Elementary Number Theory

Section 19. Sums of Four Squares—Proofs of Theorems

Table of contents

(1) Lemma 19.2
(2) Lemma 19.3
(3) Lemma 19.4
(4) Lemma 19.A
(5) Theorem 19.1

Lemma 19.2

Lemma 19.2. If p is an odd prime, then the equation $1+x^{2}+y^{2} \equiv 0$ $(\bmod p)$ has a solution with $0 \leq x<p / 2$ and $0 \leq y<p / 2$.

Proof. The elements of $S_{1}=\left\{0^{2}, 1^{2}, 2^{2}, \ldots,((p-1) / 2)^{2}\right\}$ are distinct $(\bmod p)$ because by Lemma 11.1 the equation $x^{2} \equiv a(\bmod p)($ where $p \nmid a$) has exactly two (least residue) solutions or no solution (so as a ranges over the nonzero values of S_{1}, the two solutions are 1 and $p-1,2$ and $p-2, \ldots,(p-1) / 2$ and $\left(p_{1}\right) / 2$, respectively). Hence, the elements in the set $S_{2}=\left\{-1-0^{2},-1-2^{2}, \ldots,-1-((p-1) / 2)^{2}\right\}$ are distinct $(\bmod p)$.

Lemma 19.2

Lemma 19.2. If p is an odd prime, then the equation $1+x^{2}+y^{2} \equiv 0$ $(\bmod p)$ has a solution with $0 \leq x<p / 2$ and $0 \leq y<p / 2$.

Proof. The elements of $S_{1}=\left\{0^{2}, 1^{2}, 2^{2}, \ldots,((p-1) / 2)^{2}\right\}$ are distinct $(\bmod p)$ because by Lemma 11.1 the equation $x^{2} \equiv a(\bmod p)($ where $p \nmid a$) has exactly two (least residue) solutions or no solution (so as a ranges over the nonzero values of S_{1}, the two solutions are 1 and $p-1,2$ and $p-2, \ldots,(p-1) / 2$ and $\left(p_{1}\right) / 2$, respectively). Hence, the elements in the set $S_{2}=\left\{-1-0^{2},-1-2^{2}, \ldots,-1-((p-1) / 2)^{2}\right\}$ are distinct $(\bmod p)$. Now the number of elements in S_{1} plus the number of elements in S_{2} is $((p+1) / 2+1)+((p-1) / 2+1)=p+1$. Since there are only p least residues modulo p, we must have (by the Pigeonhole Principle) that one of the numbers in S_{1} is congruent to one of the numbers in S_{2}, say $x^{2} \in S_{1}$ and $-1-y^{2} \in S_{2}$ where $x^{2} \equiv-1-y^{2}(\bmod p)$ and $0 \leq x \leq(p-1) / 2,0 \leq y \leq(p-1) / 2$, as desired.

Lemma 19.2

Lemma 19.2. If p is an odd prime, then the equation $1+x^{2}+y^{2} \equiv 0$ $(\bmod p)$ has a solution with $0 \leq x<p / 2$ and $0 \leq y<p / 2$.

Proof. The elements of $S_{1}=\left\{0^{2}, 1^{2}, 2^{2}, \ldots,((p-1) / 2)^{2}\right\}$ are distinct $(\bmod p)$ because by Lemma 11.1 the equation $x^{2} \equiv a(\bmod p)($ where $p \nmid a$) has exactly two (least residue) solutions or no solution (so as a ranges over the nonzero values of S_{1}, the two solutions are 1 and $p-1,2$ and $p-2, \ldots,(p-1) / 2$ and $\left(p_{1}\right) / 2$, respectively). Hence, the elements in the set $S_{2}=\left\{-1-0^{2},-1-2^{2}, \ldots,-1-((p-1) / 2)^{2}\right\}$ are distinct $(\bmod p)$. Now the number of elements in S_{1} plus the number of elements in S_{2} is $((p+1) / 2+1)+((p-1) / 2+1)=p+1$. Since there are only p least residues modulo p, we must have (by the Pigeonhole Principle) that one of the numbers in S_{1} is congruent to one of the numbers in S_{2}, say $x^{2} \in S_{1}$ and $-1-y^{2} \in S_{2}$ where $x^{2} \equiv-1-y^{2}(\bmod p)$ and $0 \leq x \leq(p-1) / 2,0 \leq y \leq(p-1) / 2$, as desired.

