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Lemma 18.A

Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) which is raised to an odd power, then n cannot be
written as the sum of two squares.

Proof. Suppose p is prime, where p ≡ 3 (mod 4), which appears in the
prime-power decomposition of n to an odd power. That is, for some
integer e ≥ 0 we have p2e+1 | n and 22e+2 - n. ASSUME that n = x2 + y2

for some integers x and y . Let d = (x , y), x1 = x/d , y1y/d , and
n1 = n/d2. Then x2

1 + y2
1 = n1 and (x1, y1) = 1. If pf is the highest power

of p that divides d , then n1 is divisible by p2e−2f +1. Since the exponent
2e − 2f + 1 is nonnegative, then it is at least 1. Thus p | n1.

If p | x1 then
(since x2

1 + y2
1 = n1) p | y1; but (x1, y1) = 1 so we must have that p - x1

and hence (x1, p) = 1. Hence, by Lemma 5.2, there is (unique) u such
that x1u ≡ y1 (mod p).
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Lemma 18.A

Lemma 18.A (continued)

Lemma 18.A. If the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) which is raised to an odd power, then n cannot be
written as the sum of two squares.

Proof (continued). Since p divides n1, then

0 ≡ n1 ≡ x2
1 + y2

1 ≡ x2
1 + (ux1)

2 ≡ x2
1 (1 + u2) (mod p).

Since (x1, p) = 1, then by Theorem 4.4 we can cancel the factors of x1 to
get 1 + u2 ≡ 0 (mod p). That is, u2 ≡ −1 (mod p). But by Theorem
11.5, we have that the Legendre symbol (−1/p) = −1 since p ≡ 3 (mod
4) so that −1 is not a quadratic residue (mod p). So no such u exists, a
CONTRADICTION. So the assumption that n = x2 + y2 for some integers
x and y is false, as claimed.

() Elementary Number Theory March 23, 2022 4 / 11



Lemma 18.3

Lemma 18.3

Lemma 18.3. Any integer n can be written in the form n = k2p1p2 · · · pr ,
were k is an integer and the p’s are different primes.

Proof. Let the prime-power decomposition of n be n = qe1
1 q2p

e2 · · · qe`
` .

Let set A consist of the powers of qi ’s with even exponents:
A = {qei

i | ei is even}. Let set B consist of the powers of qi ’s with
exponents 1: B = {qei

i | ei = 1}. Let set C be the following powers of qi ’s:

C = {qei−1
i | ei ≥ 3, ei is odd}. Define k2 to be the product of the

elements of sets A and C : k2 =
∏

p∈A∪B p.

Then

k =
∏

p∈A p1/2
∏

p∈C p1/2 (since ei is even for each element of A, and

ei − 1 is even for each element of C , then p1/2 is a positive integer power
of p). Let p1, p2, . . . , pr denote the elements of set B. Then n is the
product the elements in A ∪ B ∪ C , so that n = k2p1p2 · · · pr , as
claimed.
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Exercise 18.3

Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime
p, where p ≡ 3 (mod 4), to an odd power, then n = k2p1p2 · · · pr or
n = 2k2p1p2 · · · pr for some k and r , where each p is congruent to 1 (mod
4).

Proof. By Lemma 8.3, any integer n can be written in the form
n = k2p1p2 · · · pr where the p’s are different. If n is odd, then no pi is 2
and since no pi is 3 (mod 4), then each pi must be 1 (mod 4), as claimed.

If n is even and one of the pi is 2, say pj = 2, then we have
n = 2k2p1p2 · · · pj−1pj+1pj+2 · · · pr . Since the prime-power decomposition
contains no prime which is 3 (mod 4), then none of
p1, p2, . . . , pj−1, pj+1, pj+2, . . . , pr is 3 (mod 3) (so that each is 1 (mod
4)) and the claim holds. If n is even and none of the pi is 2 then we have
n = k2p1p2 · · · pr where each p1, p2, . . . , pr is odd and 1 (mod 4), as
claimed.
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Lemma 18.4

Lemma 18.4

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a
sum of two squares.

Proof. Since p ≡ 1 (mod 4), by Theorem 11.5, we have that the Legendre
symbol (−1/p) = 1 since p ≡ 1 (mod 4) so that −1 is a quadratic residue
(mod p). Hence there is u such that u2 ≡ −1 (mod p). That is
p | (u2 + 1), and so u2 + 1 = kp for some k ≥ 1. Hence x2 + y2 = kp has
a solution for some k ≥ 1.

In fact, we can take y = 1 and
u = ((p − 1)/2)! because((

p − 1

2

)
!

)2

≡
(

p − 1

2

p − 3

2
· · · (3)(2)(1)

)2

≡
(

(−1)(p−1)/2−(p − 1)

2

−(p − 3)

2
· · · (−3)(−2)(−1)

)
×

(
p − 1

2

p − 3

2
· · · (3)(2)(1)

)
. . .
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Lemma 18.4

Lemma 18.4 (continued 1)

Proof (continued). . . .((
p − 1

2

)
!

)2

≡
(

(p + 1)

2

p(p + 3)

2
· · · (p − 3)(p − 2)(p − 1)

)
×

(
p − 1

2

p − 3

2
· · · (3)(2)(1)

)
since (p − 1)/2 is even

≡ (p − 1)! ≡ −1 (mod p) by Theorem 10.B.

