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Lemma 18.A

Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime

congruent to 3 (mod 4) which is raised to an odd power, then n cannot be
written as the sum of two squares.
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Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) which is raised to an odd power, then n cannot be
written as the sum of two squares.

Proof. Suppose p is prime, where p = 3 (mod 4), which appears in the
prime-power decomposition of n to an odd power. That is, for some
integer e > 0 we have p?¢*!|n and 22672 4 n. ASSUME that n = x? + y?
for some integers x and y. Let d = (x,y), x1 = x/d, y1y/d, and

ny = n/d?. Then xl2 +y12 =ny and (x1,y1) = 1. If p’ is the highest power
of p that divides d, then nj is divisible by p?¢=2f*1. Since the exponent
2e — 2f + 1 is nonnegative, then it is at least 1. Thus p|n;.
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Lemma 18.A

Lemma 18.A. If the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) which is raised to an odd power, then n cannot be
written as the sum of two squares.

Proof. Suppose p is prime, where p = 3 (mod 4), which appears in the
prime-power decomposition of n to an odd power. That is, for some
integer e > 0 we have p?¢*!|n and 22672 4 n. ASSUME that n = x? + y?
for some integers x and y. Let d = (x,y), x1 = x/d, y1y/d, and

ny = n/d?. Then xl2 +y12 =ny and (x1,y1) = 1. If p’ is the highest power
of p that divides d, then nj is divisible by p?¢=2f*1. Since the exponent
2e — 2f + 1 is nonnegative, then it is at least 1. Thus p|ny. If p|x; then
(since x2 + y2 = m) p|y1; but (x1,y1) = 1 so we must have that p{ x
and hence (x1,p) = 1. Hence, by Lemma 5.2, there is (unique) u such
that xu = y; (mod p).
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Lemma 18.A (continued)

Lemma 18.A. If the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) which is raised to an odd power, then n cannot be
written as the sum of two squares.

Proof (continued). Since p divides ny, then
0=m=xt+y? =x3 4 (ux)? = x¥(1 + v°) (mod p).

Since (x1, p) = 1, then by Theorem 4.4 we can cancel the factors of x; to
get 1+ u? =0 (mod p). Thatis, u?> = —1 (mod p). But by Theorem
11.5, we have that the Legendre symbol (—1/p) = —1 since p = 3 (mod
4) so that —1 is not a quadratic residue (mod p). So no such u exists, a
CONTRADICTION. So the assumption that n = x? + y? for some integers
x and vy is false, as claimed. O
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Lemma 18.3

Lemma 18.3. Any integer n can be written in the form n = k2pipo - pr,
were k is an integer and the p’s are different primes.
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Lemma 18.3

Lemma 18.3. Any integer n can be written in the form n = k2pipo - pr,
were k is an integer and the p’s are different primes.

Proof. Let the prime-power decomposition of n be n = q7* qop® - - - q;*.
Let set A consist of the powers of g;'s with even exponents:

A={q] | e is even}. Let set B consist of the powers of g;'s with
exponents 1: B = {q;" | ¢ = 1}. Let set C be the following powers of g;'s:
C= {q,-e"_1 | e > 3, ¢ is odd}. Define k? to be the product of the
elements of sets A and C: k% = HpeAuB p.
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Lemma 18.3

Lemma 18.3. Any integer n can be written in the form n = k2pipo - pr,
were k is an integer and the p’s are different primes.

Proof. Let the prime-power decomposition of n be n = q7* qop® - - - q;*.

Let set A consist of the powers of g;'s with even exponents:

A={q] | e is even}. Let set B consist of the powers of g;'s with
exponents 1: B = {q;" | ¢ = 1}. Let set C be the following powers of g;'s:
C= {q,-e"_1 | e > 3, ¢ is odd}. Define k? to be the product of the
elements of sets A and C: k% = HpeAuB p. Then

k =TIpenP? T ec P/? (since e; is even for each element of A, and

ei — 1 is even for each element of C, then p/2 is a positive integer power
of p). Let p1,p2,..., pr denote the elements of set B. Then n is the
product the elements in AU BU C, so that n = k?pip>--- p,, as

claimed. ]
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Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime
p, where p = 3 (mod 4), to an odd power, then n = k?pyps---p, or

n=2k?p1ps - - - p, for some k and r, where each p is congruent to 1 (mod
4).
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Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime
p, where p = 3 (mod 4), to an odd power, then n = k?pyps---p, or

n=2k?p1ps - - - p, for some k and r, where each p is congruent to 1 (mod
4).

