x_{1}=x / d, y_{1} y / d$, and $n_{1}=n / d^{2}$. Then $x_{1}^{2}+y_{1}^{2}=n_{1}$ and $\left(x_{1}, y_{1}\right)=1$. If p^{f} is the highest power of p that divides d, then n_{1} is divisible by $p^{2 e-2 f+1}$. Since the exponent $2 e-2 f+1$ is nonnegative, then it is at least 1 . Thus $p \mid n_{1}$. If $p \mid x_{1}$ then (since $\left.x_{1}^{2}+y_{1}^{2}=n_{1}\right) p \mid y_{1}$; but $\left(x_{1}, y_{1}\right)=1$ so we must have that $p \nmid x_{1}$ and hence $\left(x_{1}, p\right)=1$. Hence, by Lemma 5.2, there is (unique) u such that $x_{1} u \equiv y_{1}(\bmod p)$.

Lemma 18.A (continued)

Lemma 18.A. If the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares.

Proof (continued). Since p divides n_{1}, then

$$
0 \equiv n_{1} \equiv x_{1}^{2}+y_{1}^{2} \equiv x_{1}^{2}+\left(u x_{1}\right)^{2} \equiv x_{1}^{2}\left(1+u^{2}\right)(\bmod p) .
$$

Since $\left(x_{1}, p\right)=1$, then by Theorem 4.4 we can cancel the factors of x_{1} to get $1+u^{2} \equiv 0(\bmod p)$. That is, $u^{2} \equiv-1(\bmod p)$. But by Theorem 11.5, we have that the Legendre symbol $(-1 / p)=-1$ since $p \equiv 3(\bmod$ 4) so that -1 is not a quadratic residue $(\bmod p)$. So no such u exists, a CONTRADICTION. So the assumption that $n=x^{2}+y^{2}$ for some integers x and y is false, as claimed.

Lemma 18.3

Lemma 18.3. Any integer n can be written in the form $n=k^{2} p_{1} p_{2} \cdots p_{r}$, were k is an integer and the p 's are different primes.

Proof. Let the prime-power decomposition of n be $n=q_{1}^{e_{1}} q_{2} p^{e_{2}} \cdots q_{\ell}^{e_{\ell}}$. Let set A consist of the powers of q_{i} 's with even exponents:
$A=\left\{q_{i}^{e_{i}} \mid e_{i}\right.$ is even $\}$. Let set B consist of the powers of q_{i} 's with exponents 1: $B=\left\{q_{i}^{e_{i}} \mid e_{i}=1\right\}$. Let set C be the following powers of q_{i} 's: $C=\left\{q_{i}^{e_{i}-1} \mid e_{i} \geq 3, e_{i}\right.$ is odd $\}$. Define k^{2} to be the product of the elements of sets A and $C: k^{2}=\prod_{p \in A \cup B} p$.

Lemma 18.3

Lemma 18.3. Any integer n can be written in the form $n=k^{2} p_{1} p_{2} \cdots p_{r}$, were k is an integer and the p 's are different primes.

Proof. Let the prime-power decomposition of n be $n=q_{1}^{e_{1}} q_{2} p^{e_{2}} \cdots q_{\ell}^{e_{\ell}}$. Let set A consist of the powers of q_{i} 's with even exponents: $A=\left\{q_{i}^{e_{i}} \mid e_{i}\right.$ is even $\}$. Let set B consist of the powers of q_{i} 's with exponents 1: $B=\left\{q_{i}^{e_{i}} \mid e_{i}=1\right\}$. Let set C be the following powers of q_{i} 's: $C=\left\{q_{i}^{e_{i}-1} \mid e_{i} \geq 3, e_{i}\right.$ is odd $\}$. Define k^{2} to be the product of the elements of sets A and $C: k^{2}=\prod_{p \in A \cup B} p$. Then
$k=\prod_{p \in A} p^{1 / 2} \prod_{p \in C} p^{1 / 2}$ (since e_{i} is even for each element of A, and $e_{i}-1$ is even for each element of C, then $p^{1 / 2}$ is a positive integer power of p). Let $p_{1}, p_{2}, \ldots, p_{r}$ denote the elements of set B. Then n is the product the elements in $A \cup B \cup C$, so that $n=k^{2} p_{1} p_{2} \cdots p_{r}$, as claimed.