Let k be the least positive integer such that x2 + y2 = kp has some
integer solution x and y . If we can show that k = 1, then we have
x2 + y2 = p, as desired. For x2 + y2 = kp, define integers r and s by:

r ≡ x (mod k), s ≡ y (mod k), where − k

2
< r ≤ k

2
, −k

2
< s ≤ k

2
.

By Lemma 4.1 we have r2 + s2 ≡ x2 + y2 (mod k).
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Lemma 18.4

Lemma 18.4 (continued 2)

Proof (continued). Since x2 + y2 = kp and r2 + s2 ≡ x2 + y2 (mod k),
then r2 + s2 ≡ 0 (mod k), or r2 + s2 = k1k for some k1. It follows that
(r2 + s2)(x2 + y2) = (k1k)(kp) = k1k

2p. By Lemma 18.1,
(r2 + s2)(x2 + y2) = (rx + sy)2 + (ry − sx)2. Thus

k1k
2p = (rx + sy)2 + (ry − sx)2. (∗)

Since r ≡ x (mod k) and s ≡ y (mod k) then we have
rx + sy ≡ r2 + s2 ≡ 0 (mod k), and ry − sx ≡ rs − sr ≡ 0 (mod k). Thus
k2 divides (rx + sy)2 and (ry − sx)2, and so from (∗) we have(

rx + sy

k

)2

+

(
ry − sx

k

)2

= k1p,

an equation in integers. Let x1 = (rx + sy)/k and y1 = (ry − sx)/k, so
that x2

1 + y2
1 = k1p.
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Lemma 18.4

Lemma 18.4 (continued 3)

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a
sum of two squares.

Proof (continued). Since we chose r and s such that −k/2 < r ≤ k/2
and −k/2 < s ≤ k/2., then we have r2 + s2 ≤ (k/2)2 + (k/2)2 = k2/2.
But r2 + s2 = k1k as shown above, so k1k ≤ k2/2 or k1 ≤ k/2. Hence
k1 < k.

If k1 ≥ 1, then we have 1 ≤ k1 < k and that x2 + y2 = k1p has a solution
for x = x1 and y = y1. But this contradicts the fact that k is a minimal
value for which x2 + y2 = kp has a solution for some x and y . So we must
have k1 = 0. Then we have r = s = 0. Since r ≡ x (mod k) and s ≡ y
(mod k), we have k | x and k | y . So k2 | (x2 + y2) and, since x2 + y2 = kp,
then k | p. Hence k = 1 or k = p. If k = p, then u2 + 1 = p2, a
contradiction because there are no consecutive positive square numbers.
Therefore k = 1 and x2 + y2 = kp = p has a solution, as claimed.
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Theorem 18.1

Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if
and only if the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) to an odd power.

Proof. By Lemma 18.A, if the prime-power decomposition of n contains a
prime congruent to 3 (mod 4) which is raised to an odd power, then n
cannot be written as the sum of two squares, as claimed.

Now assume the prime-power decomposition of n contains no prime p to
an odd power, where p ≡ 3 (mod 4). Then by Exercise 18.3, we have that
either n = k2p1p2 · · · pr or n = 2k2p1p2 · · · pr for some k and r , where
each pi is congruent to 1 (mod 4). Now 2 = 12 + 12 and each pi can be
written as a sum of two squares by lemma 18.4. So by Note 18.A, both
p1p2 · · · pr and 2p1p2 · · · pr , where each pi is congruent to 1 (mod 4), can
be written as a sum of two squares. Lemma 18.3 then implies that for any
k, k2p1p2 · · · pr and 2k2p1p2 · · · pr can be written as a sum of two
squares. Since n must be of one of these two forms, then n can be written
as a sum of two squares, as claimed.
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p1p2 · · · pr and 2p1p2 · · · pr , where each pi is congruent to 1 (mod 4), can
be written as a sum of two squares. Lemma 18.3 then implies that for any
k, k2p1p2 · · · pr and 2k2p1p2 · · · pr can be written as a sum of two
squares. Since n must be of one of these two forms, then n can be written
as a sum of two squares, as claimed.
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Theorem 18.1. Integer n cannot be written as the sum of two squares if
and only if the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) to an odd power.

Proof. By Lemma 18.A, if the prime-power decomposition of n contains a
prime congruent to 3 (mod 4) which is raised to an odd power, then n
cannot be written as the sum of two squares, as claimed.

Now assume the prime-power decomposition of n contains no prime p to
an odd power, where p ≡ 3 (mod 4). Then by Exercise 18.3, we have that
either n = k2p1p2 · · · pr or n = 2k2p1p2 · · · pr for some k and r , where
each pi is congruent to 1 (mod 4). Now 2 = 12 + 12 and each pi can be
written as a sum of two squares by lemma 18.4. So by Note 18.A, both
p1p2 · · · pr and 2p1p2 · · · pr , where each pi is congruent to 1 (mod 4), can
be written as a sum of two squares. Lemma 18.3 then implies that for any
k, k2p1p2 · · · pr and 2k2p1p2 · · · pr can be written as a sum of two
squares. Since n must be of one of these two forms, then n can be written
as a sum of two squares, as claimed.
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