Elementary Number Theory

Section 19. Sums of Four Squares—Proofs of Theorems

Table of contents

- 1 Lemma 19.2
- 2 Lemma 19.3
- 3 Lemma 19.4
- 4 Lemma 19.A
- 5 Theorem 19.1

Lemma 19.2. If p is an odd prime, then the equation $1 + x^2 + y^2 \equiv 0 \pmod{p}$ has a solution with $0 \le x < p/2$ and $0 \le y < p/2$.

Proof. The elements of $S_1 = \{0^2, 1^2, 2^2, \dots, ((p-1)/2)^2\}$ are distinct (mod *p*) because by Lemma 11.1 the equation $x^2 \equiv a \pmod{p}$ (where $p \nmid a$) has exactly two (least residue) solutions or no solution (so as *a* ranges over the nonzero values of S_1 , the two solutions are 1 and p - 1, 2 and $p - 2, \dots, (p-1)/2$ and $(p_1)/2$, respectively). Hence, the elements in the set $S_2 = \{-1 - 0^2, -1 - 2^2, \dots, -1 - ((p-1)/2)^2\}$ are distinct (mod *p*).

Lemma 19.2. If p is an odd prime, then the equation $1 + x^2 + y^2 \equiv 0 \pmod{p}$ has a solution with $0 \le x < p/2$ and $0 \le y < p/2$.

Proof. The elements of $S_1 = \{0^2, 1^2, 2^2, \dots, ((p-1)/2)^2\}$ are distinct (mod p) because by Lemma 11.1 the equation $x^2 \equiv a \pmod{p}$ (where $p \nmid a$) has exactly two (least residue) solutions or no solution (so as a ranges over the nonzero values of S_1 , the two solutions are 1 and p-1, 2 and $p - 2, \ldots, (p - 1)/2$ and $(p_1)/2$, respectively). Hence, the elements in the set $S_2 = \{-1 - 0^2, -1 - 2^2, \dots, -1 - ((p-1)/2)^2\}$ are distinct (mod p). Now the number of elements in S_1 plus the number of elements in S_2 is ((p+1)/2+1) + ((p-1)/2+1) = p+1. Since there are only p least residues modulo p, we must have (by the Pigeonhole Principle) that one of the numbers in S_1 is congruent to one of the numbers in S_2 , say $x^2 \in S_1$ and $-1 - y^2 \in S_2$ where $x^2 \equiv -1 - y^2 \pmod{p}$ and 0 < x < (p-1)/2, 0 < y < (p-1)/2, as desired.

Lemma 19.2. If p is an odd prime, then the equation $1 + x^2 + y^2 \equiv 0 \pmod{p}$ has a solution with $0 \le x < p/2$ and $0 \le y < p/2$.

Proof. The elements of $S_1 = \{0^2, 1^2, 2^2, \dots, ((p-1)/2)^2\}$ are distinct (mod p) because by Lemma 11.1 the equation $x^2 \equiv a \pmod{p}$ (where $p \nmid a$) has exactly two (least residue) solutions or no solution (so as a ranges over the nonzero values of S_1 , the two solutions are 1 and p-1, 2 and $p - 2, \ldots, (p - 1)/2$ and $(p_1)/2$, respectively). Hence, the elements in the set $S_2 = \{-1 - 0^2, -1 - 2^2, \dots, -1 - ((p-1)/2)^2\}$ are distinct (mod p). Now the number of elements in S_1 plus the number of elements in S_2 is ((p+1)/2+1) + ((p-1)/2+1) = p+1. Since there are only p least residues modulo p, we must have (by the Pigeonhole Principle) that one of the numbers in S_1 is congruent to one of the numbers in S_2 , say $x^2 \in S_1$ and $-1 - y^2 \in S_2$ where $x^2 \equiv -1 - y^2 \pmod{p}$ and 0 < x < (p-1)/2, $0 \le y \le (p-1)/2$, as desired.

