Elementary Number Theory

Section 2. Unique Factorization—Proofs of Theorems

Table of contents

(1) Lemma 2.1
(2) Lemma 2.2
(3) Theorem 2.1. Euclid's Theorem
(4) Lemma 2.3
(5) Lemma 2.4
(6) Lemma 2.5. Euclid's Lemma
(7) Lemma 2.6
(8) Lemma 2.7
(9) Theorem 2.2. The Unique Factorization Theorem or The Fundamental Theorem of Arithmetic

Lemma 2.1

Lemma 2.1. Every integer n, with $n>1$, is divisible by a prime.
Proof. Consider the set D of divisors of n which are greater than 1 and less than n. First, if D is empty then n is prime by definition and since it divides itself then n has a prime divisor.

Second, if D is nonempty, then the Least-Integer Principle implies that D has a least element d. If d had a divisor a greater than 1 and less than d, then a would also be a divisor of n (by the definition of divisiblity). But since d is the least such divisor of n, then no such a exists and hence d is prime. That is, d is a prime divisor of n.

So in both cases (namely, $D=\varnothing$ and $D \neq \varnothing$) we have a prime divisor of n and the claim follows.

Lemma 2.1

Lemma 2.1. Every integer n, with $n>1$, is divisible by a prime.
Proof. Consider the set D of divisors of n which are greater than 1 and less than n. First, if D is empty then n is prime by definition and since it divides itself then n has a prime divisor.

Second, if D is nonempty, then the Least-Integer Principle implies that D has a least element d. If d had a divisor a greater than 1 and less than d, then a would also be a divisor of n (by the definition of divisiblity). But since d is the least such divisor of n, then no such a exists and hence d is prime. That is, d is a prime divisor of n.

So in both cases (namely, $D=\varnothing$ and $D \neq \varnothing$) we have a prime divisor of n and the claim follows.

Lemma 2.2

Lemma 2.2. Every integer n, with $n>1$, can be written as a product of primes.

Proof. By Lemma 2.1, there is a prime p_{1} such that $p_{1} \mid n$. That is, $n=p_{1} n$ where $1 \leq n_{1}<n$. If $n_{1}=1$ then $n=p_{1}$ and we are done. If $n_{1}>1$ then from Lemma 2.1 again there is a prime p_{2} that divides n_{1}. That is, $n_{1}=p_{2} n_{2}$ where p_{2} is prime and $1 \leq n_{2}<n_{1}$. If $n_{2}=1$ then $n=p_{1} p_{2}$ and we are done. If $n_{2}>1$ then, similarly, by Lemma 2.1 we have $n_{2}=p_{3} n_{3}$ with p_{3} prime and $1 \leq n_{3}<n_{2}$. If $n_{3}=1$ then $n=p_{1} p_{2} p_{3}$ and we are done. Continuing we produce $n>n_{1}>n_{2}>n_{3}>\cdots$ and each n_{1} is positive, so the must end at some $n_{k}=1$ in which case $n=p_{1} p_{2} \cdots p_{k}$; that is, n is a product of primes.

Lemma 2.2

Lemma 2.2. Every integer n, with $n>1$, can be written as a product of primes.

Proof. By Lemma 2.1, there is a prime p_{1} such that $p_{1} \mid n$. That is, $n=p_{1} n$ where $1 \leq n_{1}<n$. If $n_{1}=1$ then $n=p_{1}$ and we are done. If $n_{1}>1$ then from Lemma 2.1 again there is a prime p_{2} that divides n_{1}. That is, $n_{1}=p_{2} n_{2}$ where p_{2} is prime and $1 \leq n_{2}<n_{1}$. If $n_{2}=1$ then $n=p_{1} p_{2}$ and we are done. If $n_{2}>1$ then, similarly, by Lemma 2.1 we have $n_{2}=p_{3} n_{3}$ with p_{3} prime and $1 \leq n_{3}<n_{2}$. If $n_{3}=1$ then $n=p_{1} p_{2} p_{3}$ and we are done. Continuing we produce $n>n_{1}>n_{2}>n_{3}>\cdots$ and each n_{1} is positive, so the must end at some $n_{k}=1$ in which case $n=p_{1} p_{2} \cdots p_{k}$; that is, n is a product of primes.

Theorem 2.1

Theorem 2.1. Euclid's Theorem.

There are infinitely many primes.

Proof. We give a proof by contradiction. ASSUME there are only finitely many primes, say $p_{1}, p_{2}, \ldots, p_{r}$. Consider the integer $n=p_{1} p_{2} \cdots p_{r}+1$. By Lemma 2.1, n is divisible by a prime and since we have assumed there are only finitely many primes, the divisor must be one of $p_{1}, p_{2}, \ldots, p_{r}$. Suppose that it is p_{k}.

Theorem 2.1

Theorem 2.1. Euclid's Theorem.