Lemma 18.3

Lemma 18.3. Any integer n can be written in the form $n=k^{2} p_{1} p_{2} \cdots p_{r}$, were k is an integer and the p 's are different primes.

Proof. Let the prime-power decomposition of n be $n=q_{1}^{e_{1}} q_{2} p^{e_{2}} \cdots q_{\ell}^{e_{\ell}}$. Let set A consist of the powers of q_{i} 's with even exponents: $A=\left\{q_{i}^{e_{i}} \mid e_{i}\right.$ is even $\}$. Let set B consist of the powers of q_{i} 's with exponents 1: $B=\left\{q_{i}^{e_{i}} \mid e_{i}=1\right\}$. Let set C be the following powers of q_{i} 's: $C=\left\{q_{i}^{e_{i}-1} \mid e_{i} \geq 3, e_{i}\right.$ is odd $\}$. Define k^{2} to be the product of the elements of sets A and $C: k^{2}=\prod_{p \in A \cup B} p$. Then
$k=\prod_{p \in A} p^{1 / 2} \prod_{p \in C} p^{1 / 2}$ (since e_{i} is even for each element of A, and $e_{i}-1$ is even for each element of C, then $p^{1 / 2}$ is a positive integer power of p). Let $p_{1}, p_{2}, \ldots, p_{r}$ denote the elements of set B. Then n is the product the elements in $A \cup B \cup C$, so that $n=k^{2} p_{1} p_{2} \cdots p_{r}$, as claimed.

Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime p, where $p \equiv 3(\bmod 4)$, to an odd power, then $n=k^{2} p_{1} p_{2} \cdots p_{r}$ or $n=2 k^{2} p_{1} p_{2} \cdots p_{r}$ for some k and r, where each p is congruent to $1(\bmod$ 4).

Proof. By Lemma 8.3, any integer n can be written in the form $n=k^{2} p_{1} p_{2} \cdots p_{r}$ where the $p^{\prime} s$ are different. If n is odd, then no p_{i} is 2 and since no p_{i} is $3(\bmod 4)$, then each p_{i} must be $1(\bmod 4)$, as claimed.

Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime p, where $p \equiv 3(\bmod 4)$, to an odd power, then $n=k^{2} p_{1} p_{2} \cdots p_{r}$ or $n=2 k^{2} p_{1} p_{2} \cdots p_{r}$ for some k and r, where each p is congruent to $1(\bmod$ 4).

Proof. By Lemma 8.3, any integer n can be written in the form $n=k^{2} p_{1} p_{2} \cdots p_{r}$ where the p 's are different. If n is odd, then no p_{i} is 2 and since no p_{i} is $3(\bmod 4)$, then each p_{i} must be $1(\bmod 4)$, as claimed.
If n is even and one of the p_{i} is 2 , say $p_{j}=2$, then we have
$n=2 k^{2} p_{1} p_{2} \cdots p_{j-1} p_{j+1} p_{j+2} \cdots p_{r}$. Since the prime-power decomposition
contains no prime which is $3(\bmod 4)$, then none of
$p_{1}, p_{2}, \ldots, p_{j-1}, p_{j+1}, p_{j+2}, \ldots, p_{r}$ is $3(\bmod 3)$ (so that each is $1(\bmod$
4)) and the claim holds.

Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime p, where $p \equiv 3(\bmod 4)$, to an odd power, then $n=k^{2} p_{1} p_{2} \cdots p_{r}$ or $n=2 k^{2} p_{1} p_{2} \cdots p_{r}$ for some k and r, where each p is congruent to $1(\bmod$ 4).