Proof. By Lemma 8.3, any integer n can be written in the form
n= k?pipy - - - pr where the p's are different. If nis odd, then no p; is 2
and since no p; is 3 (mod 4), then each p; must be 1 (mod 4), as claimed.
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Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime
p, where p = 3 (mod 4), to an odd power, then n = k?pyps---p, or
n=2k?p1ps - - - p, for some k and r, where each p is congruent to 1 (mod
4).

Proof. By Lemma 8.3, any integer n can be written in the form

n= k?pipy - - - pr where the p's are different. If nis odd, then no p; is 2
and since no p; is 3 (mod 4), then each p; must be 1 (mod 4), as claimed.
If nis even and one of the p; is 2, say p; = 2, then we have
n=2k’pipy--- Pj—1Pj+1Pj+2 - - - Pr- Since the prime-power decomposition
contains no prime which is 3 (mod 4), then none of

PL,P2; -+, Pj—1, Pj+1, Pj+2; - - -» Pr is 3 (mod 3) (so that each is 1 (mod
4)) and the claim holds.
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Exercise 18.3

Exercise 18.3. If the prime-power decomposition of n contains no prime
p, where p = 3 (mod 4), to an odd power, then n = k?pyps---p, or
n=2k?p1ps - - - p, for some k and r, where each p is congruent to 1 (mod
4).

Proof. By Lemma 8.3, any integer n can be written in the form

n= k?pipy - - - pr where the p's are different. If nis odd, then no p; is 2
and since no p; is 3 (mod 4), then each p; must be 1 (mod 4), as claimed.
If nis even and one of the p; is 2, say p; = 2, then we have
n=2k’pipy--- Pj—1Pj+1Pj+2 - - - Pr- Since the prime-power decomposition
contains no prime which is 3 (mod 4), then none of

PL,P2; -+, Pj—1, Pj+1, Pj+2; - - -» Pr is 3 (mod 3) (so that each is 1 (mod
4)) and the claim holds. If n is even and none of the p; is 2 then we have
n= k?p1ps--- p, where each py, pa,...,p, is odd and 1 (mod 4), as
claimed. O]
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Lemma 18.4

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a
sum of two squares.
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Lemma 18.4

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a
sum of two squares.

Proof. Since p =1 (mod 4), by Theorem 11.5, we have that the Legendre
symbol (—=1/p) =1 since p =1 (mod 4) so that —1 is a quadratic residue
(mod p). Hence there is u such that u> = —1 (mod p). That is
p|(u?+1), and so u? 4+ 1 = kp for some k > 1. Hence x> + y? = kp has
a solution for some k > 1.
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Lemma 18.4

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a
sum of two squares.

Proof. Since p =1 (mod 4), by Theorem 11.5, we have that the Legendre
symbol (—=1/p) =1 since p =1 (mod 4) so that —1 is a quadratic residue
(mod p). Hence there is u such that u> = —1 (mod p). That is
p|(u?+1), and so u? 4+ 1 = kp for some k > 1. Hence x> + y? = kp has
a solution for some k > 1. In fact, we can take y = 1 and
u=((p—1)/2)! because

((P;l)l)z - ('3;”’;3--43)(2)(1))2

((_1)(/3—1)/2 _(P2— 1) _(P2— 3) L (_3)(_2)(_1)>

X <”;1p;3’ -.-(3)(2)(1)>
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Lemma 18.4 (continued 1)

Proof (continued). ...

(CE T I—"

< (”51";3 . (3)(2)(1)) since (p— 1)/2 is even
= (p—1)!'=—-1 (mod p) by Theorem 10.B.

Let k be the least positive integer such that x> + y? = kp has some
integer solution x and y. If we can show that k = 1, then we have
x? 4+ y? = p, as desired.
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Lemma 18.4 (continued 1)

Proof (continued). ...

(CE T I—"

< (”51";3 . (3)(2)(1)) since (p— 1)/2 is even

= (p—1)!'=—-1 (mod p) by Theorem 10.B.

Let k be the least positive integer such that x> + y? = kp has some
integer solution x and y. If we can show that k = 1, then we have
x? 4+ y? = p, as desired. For x> 4+ y? = kp, define integers r and s by:

k k  k k
= k = k h — = < =, —= < —.
r=x (mod k), s=y (mod k), where S <r<5, 5 <s=3

By Lemma 4.1 we have r? + s? = x? + y2 (mod k).
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Lemma 18.4

Lemma 18.4 (continued 2)

Proof (continued). Since x?> + y? = kp and r? 4+ s? = x? + y? (mod k),
then r? 4+ s2 =0 (mod k), or r? + s? = ki k for some kj. It follows that
(r? + s?)(x? + y?) = (kik)(kp) = kik?p. By Lemma 18.1,