Lemma 19.3. For every odd prime *p*, there is a positive integer *m*, m < p, such that the equation $mp = x^2 + y^2 + z^2 + w^2$ has a solution.

Proof. By Lemma 19.2, there are x and y, with $0 \le x \le p/2$ and $0 \le y \le p/2$, such that $mp = x^2 + y^2 + 1^2 + 0^2$ for some positive m. Then we have

$$mp = x^{2} + y^{2} + 1 < p^{2}/4 + p^{2}/4 + 1 < p^{2},$$

so that m < p, as claimed.

Lemma 19.3. For every odd prime *p*, there is a positive integer *m*, m < p, such that the equation $mp = x^2 + y^2 + z^2 + w^2$ has a solution.

Proof. By Lemma 19.2, there are x and y, with $0 \le x \le p/2$ and $0 \le y \le p/2$, such that $mp = x^2 + y^2 + 1^2 + 0^2$ for some positive m. Then we have

$$mp = x^2 + y^2 + 1 < p^2/4 + p^2/4 + 1 < p^2,$$

so that m < p, as claimed.

Lemma 19.4

Lemma 19.4. If *m* and *p* are odd, with 1 < m < p, and $mp = x^2 + y^2 + z^2 + w^2$, then there is a positive integer k_1 with $1 \le k_1 < m$ such that $k_1p = x_1^2 + y_1^2 + z_1^2 + w_z^2$ for some integers x_1, y_1, z_1, w_1 .

Proof. First, let *m* and *p* be odd, with 1 < m < p, and $mp = x^2 + y^2 + z^2 + w^2$. If *m* is even, then *x*, *y*, *z*, *w* are either all odd, or all even, or two are odd and two are even. In each case, $x \equiv y \pmod{2}$ and $z \equiv w \pmod{2}$. Hence, as can be verified by multiplying out,

$$\frac{mp}{2} = \left(\frac{x-y}{2}\right)^2 + \left(\frac{x+y}{2}\right)^2 + \left(\frac{z-w}{2}\right)^2 + \left(\frac{z+w}{2}\right)^2.$$

If m/2 is even, we can repeat the process and express (m/4)p as a sum of four squares. Then, if m/4 is even then we can repeat the process and express (m/8)p as a sum of four squares. This process can be repeated until we have an odd multiple of p written as a sum of four squares.

Lemma 19.4

Lemma 19.4. If *m* and *p* are odd, with 1 < m < p, and $mp = x^2 + y^2 + z^2 + w^2$, then there is a positive integer k_1 with $1 \le k_1 < m$ such that $k_1p = x_1^2 + y_1^2 + z_1^2 + w_z^2$ for some integers x_1, y_1, z_1, w_1 .

Proof. First, let *m* and *p* be odd, with 1 < m < p, and $mp = x^2 + y^2 + z^2 + w^2$. If *m* is even, then *x*, *y*, *z*, *w* are either all odd, or all even, or two are odd and two are even. In each case, $x \equiv y \pmod{2}$ and $z \equiv w \pmod{2}$. Hence, as can be verified by multiplying out,

$$\frac{mp}{2} = \left(\frac{x-y}{2}\right)^2 + \left(\frac{x+y}{2}\right)^2 + \left(\frac{z-w}{2}\right)^2 + \left(\frac{z+w}{2}\right)^2$$

If m/2 is even, we can repeat the process and express (m/4)p as a sum of four squares. Then, if m/4 is even then we can repeat the process and express (m/8)p as a sum of four squares. This process can be repeated until we have an odd multiple of p written as a sum of four squares.