Lemma 19.3

Lemma 19.3. For every odd prime p, there is a positive integer m, $m<p$, such that the equation $m p=x^{2}+y^{2}+z^{2}+w^{2}$ has a solution.

Proof. By Lemma 19.2, there are x and y, with $0 \leq x \leq p / 2$ and $0 \leq y \leq p / 2$, such that $m p=x^{2}+y^{2}+1^{2}+0^{2}$ for some positive m. Then we have

$$
m p=x^{2}+y^{2}+1<p^{2} / 4+p^{2} / 4+1<p^{2},
$$

so that $m<p$, as claimed.

Lemma 19.3

Lemma 19.3. For every odd prime p, there is a positive integer m, $m<p$, such that the equation $m p=x^{2}+y^{2}+z^{2}+w^{2}$ has a solution.

Proof. By Lemma 19.2, there are x and y, with $0 \leq x \leq p / 2$ and $0 \leq y \leq p / 2$, such that $m p=x^{2}+y^{2}+1^{2}+0^{2}$ for some positive m.
Then we have

$$
m p=x^{2}+y^{2}+1<p^{2} / 4+p^{2} / 4+1<p^{2},
$$

so that $m<p$, as claimed.

Lemma 19.4

Lemma 19.4. If m and p are odd, with $1<m<p$, and $m p=x^{2}+y^{2}+z^{2}+w^{2}$, then there is a positive integer k_{1} with $1 \leq k_{1}<m$ such that $k_{1} p=x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{z}^{2}$ for some integers $x_{1}, y_{1}, z_{1}, w_{1}$.

Proof. First, let m and p be odd, with $1<m<p$, and $m p=x^{2}+y^{2}+z^{2}+w^{2}$. If m is even, then x, y, z, w are either all odd, or all even, or two are odd and two are even. In each case, $x \equiv y(\bmod 2)$ and $z \equiv w(\bmod 2)$. Hence, as can be verified by multiplying out,

$$
\frac{m p}{2}=\left(\frac{x-y}{2}\right)^{2}+\left(\frac{x+y}{2}\right)^{2}+\left(\frac{z-w}{2}\right)^{2}+\left(\frac{z+w}{2}\right)^{2}
$$

If $m / 2$ is even, we can repeat the process and express $(m / 4) p$ as a sum of four squares. Then, if $m / 4$ is even then we can repeat the process and express $(m / 8) p$ as a sum of four squares. This process can be repeated until we have an odd multiple of p written as a sum of four squares.

Lemma 19.4

Lemma 19.4. If m and p are odd, with $1<m<p$, and $m p=x^{2}+y^{2}+z^{2}+w^{2}$, then there is a positive integer k_{1} with $1 \leq k_{1}<m$ such that $k_{1} p=x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{z}^{2}$ for some integers $x_{1}, y_{1}, z_{1}, w_{1}$.

Proof. First, let m and p be odd, with $1<m<p$, and $m p=x^{2}+y^{2}+z^{2}+w^{2}$. If m is even, then x, y, z, w are either all odd, or all even, or two are odd and two are even. In each case, $x \equiv y(\bmod 2)$ and $z \equiv w(\bmod 2)$. Hence, as can be verified by multiplying out,

$$
\frac{m p}{2}=\left(\frac{x-y}{2}\right)^{2}+\left(\frac{x+y}{2}\right)^{2}+\left(\frac{z-w}{2}\right)^{2}+\left(\frac{z+w}{2}\right)^{2} .
$$

If $m / 2$ is even, we can repeat the process and express $(m / 4) p$ as a sum of four squares. Then, if $m / 4$ is even then we can repeat the process and express $(m / 8) p$ as a sum of four squares. This process can be repeated until we have an odd multiple of p written as a sum of four squares.