(r? +s2)(x®> + y?) = (rx + sy)? + (ry — sx)?. Thus

kik?p = (rx + sy)? + (ry — sx)2. (*)
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Lemma 18.4 (continued 2)
Proof (continued). Since x?> + y? = kp and r? 4+ s? = x? + y? (mod k),
then r? 4+ s2 =0 (mod k), or r? + s? = ki k for some kj. It follows that
(r? 4 s%)(x? + y?) = (kik)(kp) = kik?p. By Lemma 18.1,
(r? +s2)(x®> + y?) = (rx + sy)? + (ry — sx)?. Thus

kik?p = (rx + sy)? + (ry — sx)2. (*)

Since r = x (mod k) and s = y (mod k) then we have
x+sy=r?>+s2=0 (mod k), and ry — sx = rs — sr =0 (mod k). Thus
k2 divides (rx + sy)? and (ry — sx)?, and so from (%) we have

rx + sy 2 ry — sx 2
= k
(57) (757 =
an equation in integers. Let x; = (rx + sy)/k and y1 = (ry — sx)/k, so

that x? + y2 = ki p.
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Lemma 18.4

Lemma 18.4 (continued 3)

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a
sum of two squares.

Proof (continued). Since we chose r and s such that —k/2 < r < k/2
and —k/2 < s < k/2., then we have r? 4+ s < (k/2)? + (k/2)? = k?/2.
But r2 + s2 = ki k as shown above, so kik < k2/2 or k1 < k/2. Hence
ki < k.
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Lemma 18.4 (continued 3)

Lemma 18.4. Every prime congruent to 1 (mod 4) can be written as a
sum of two squares.

Proof (continued). Since we chose r and s such that —k/2 < r < k/2
and —k/2 < s < k/2., then we have r? 4+ s < (k/2)? + (k/2)? = k?/2.
But r2 + s2 = ki k as shown above, so kik < k2/2 or k1 < k/2. Hence
ki < k.

If k; > 1, then we have 1 < k; < k and that x2 —|—y2 = kip has a solution
for x = x; and y = y;. But this contradicts the fact that k is a minimal
value for which x? + y? = kp has a solution for some x and y. So we must
have k1 = 0. Then we have r = s = 0. Since r = x (mod k) and s =y
(mod k), we have k | x and k|y. So k?|(x?+y?) and, since x>+ y? = kp,
then k|p. Hence k =1 or k = p. If k = p, then v?> +1 = p?, a
contradiction because there are no consecutive positive square numbers.
Therefore k = 1 and x? 4+ y? = kp = p has a solution, as claimed. []
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Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if
and only if the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) to an odd power.
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Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if
and only if the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) to an odd power.

Proof. By Lemma 18.A, if the prime-power decomposition of n contains a
prime congruent to 3 (mod 4) which is raised to an odd power, then n
cannot be written as the sum of two squares, as claimed.
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Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if
and only if the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) to an odd power.

Proof. By Lemma 18.A, if the prime-power decomposition of n contains a
prime congruent to 3 (mod 4) which is raised to an odd power, then n
cannot be written as the sum of two squares, as claimed.

Now assume the prime-power decomposition of n contains no prime p to
an odd power, where p = 3 (mod 4). Then by Exercise 18.3, we have that
either n = k2p1p2 - prorn= 2k2p1p2 -+ p, for some k and r, where
each p; is congruent to 1 (mod 4).
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Theorem 18.1

Theorem 18.1. Integer n cannot be written as the sum of two squares if
and only if the prime-power decomposition of n contains a prime
congruent to 3 (mod 4) to an odd power.

Proof. By Lemma 18.A, if the prime-power decomposition of n contains a
prime congruent to 3 (mod 4) which is raised to an odd power, then n
cannot be written as the sum of two squares, as claimed.

Now assume the prime-power decomposition of n contains no prime p to
an odd power, where p = 3 (mod 4). Then by Exercise 18.3, we have that
either n = k2p1p2 - prorn= 2k2p1p2 -+ p, for some k and r, where
each p; is congruent to 1 (mod 4). Now 2 = 12 + 12 and each p; can be
written as a sum of two squares by lemma 18.4. So by Note 18.A, both
pip2---pr and 2pipy - - - pr, Where each p; is congruent to 1 (mod 4), can
be written as a sum of two squares. Lemma 18.3 then implies that for any
k, k?pipp - -- p, and 2k?p1ps - - - py can be written as a sum of two
squares. Since n must be of one of these two forms, then n can be written
as a sum of two squares, as claimed. O
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