Proof. By Lemma 8.3, any integer n can be written in the form $n=k^{2} p_{1} p_{2} \cdots p_{r}$ where the p^{\prime} s are different. If n is odd, then no p_{i} is 2 and since no p_{i} is $3(\bmod 4)$, then each p_{i} must be $1(\bmod 4)$, as claimed. If n is even and one of the p_{i} is 2 , say $p_{j}=2$, then we have $n=2 k^{2} p_{1} p_{2} \cdots p_{j-1} p_{j+1} p_{j+2} \cdots p_{r}$. Since the prime-power decomposition contains no prime which is $3(\bmod 4)$, then none of $p_{1}, p_{2}, \ldots, p_{j-1}, p_{j+1}, p_{j+2}, \ldots, p_{r}$ is $3(\bmod 3)$ (so that each is $1(\bmod$ 4)) and the claim holds. If n is even and none of the p_{i} is 2 then we have $n=k^{2} p_{1} p_{2} \cdots p_{r}$ where each $p_{1}, p_{2}, \ldots, p_{r}$ is odd and $1(\bmod 4)$, as claimed.

Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime p, where $p \equiv 3(\bmod 4)$, to an odd power, then $n=k^{2} p_{1} p_{2} \cdots p_{r}$ or $n=2 k^{2} p_{1} p_{2} \cdots p_{r}$ for some k and r, where each p is congruent to $1(\bmod$ 4).

Proof. By Lemma 8.3, any integer n can be written in the form $n=k^{2} p_{1} p_{2} \cdots p_{r}$ where the p 's are different. If n is odd, then no p_{i} is 2 and since no p_{i} is $3(\bmod 4)$, then each p_{i} must be $1(\bmod 4)$, as claimed. If n is even and one of the p_{i} is 2 , say $p_{j}=2$, then we have $n=2 k^{2} p_{1} p_{2} \cdots p_{j-1} p_{j+1} p_{j+2} \cdots p_{r}$. Since the prime-power decomposition contains no prime which is $3(\bmod 4)$, then none of $p_{1}, p_{2}, \ldots, p_{j-1}, p_{j+1}, p_{j+2}, \ldots, p_{r}$ is $3(\bmod 3)$ (so that each is $1(\bmod$ 4)) and the claim holds. If n is even and none of the p_{i} is 2 then we have $n=k^{2} p_{1} p_{2} \cdots p_{r}$ where each $p_{1}, p_{2}, \ldots, p_{r}$ is odd and $1(\bmod 4)$, as claimed.

Lemma 18.4

Lemma 18.4. Every prime congruent to $1(\bmod 4)$ can be written as a sum of two squares.

Proof. Since $p \equiv 1(\bmod 4)$, by Theorem 11.5, we have that the Legendre symbol $(-1 / p)=1$ since $p \equiv 1(\bmod 4)$ so that -1 is a quadratic residue $(\bmod p)$. Hence there is u such that $u^{2} \equiv-1(\bmod p)$. That is $p \mid\left(u^{2}+1\right)$, and so $u^{2}+1=k p$ for some $k \geq 1$. Hence $x^{2}+y^{2}=k p$ has a solution for some $k \geq 1$.

Lemma 18.4

Lemma 18.4. Every prime congruent to $1(\bmod 4)$ can be written as a sum of two squares.

Proof. Since $p \equiv 1(\bmod 4)$, by Theorem 11.5 , we have that the Legendre symbol $(-1 / p)=1$ since $p \equiv 1(\bmod 4)$ so that -1 is a quadratic residue $(\bmod p)$. Hence there is u such that $u^{2} \equiv-1(\bmod p)$. That is $p \mid\left(u^{2}+1\right)$, and so $u^{2}+1=k p$ for some $k \geq 1$. Hence $x^{2}+y^{2}=k p$ has a solution for some $k \geq 1$. In fact, we can take $y=1$ and $u=((p-1) / 2)$! because

Lemma 18.4

Lemma 18.4. Every prime congruent to $1(\bmod 4)$ can be written as a sum of two squares.