Lemma 19.4 (continued 1)

Proof (continued). So, without loss of generality, we can assume from the beginning that m is odd. Now choose A, B, C, D such that

$$
A \equiv x(\bmod m), \quad B \equiv y(\bmod m), \quad C \equiv z(\bmod m), \quad D \equiv w(\bmod m)
$$

and $-m / 2<A, B, C, D<m / 2$ (which can be done since m is odd). We then have $A^{2}+B^{2}+C^{2}+D^{2} \equiv x^{2}+y^{2}+z^{2}+w^{2}(\bmod m)$, or $A^{2}+B^{2}+C^{2}+D^{2}=k m$ for some k. Since

$$
k m=A^{2}+B^{2}+C^{2}+D^{2}<m^{2} / 4+m^{2} / 4+m^{2} / 4+m^{2} / 4=m^{2},
$$

then we must have $0<k<m$.

Lemma 19.4 (continued 1)

Proof (continued). So, without loss of generality, we can assume from the beginning that m is odd. Now choose A, B, C, D such that

$$
A \equiv x(\bmod m), \quad B \equiv y(\bmod m), \quad C \equiv z(\bmod m), \quad D \equiv w(\bmod m)
$$

and $-m / 2<A, B, C, D<m / 2$ (which can be done since m is odd). We then have $A^{2}+B^{2}+C^{2}+D^{2} \equiv x^{2}+y^{2}+z^{2}+w^{2}(\bmod m)$, or $A^{2}+B^{2}+C^{2}+D^{2}=k m$ for some k. Since

$$
k m=A^{2}+B^{2}+C^{2}+D^{2}<m^{2} / 4+m^{2} / 4+m^{2} / 4+m^{2} / 4=m^{2},
$$

then we must have $0<k<m$. (If $k=0$, then $A=B=C=D=0$ and $x \equiv y \equiv z \equiv w \equiv 0(\bmod m)$, so $m^{2} \mid x^{2}+y^{2}+z^{2}+w^{2}$ and, since $x^{2}+y^{2}+z^{2}+w^{2}=m p$ by hypothesis, then $m^{2} \mid m p$. But this implies $m \mid p$ in contradiction to the hypothesis that $1<m<p$.)

Lemma 19.4 (continued 1)

Proof (continued). So, without loss of generality, we can assume from the beginning that m is odd. Now choose A, B, C, D such that

$$
A \equiv x(\bmod m), \quad B \equiv y(\bmod m), \quad C \equiv z(\bmod m), \quad D \equiv w(\bmod m)
$$

and $-m / 2<A, B, C, D<m / 2$ (which can be done since m is odd). We then have $A^{2}+B^{2}+C^{2}+D^{2} \equiv x^{2}+y^{2}+z^{2}+w^{2}(\bmod m)$, or $A^{2}+B^{2}+C^{2}+D^{2}=k m$ for some k. Since

$$
k m=A^{2}+B^{2}+C^{2}+D^{2}<m^{2} / 4+m^{2} / 4+m^{2} / 4+m^{2} / 4=m^{2},
$$

then we must have $0<k<m$. (If $k=0$, then $A=B=C=D=0$ and $x \equiv y \equiv z \equiv w \equiv 0(\bmod m)$, so $m^{2} \mid x^{2}+y^{2}+z^{2}+w^{2}$ and, since $x^{2}+y^{2}+z^{2}+w^{2}=m p$ by hypothesis, then $m^{2} \mid m p$. But this implies $m \mid p$ in contradiction to the hypothesis that $1<m<p$.)

Lemma 19.4 (continued 2)

Proof (continued). Thus
$m^{2} k p=(m p)(k m)=\left(x^{2}+y^{2}+z^{2}+w^{2}\right)\left(A^{2}+B^{2}+C^{2}+D^{2}\right)$, and by Lemma 19.1 we have

$$
\begin{aligned}
m^{2} k p= & (x A+y B+z C+w D)^{2}+(x B-y A+z D-w C)^{2} \\
& +(x C-y D-z A+w B)^{2}+(x D+y C-z B-w A)^{2} .
\end{aligned}
$$

Since modulo m we have $x \equiv A, y \equiv B, z \equiv C$, and $w \equiv D$, then each parenthetic term is divisible by m :

$$
\begin{aligned}
& x A+y B+z C+w D \equiv x^{2}+y^{2}+z^{2}+w^{2} \equiv 0(\bmod m), \\
& x B-y A+z D-w C \equiv x y-y x+z w-w z \equiv 0(\bmod m), \\
& x C-y D-z A+w B \equiv x z-y w-z x+w y \equiv 0(\bmod m), \\
& x D+y C-z B-w A \equiv x w+y z-z y-w x \equiv 0(\bmod m) .
\end{aligned}
$$

Lemma 19.4 (continued 3)

Lemma 19.4. If m and p are odd, with $1<m<p$, and $m p=x^{2}+y^{2}+z^{2}+w^{2}$, then there is a positive integer k_{1} with $1 \leq k_{1}<m$ such that $k_{1} p=x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{z}^{2}$ for some integers $x_{1}, y_{1}, z_{1}, w_{1}$.