()

Lemma 19.4 (continued 1)

Proof (continued). So, without loss of generality, we can assume from the beginning that m is odd. Now choose A, B, C, D such that

 $A \equiv x \pmod{m}, \ B \equiv y \pmod{m}, \ C \equiv z \pmod{m}, \ D \equiv w \pmod{m}$

and -m/2 < A, B, C, D < m/2 (which can be done since *m* is odd). We then have $A^2 + B^2 + C^2 + D^2 \equiv x^2 + y^2 + z^2 + w^2 \pmod{m}$, or $A^2 + B^2 + C^2 + D^2 = km$ for some *k*. Since

$$km = A^{2} + B^{2} + C^{2} + D^{2} < m^{2}/4 + m^{2}/4 + m^{2}/4 + m^{2}/4 = m^{2},$$

then we must have 0 < k < m.

Lemma 19.4 (continued 1)

Proof (continued). So, without loss of generality, we can assume from the beginning that m is odd. Now choose A, B, C, D such that

 $A \equiv x \pmod{m}, \ B \equiv y \pmod{m}, \ C \equiv z \pmod{m}, \ D \equiv w \pmod{m}$

and -m/2 < A, B, C, D < m/2 (which can be done since *m* is odd). We then have $A^2 + B^2 + C^2 + D^2 \equiv x^2 + y^2 + z^2 + w^2 \pmod{m}$, or $A^2 + B^2 + C^2 + D^2 = km$ for some *k*. Since

$$km = A^2 + B^2 + C^2 + D^2 < m^2/4 + m^2/4 + m^2/4 + m^2/4 = m^2$$

then we must have 0 < k < m. (If k = 0, then A = B = C = D = 0 and $x \equiv y \equiv z \equiv w \equiv 0 \pmod{m}$, so $m^2 | x^2 + y^2 + z^2 + w^2$ and, since $x^2 + y^2 + z^2 + w^2 = mp$ by hypothesis, then $m^2 | mp$. But this implies m | p in contradiction to the hypothesis that 1 < m < p.)

Lemma 19.4 (continued 1)

Proof (continued). So, without loss of generality, we can assume from the beginning that m is odd. Now choose A, B, C, D such that

 $A \equiv x \pmod{m}, \ B \equiv y \pmod{m}, \ C \equiv z \pmod{m}, \ D \equiv w \pmod{m}$

and -m/2 < A, B, C, D < m/2 (which can be done since *m* is odd). We then have $A^2 + B^2 + C^2 + D^2 \equiv x^2 + y^2 + z^2 + w^2 \pmod{m}$, or $A^2 + B^2 + C^2 + D^2 = km$ for some *k*. Since

$$km = A^2 + B^2 + C^2 + D^2 < m^2/4 + m^2/4 + m^2/4 + m^2/4 = m^2$$

then we must have 0 < k < m. (If k = 0, then A = B = C = D = 0 and $x \equiv y \equiv z \equiv w \equiv 0 \pmod{m}$, so $m^2 | x^2 + y^2 + z^2 + w^2$ and, since $x^2 + y^2 + z^2 + w^2 = mp$ by hypothesis, then $m^2 | mp$. But this implies m | p in contradiction to the hypothesis that 1 < m < p.)

Lemma 19.4 (continued 2)

Proof (continued). Thus $m^2 kp = (mp)(km) = (x^2 + y^2 + z^2 + w^2)(A^2 + B^2 + C^2 + D^2)$, and by Lemma 19.1 we have

$$m^{2}kp = (xA + yB + zC + wD)^{2} + (xB - yA + zD - wC)^{2} + (xC - yD - zA + wB)^{2} + (xD + yC - zB - wA)^{2}.$$

Since modulo *m* we have $x \equiv A$, $y \equiv B$, $z \equiv C$, and $w \equiv D$, then each parenthetic term is divisible by *m*:

$$xA + yB + zC + wD \equiv x^{2} + y^{2} + z^{2} + w^{2} \equiv 0 \pmod{m},$$

$$xB - yA + zD - wC \equiv xy - yx + zw - wz \equiv 0 \pmod{m},$$

$$xC - yD - zA + wB \equiv xz - yw - zx + wy \equiv 0 \pmod{m},$$

$$xD + yC - zB - wA \equiv xw + yz - zy - wx \equiv 0 \pmod{m}.$$

Lemma 19.4 (continued 3)

Lemma 19.4. If *m* and *p* are odd, with 1 < m < p, and $mp = x^2 + y^2 + z^2 + w^2$, then there is a positive integer k_1 with $1 \le k_1 < m$ such that $k_1p = x_1^2 + y_1^2 + z_1^2 + w_z^2$ for some integers x_1, y_1, z_1, w_1 .