Proof. Since $p \equiv 1(\bmod 4)$, by Theorem 11.5 , we have that the Legendre symbol $(-1 / p)=1$ since $p \equiv 1(\bmod 4)$ so that -1 is a quadratic residue $(\bmod p)$. Hence there is u such that $u^{2} \equiv-1(\bmod p)$. That is
$p \mid\left(u^{2}+1\right)$, and so $u^{2}+1=k p$ for some $k \geq 1$. Hence $x^{2}+y^{2}=k p$ has a solution for some $k \geq 1$. In fact, we can take $y=1$ and $u=((p-1) / 2)$! because

$$
\begin{aligned}
\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv & \left(\frac{p-1}{2} \frac{p-3}{2} \cdots(3)(2)(1)\right)^{2} \\
\equiv & \left((-1)^{(p-1) / 2} \frac{-(p-1)}{2} \frac{-(p-3)}{2} \cdots(-3)(-2)(-1)\right) \\
& \times\left(\frac{p-1}{2} \frac{p-3}{2} \cdots(3)(2)(1)\right) \cdots
\end{aligned}
$$

Lemma 18.4 (continued 1)

Proof (continued). ...

$$
\begin{aligned}
\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv & \left(\frac{(p+1)}{2} \frac{p(p+3)}{2} \cdots(p-3)(p-2)(p-1)\right) \\
& \times\left(\frac{p-1}{2} \frac{p-3}{2} \cdots(3)(2)(1)\right) \text { since }(p-1) / 2 \text { is even } \\
\equiv & (p-1)!\equiv-1(\bmod p) \text { by Theorem 10.B. }
\end{aligned}
$$

Let k be the least positive integer such that $x^{2}+y^{2}=k p$ has some integer solution x and y. If we can show that $k=1$, then we have $x^{2}+y^{2}=p$, as desired. For $x^{2}+y^{2}=k p$, define integers r and s by:

$$
r \equiv x(\bmod k), s \equiv y(\bmod k), \text { where }-\frac{k}{2}<r \leq \frac{k}{2},-\frac{k}{2}<s \leq \frac{k}{2} .
$$

By Lemma 4.1 we have $r^{2}+s^{2} \equiv x^{2}+y^{2}(\bmod k)$.

Lemma 18.4 (continued 1)

Proof (continued). . .

$$
\begin{aligned}
\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv & \left(\frac{(p+1)}{2} \frac{p(p+3)}{2} \cdots(p-3)(p-2)(p-1)\right) \\
& \times\left(\frac{p-1}{2} \frac{p-3}{2} \cdots(3)(2)(1)\right) \text { since }(p-1) / 2 \text { is even } \\
\equiv & (p-1)!\equiv-1(\bmod p) \text { by Theorem 10.B. }
\end{aligned}
$$

Let k be the least positive integer such that $x^{2}+y^{2}=k p$ has some integer solution x and y. If we can show that $k=1$, then we have $x^{2}+y^{2}=p$, as desired. For $x^{2}+y^{2}=k p$, define integers r and s by:

$$
r \equiv x(\bmod k), s \equiv y(\bmod k), \text { where }-\frac{k}{2}<r \leq \frac{k}{2},-\frac{k}{2}<s \leq \frac{k}{2}
$$

By Lemma 4.1 we have $r^{2}+s^{2} \equiv x^{2}+y^{2}(\bmod k)$.

Lemma 18.4 (continued 2)

Proof (continued). Since $x^{2}+y^{2}=k p$ and $r^{2}+s^{2} \equiv x^{2}+y^{2}(\bmod k)$, then $r^{2}+s^{2} \equiv 0(\bmod k)$, or $r^{2}+s^{2}=k_{1} k$ for some k_{1}. It follows that $\left(r^{2}+s^{2}\right)\left(x^{2}+y^{2}\right)=\left(k_{1} k\right)(k p)=k_{1} k^{2} p$. By Lemma 18.1, $\left(r^{2}+s^{2}\right)\left(x^{2}+y^{2}\right)=(r x+s y)^{2}+(r y-s x)^{2}$. Thus

$$
\begin{equation*}
k_{1} k^{2} p=(r x+s y)^{2}+(r y-s x)^{2} . \tag{*}
\end{equation*}
$$

Since $r \equiv x(\bmod k)$ and $s \equiv y(\bmod k)$ then we have
$r x+s y \equiv r^{2}+s^{2} \equiv 0(\bmod k)$, and $r y-s x \equiv r s-s r \equiv 0(\bmod k)$. Thus k^{2} divides $(r x+s y)^{2}$ and $(r y-s x)^{2}$, and so from $(*)$ we have

$$
\left(\frac{r x+s y}{k}\right)^{2}+\left(\frac{r y-s x}{k}\right)^{2}=k_{1} p
$$

an equation in integers. Let $x_{1}=(r x+s y) / k$ and $y_{1}=(r y-s x) / k$, so that $x_{1}^{2}+y_{1}^{2}=k_{1} p$.

