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Lemma 19.2

Lemma 19.2

Lemma 19.2. If p is an odd prime, then the equation 1 + x2 + y2 ≡ 0
(mod p) has a solution with 0 ≤ x < p/2 and 0 ≤ y < p/2.

Proof. The elements of S1 = {02, 12, 22, . . . , ((p − 1)/2)2} are distinct
(mod p) because by Lemma 11.1 the equation x2 ≡ a (modp) (where
p - a) has exactly two (least residue) solutions or no solution (so as a
ranges over the nonzero values of S1, the two solutions are 1 and p − 1, 2
and p − 2, . . . , (p − 1)/2 and (p1)/2, respectively). Hence, the elements
in the set S2 = {−1− 02,−1− 22, . . . ,−1− ((p − 1)/2)2} are distinct
(mod p).

Now the number of elements in S1 plus the number of elements
in S2 is ((p + 1)/2 + 1) + ((p − 1)/2 + 1) = p + 1. Since there are only p
least residues modulo p, we must have (by the Pigeonhole Principle) that
one of the numbers in S1 is congruent to one of the numbers in S2, say
x2 ∈ S1 and −1− y2 ∈ S2 where x2 ≡ −1− y2 (mod p) and
0 ≤ x ≤ (p − 1)/2, 0 ≤ y ≤ (p − 1)/2, as desired.
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Lemma 19.3

Lemma 19.3

Lemma 19.3. For every odd prime p, there is a positive integer m,
m < p, such that the equation mp = x2 + y2 + z2 + w2 has a solution.

Proof. By Lemma 19.2, there are x and y , with 0 ≤ x ≤ p/2 and
0 ≤ y ≤ p/2, such that mp = x2 + y2 + 12 + 02 for some positive m.
Then we have

mp = x2 + y2 + 1 < p2/4 + p2/4 + 1 < p2,

so that m < p, as claimed.
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Lemma 19.4

Lemma 19.4

Lemma 19.4. If m and p are odd, with 1 < m < p, and
mp = x2 + y2 + z2 + w2, then there is a positive integer k1 with
1 ≤ k1 < m such that k1p = x2

1 + y2
1 + z2

1 + w2
z for some integers

x1, y1, z1,w1.

Proof. First, let m and p be odd, with 1 < m < p, and
mp = x2 + y2 + z2 + w2. If m is even, then x , y , z ,w are either all odd, or
all even, or two are odd and two are even. In each case, x ≡ y (mod 2)
and z ≡ w (mod 2). Hence, as can be verified by multiplying out,

mp

2
=

(
x − y

2

)2

+

(
x + y

2

)2

+

(
z − w

2

)2

+

(
z + w

2

)2

.

If m/2 is even, we can repeat the process and express (m/4)p as a sum of
four squares. Then, if m/4 is even then we can repeat the process and
express (m/8)p as a sum of four squares. This process can be repeated
until we have an odd multiple of p written as a sum of four squares.
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Lemma 19.4

Lemma 19.4 (continued 1)

Proof (continued). So, without loss of generality, we can assume from
the beginning that m is odd. Now choose A,B,C ,D such that

A ≡ x (mod m), B ≡ y (mod m), C ≡ z (mod m), D ≡ w (mod m)

and −m/2 < A,B,C ,D < m/2 (which can be done since m is odd). We
then have A2 + B2 + C 2 + D2 ≡ x2 + y2 + z2 + w2 (mod m), or
A2 + B2 + C 2 + D2 = km for some k. Since

km = A2 + B2 + C 2 + D2 < m2/4 + m2/4 + m2/4 + m2/4 = m2,

then we must have 0 < k < m.

(If k = 0, then A = B = C = D = 0 and
x ≡ y ≡ z ≡ w ≡ 0 (mod m), so m2 | x2 + y2 + z2 + w2 and, since
x2 + y2 + z2 + w2 = mp by hypothesis, then m2 |mp. But this implies
m | p in contradiction to the hypothesis that 1 < m < p.)
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Lemma 19.4

Lemma 19.4 (continued 2)

Proof (continued). Thus
m2kp = (mp)(km) = (x2 + y2 + z2 + w2)(A2 + B2 + C 2 + D2), and by
Lemma 19.1 we have

m2kp = (xA + yB + zC + wD)2 + (xB − yA + zD − wC )2

+(xC − yD − zA + wB)2 + (xD + yC − zB − wA)2.

Since modulo m we have x ≡ A, y ≡ B, z ≡ C , and w ≡ D, then each
parenthetic term is divisible by m:

xA + yB + zC + wD ≡ x2 + y2 + z2 + w2 ≡ 0 (mod m),

xB − yA + zD − wC ≡ xy − yx + zw − wz ≡ 0 (mod m),

xC − yD − zA + wB ≡ xz − yw − zx + wy ≡ 0 (mod m),

xD + yC − zB − wA ≡ xw + yz − zy − wx ≡ 0 (mod m).
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Lemma 19.4

Lemma 19.4 (continued 3)

Lemma 19.4. If m and p are odd, with 1 < m < p, and
mp = x2 + y2 + z2 + w2, then there is a positive integer k1 with
1 ≤ k1 < m such that k1p = x2

1 + y2
1 + z2

1 + w2
z for some integers

x1, y1, z1,w1.

Proof (continued). So if we put

x1 = (xA + yB + zC + wD)/m, y1 = (xB − yA + zD − wC )/m,

z1 = (xC − yD − zA + wB)/m, w1 = (xD + yC − zB − wA)/m,

then we have x2
1 + y2

1 + z2
1 + w2

1 = (m2kp)/m2 = kp. As shown above we
have 0 < k < m, so with k1 = k we have k1p = x2

1 + y2
1 + z2

1 + w2
z where

0 < k1 < m, as claimed.
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Lemma 19.A

Lemma 19.A

Lemma 19.A. Every prime p can be written as the sum of four integer
squares.

Proof. For p = 2, we have p = 2 = 12 + 12 + 02 + 02. So we can assume
that p is an odd prime. By Lemma 19.2, there is positive integer m < p
such that mp = x2 + y2 + z2 + w2 has a solution. Let m be a minimum
such positive integer m.

ASSUME m > 1. Then by Lemma 19.4, there is
positive k1 < m such that k1p = x2 + y2 + z2 + w2. But this
CONTRADICTS the minimality of positive integer m. This contradictions
shows that m = 1. (Dudley describes this in terms of Fermat’s infinite
descent.) That is, p = x2 + y2 + z2 + w2 has a solution, and hence p is
the some of four integer squares, as claimed.
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Theorem 19.1

Theorem 19.1

Theorem 19.1. Lagrange’s Four-Square Theorem.
Every positive integer can be written as the sum of four integer squares.

Proof. Let n be a positive integer. Suppose that the prime-power
decomposition of n is n = pe1

1 pe2
2 · · · pek

k . By Lemma 19.A, each pi can be
written as the sum of four integer squares. By Lemma 19.1 (and
induction), we then have that the n = pe1

1 pe2
2 · · · pek

k can be written as the
sum of four integer squares, as claimed.
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