Proof (continued). So if we put

$$
\begin{aligned}
& x_{1}=(x A+y B+z C+w D) / m, \quad y_{1}=(x B-y A+z D-w C) / m, \\
& z_{1}=(x C-y D-z A+w B) / m, \quad w_{1}=(x D+y C-z B-w A) / m,
\end{aligned}
$$

then we have $x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{1}^{2}=\left(m^{2} k p\right) / m^{2}=k p$. As shown above we have $0<k<m$, so with $k_{1}=k$ we have $k_{1} p=x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{z}^{2}$ where $0<k_{1}<m$, as claimed.

Lemma 19.A

Lemma 19.A. Every prime p can be written as the sum of four integer squares.

Proof. For $p=2$, we have $p=2=1^{2}+1^{2}+0^{2}+0^{2}$. So we can assume that p is an odd prime. By Lemma 19.2, there is positive integer $m<p$ such that $m p=x^{2}+y^{2}+z^{2}+w^{2}$ has a solution. Let m be a minimum such positive integer m.

Lemma 19.A

Lemma 19.A. Every prime p can be written as the sum of four integer squares.

Proof. For $p=2$, we have $p=2=1^{2}+1^{2}+0^{2}+0^{2}$. So we can assume that p is an odd prime. By Lemma 19.2, there is positive integer $m<p$ such that $m p=x^{2}+y^{2}+z^{2}+w^{2}$ has a solution. Let m be a minimum such positive integer m. ASSUME $m>1$. Then by Lemma 19.4, there is positive $k_{1}<m$ such that $k_{1} p=x^{2}+y^{2}+z^{2}+w^{2}$. But this CONTRADICTS the minimality of positive integer m. This contradictions shows that $m=1$. (Dudley describes this in terms of Fermat's infinite descent.) That is, $p=x^{2}+y^{2}+z^{2}+w^{2}$ has a solution, and hence p is the some of four integer squares, as claimed.

Lemma 19.A

Lemma 19.A. Every prime p can be written as the sum of four integer squares.

Proof. For $p=2$, we have $p=2=1^{2}+1^{2}+0^{2}+0^{2}$. So we can assume that p is an odd prime. By Lemma 19.2, there is positive integer $m<p$ such that $m p=x^{2}+y^{2}+z^{2}+w^{2}$ has a solution. Let m be a minimum such positive integer m. ASSUME $m>1$. Then by Lemma 19.4, there is positive $k_{1}<m$ such that $k_{1} p=x^{2}+y^{2}+z^{2}+w^{2}$. But this CONTRADICTS the minimality of positive integer m. This contradictions shows that $m=1$. (Dudley describes this in terms of Fermat's infinite descent.) That is, $p=x^{2}+y^{2}+z^{2}+w^{2}$ has a solution, and hence p is the some of four integer squares, as claimed.

Theorem 19.1

Theorem 19.1. Lagrange's Four-Square Theorem.

 Every positive integer can be written as the sum of four integer squares.Proof. Let n be a positive integer. Suppose that the prime-power decomposition of n is $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$. By Lemma 19.A, each p_{i} can be written as the sum of four integer squares. By Lemma 19.1 (and induction), we then have that the $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ can be written as the sum of four integer squares, as claimed.

Theorem 19.1

Theorem 19.1. Lagrange's Four-Square Theorem.

 Every positive integer can be written as the sum of four integer squares.Proof. Let n be a positive integer. Suppose that the prime-power decomposition of n is $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$. By Lemma 19.A, each p_{i} can be written as the sum of four integer squares. By Lemma 19.1 (and induction), we then have that the $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ can be written as the sum of four integer squares, as claimed.