Lemma 18.4 (continued 2)

Proof (continued). Since $x^{2}+y^{2}=k p$ and $r^{2}+s^{2} \equiv x^{2}+y^{2}(\bmod k)$, then $r^{2}+s^{2} \equiv 0(\bmod k)$, or $r^{2}+s^{2}=k_{1} k$ for some k_{1}. It follows that $\left(r^{2}+s^{2}\right)\left(x^{2}+y^{2}\right)=\left(k_{1} k\right)(k p)=k_{1} k^{2} p$. By Lemma 18.1, $\left(r^{2}+s^{2}\right)\left(x^{2}+y^{2}\right)=(r x+s y)^{2}+(r y-s x)^{2}$. Thus

$$
\begin{equation*}
k_{1} k^{2} p=(r x+s y)^{2}+(r y-s x)^{2} . \tag{*}
\end{equation*}
$$

Since $r \equiv x(\bmod k)$ and $s \equiv y(\bmod k)$ then we have $r x+s y \equiv r^{2}+s^{2} \equiv 0(\bmod k)$, and $r y-s x \equiv r s-s r \equiv 0(\bmod k)$. Thus k^{2} divides $(r x+s y)^{2}$ and $(r y-s x)^{2}$, and so from $(*)$ we have

$$
\left(\frac{r x+s y}{k}\right)^{2}+\left(\frac{r y-s x}{k}\right)^{2}=k_{1} p
$$

an equation in integers. Let $x_{1}=(r x+s y) / k$ and $y_{1}=(r y-s x) / k$, so that $x_{1}^{2}+y_{1}^{2}=k_{1} p$.

Lemma 18.4 (continued 3)

Lemma 18.4. Every prime congruent to $1(\bmod 4)$ can be written as a sum of two squares.

Proof (continued). Since we chose r and s such that $-k / 2<r \leq k / 2$ and $-k / 2<s \leq k / 2$., then we have $r^{2}+s^{2} \leq(k / 2)^{2}+(k / 2)^{2}=k^{2} / 2$. But $r^{2}+s^{2}=k_{1} k$ as shown above, so $k_{1} k \leq k^{2} / 2$ or $k_{1} \leq k / 2$. Hence $k_{1}<k$.

If $k_{1} \geq 1$, then we have $1 \leq k_{1}<k$ and that $x^{2}+y^{2}=k_{1} p$ has a solution for $x=x_{1}$ and $y=y_{1}$. But this contradicts the fact that k is a minimal value for which $x^{2}+y^{2}=k p$ has a solution for some x and y. So we must have $k_{1}=0$. Then we have $r=s=0$. Since $r \equiv x(\bmod k)$ and $s \equiv y$ $(\bmod k)$, we have $k \mid x$ and $k \mid y$. So $k^{2} \mid\left(x^{2}+y^{2}\right)$ and, since $x^{2}+y^{2}=k p$, then $k \mid p$. Hence $k=1$ or $k=p$. If $k=p$, then $u^{2}+1=p^{2}$, a contradiction because there are no consecutive positive square numbers. Therefore $k=1$ and $x^{2}+y^{2}=k p=p$ has a solution, as claimed.

Lemma 18.4 (continued 3)

Lemma 18.4. Every prime congruent to $1(\bmod 4)$ can be written as a sum of two squares.

Proof (continued). Since we chose r and s such that $-k / 2<r \leq k / 2$ and $-k / 2<s \leq k / 2$., then we have $r^{2}+s^{2} \leq(k / 2)^{2}+(k / 2)^{2}=k^{2} / 2$. But $r^{2}+s^{2}=k_{1} k$ as shown above, so $k_{1} k \leq k^{2} / 2$ or $k_{1} \leq k / 2$. Hence $k_{1}<k$.