Proof (continued). So if we put

$$x_{1} = (xA + yB + zC + wD)/m, \quad y_{1} = (xB - yA + zD - wC)/m,$$

$$z_{1} = (xC - yD - zA + wB)/m, \quad w_{1} = (xD + yC - zB - wA)/m,$$

hen we have $x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{1}^{2} = (m^{2}kp)/m^{2} = kp.$ As shown above we ave $0 < k < m$, so with $k_{1} = k$ we have $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$ where $k_{1}p = x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{z}^{2}$

have 0 < k < m, so with $k_1 = k$ we have $k_1p = x_1^2 + y_1^2 + z_1^2 + w_z^2$ where $0 < k_1 < m$, as claimed.

tl h

Lemma 19.A. Every prime p can be written as the sum of four integer squares.

Proof. For p = 2, we have $p = 2 = 1^2 + 1^2 + 0^2 + 0^2$. So we can assume that p is an odd prime. By Lemma 19.2, there is positive integer m < p such that $mp = x^2 + y^2 + z^2 + w^2$ has a solution. Let m be a minimum such positive integer m.

Lemma 19.A. Every prime *p* can be written as the sum of four integer squares.

Proof. For p = 2, we have $p = 2 = 1^2 + 1^2 + 0^2 + 0^2$. So we can assume that p is an odd prime. By Lemma 19.2, there is positive integer m < p such that $mp = x^2 + y^2 + z^2 + w^2$ has a solution. Let m be a minimum such positive integer m. ASSUME m > 1. Then by Lemma 19.4, there is positive $k_1 < m$ such that $k_1p = x^2 + y^2 + z^2 + w^2$. But this CONTRADICTS the minimality of positive integer m. This contradictions shows that m = 1. (Dudley describes this in terms of Fermat's infinite descent.) That is, $p = x^2 + y^2 + z^2 + w^2$ has a solution, and hence p is the some of four integer squares, as claimed.

Lemma 19.A. Every prime *p* can be written as the sum of four integer squares.

Proof. For p = 2, we have $p = 2 = 1^2 + 1^2 + 0^2 + 0^2$. So we can assume that p is an odd prime. By Lemma 19.2, there is positive integer m < p such that $mp = x^2 + y^2 + z^2 + w^2$ has a solution. Let m be a minimum such positive integer m. ASSUME m > 1. Then by Lemma 19.4, there is positive $k_1 < m$ such that $k_1p = x^2 + y^2 + z^2 + w^2$. But this CONTRADICTS the minimality of positive integer m. This contradictions shows that m = 1. (Dudley describes this in terms of Fermat's infinite descent.) That is, $p = x^2 + y^2 + z^2 + w^2$ has a solution, and hence p is the some of four integer squares, as claimed.

Theorem 19.1. Lagrange's Four-Square Theorem. Every positive integer can be written as the sum of four integer squares.

Proof. Let *n* be a positive integer. Suppose that the prime-power decomposition of *n* is $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. By Lemma 19.A, each p_i can be written as the sum of four integer squares. By Lemma 19.1 (and induction), we then have that the $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ can be written as the sum of four integer squares, as claimed.

Theorem 19.1. Lagrange's Four-Square Theorem.

Every positive integer can be written as the sum of four integer squares.

Proof. Let *n* be a positive integer. Suppose that the prime-power decomposition of *n* is $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. By Lemma 19.A, each p_i can be written as the sum of four integer squares. By Lemma 19.1 (and induction), we then have that the $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ can be written as the sum of four integer squares, as claimed.