If $k_{1} \geq 1$, then we have $1 \leq k_{1}<k$ and that $x^{2}+y^{2}=k_{1} p$ has a solution for $x=x_{1}$ and $y=y_{1}$. But this contradicts the fact that k is a minimal value for which $x^{2}+y^{2}=k p$ has a solution for some x and y. So we must have $k_{1}=0$. Then we have $r=s=0$. Since $r \equiv x(\bmod k)$ and $s \equiv y$ $(\bmod k)$, we have $k \mid x$ and $k \mid y$. So $k^{2} \mid\left(x^{2}+y^{2}\right)$ and, since $x^{2}+y^{2}=k p$, then $k \mid p$. Hence $k=1$ or $k=p$. If $k=p$, then $u^{2}+1=p^{2}$, a contradiction because there are no consecutive positive square numbers. Therefore $k=1$ and $x^{2}+y^{2}=k p=p$ has a solution, as claimed.

Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if and only if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ to an odd power.
Proof. By Lemma 18.A, if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares, as claimed.

Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if and only if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ to an odd power.
Proof. By Lemma 18.A, if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares, as claimed.

Now assume the prime-power decomposition of n contains no prime p to an odd power, where $p \equiv 3(\bmod 4)$. Then by Exercise 18.3, we have that either $n=k^{2} p_{1} p_{2} \cdots p_{r}$ or $n=2 k^{2} p_{1} p_{2} \cdots p_{r}$ for some k and r, where each p_{i} is congruent to $1(\bmod 4)$.

Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if and only if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ to an odd power.
Proof. By Lemma 18.A, if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares, as claimed.
Now assume the prime-power decomposition of n contains no prime p to an odd power, where $p \equiv 3(\bmod 4)$. Then by Exercise 18.3, we have that either $n=k^{2} p_{1} p_{2} \cdots p_{r}$ or $n=2 k^{2} p_{1} p_{2} \cdots p_{r}$ for some k and r, where each p_{i} is congruent to $1(\bmod 4)$. Now $2=1^{2}+1^{2}$ and each p_{i} can be written as a sum of two squares by lemma 18.4. So by Note 18.A, both $p_{1} p_{2} \cdots p_{r}$ and $2 p_{1} p_{2} \cdots p_{r}$, where each p_{i} is congruent to $1(\bmod 4)$, can be written as a sum of two squares. Lemma 18.3 then implies that for any $k, k^{2} p_{1} p_{2} \cdots p_{r}$ and $2 k^{2} p_{1} p_{2} \cdots p_{r}$ can be written as a sum of two squares. Since n must be of one of these two forms, then n can be written as a sum of two squares, as claimed.

Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if and only if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ to an odd power.
Proof. By Lemma 18.A, if the prime-power decomposition of n contains a prime congruent to $3(\bmod 4)$ which is raised to an odd power, then n cannot be written as the sum of two squares, as claimed.
Now assume the prime-power decomposition of n contains no prime p to an odd power, where $p \equiv 3(\bmod 4)$. Then by Exercise 18.3, we have that either $n=k^{2} p_{1} p_{2} \cdots p_{r}$ or $n=2 k^{2} p_{1} p_{2} \cdots p_{r}$ for some k and r, where each p_{i} is congruent to $1(\bmod 4)$. Now $2=1^{2}+1^{2}$ and each p_{i} can be written as a sum of two squares by lemma 18.4. So by Note 18.A, both $p_{1} p_{2} \cdots p_{r}$ and $2 p_{1} p_{2} \cdots p_{r}$, where each p_{i} is congruent to $1(\bmod 4)$, can be written as a sum of two squares. Lemma 18.3 then implies that for any $k, k^{2} p_{1} p_{2} \cdots p_{r}$ and $2 k^{2} p_{1} p_{2} \cdots p_{r}$ can be written as a sum of two squares. Since n must be of one of these two forms, then n can be written as a sum of two squares, as claimed.