There are infinitely many primes.

Proof. We give a proof by contradiction. ASSUME there are only finitely many primes, say $p_{1}, p_{2}, \ldots, p_{r}$. Consider the integer $n=p_{1} p_{2} \cdots p_{r}+1$. By Lemma 2.1, n is divisible by a prime and since we have assumed there are only finitely many primes, the divisor must be one of $p_{1}, p_{2}, \ldots, p_{r}$. Suppose that it is p_{k}.

Then we have $p_{k} \mid n$ and $p \mid p_{1} p_{2} \cdots p_{r}$ and so, by Lemma 1.2, $p_{k} \mid\left(n-p_{1} p_{2} \cdots p_{r}\right)$ or, in other words, $p_{k} \mid 1$. But this is a CONTRADICTION since no prime divides 1 . So the assumption that there are finitely many primes must be false and hence there are infinitely many primes, as claimed.

Theorem 2.1

Theorem 2.1. Euclid's Theorem.

There are infinitely many primes.

Proof. We give a proof by contradiction. ASSUME there are only finitely many primes, say $p_{1}, p_{2}, \ldots, p_{r}$. Consider the integer $n=p_{1} p_{2} \cdots p_{r}+1$. By Lemma 2.1, n is divisible by a prime and since we have assumed there are only finitely many primes, the divisor must be one of $p_{1}, p_{2}, \ldots, p_{r}$. Suppose that it is p_{k}.

Then we have $p_{k} \mid n$ and $p \mid p_{1} p_{2} \cdots p_{r}$ and so, by Lemma 1.2, $p_{k} \mid\left(n-p_{1} p_{2} \cdots p_{r}\right)$ or, in other words, $p_{k} \mid 1$. But this is a CONTRADICTION since no prime divides 1 . So the assumption that there are finitely many primes must be false and hence there are infinitely many primes, as claimed.

Lemma 2.3

Lemma 2.3. If n is composite, then it has a divisor d such that $1<d \leq n^{1 / 2}$.

Proof. Since n is composite, then there are integers d_{1} and d_{2} such that $d_{1} d_{2}=n, 1<d_{1}<n$, and $1<d_{2}<n$. If $d_{1}>n 1 / 2$ and $d_{2}>n^{1 / 2}$ then $n=d_{1} d_{2}>n^{1 / 2} n^{1 / 2}=n$, a contradictions. So one of d_{1} or d_{2} must be less than or equal to $n^{1 / 2}$, as claimed.

Lemma 2.3

Lemma 2.3. If n is composite, then it has a divisor d such that $1<d \leq n^{1 / 2}$.

Proof. Since n is composite, then there are integers d_{1} and d_{2} such that $d_{1} d_{2}=n, 1<d_{1}<n$, and $1<d_{2}<n$. If $d_{1}>n 1 / 2$ and $d_{2}>n^{1 / 2}$ then $n=d_{1} d_{2}>n^{1 / 2} n^{1 / 2}=n$, a contradictions. So one of d_{1} or d_{2} must be less than or equal to $n^{1 / 2}$, as claimed.

Lemma 2.4

Lemma 2.4. If n is composite, then it has a prime divisor d such that $1<d \leq n^{1 / 2}$.

Proof. By Lemma 2.3, n has a divisor d such that $1<d \leq n^{1 / 2}$. By Lemma 2.1, d has a prime divisor p. So $1<p \leq d \leq n^{1 / 2}$ and the claim holds.

Lemma 2.4

Lemma 2.4. If n is composite, then it has a prime divisor d such that $1<d \leq n^{1 / 2}$.

Proof. By Lemma 2.3, n has a divisor d such that $1<d \leq n^{1 / 2}$. By Lemma 2.1, d has a prime divisor p. So $1<p \leq d \leq n^{1 / 2}$ and the claim holds.

Lemma 2.5

Lemma 2.5. Euclid's Lemma.

For p prime, if $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof. Since p is prime, its only positive divisors are 1 and p. So the greatest common divisor (p, a) must be either 1 or p; that is, either $(p, a)=1$ or $(p, a)=p$. If $(p, a)=p$ then $p \mid a$ and we are done. If $(p, a)=1$ then, since $p \mid a b$ by hypothesis, by Corollary 1.1 we have $p \mid b$. So either $p \mid a$ or $p \mid b$, as claimed.

Lemma 2.5

Lemma 2.5. Euclid's Lemma.

For p prime, if $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof. Since p is prime, its only positive divisors are 1 and p. So the greatest common divisor (p, a) must be either 1 or p; that is, either $(p, a)=1$ or $(p, a)=p$. If $(p, a)=p$ then $p \mid a$ and we are done. If $(p, a)=1$ then, since $p \mid a b$ by hypothesis, by Corollary 1.1 we have $p \mid b$. So either $p \mid a$ or $p \mid b$, as claimed.

Lemma 2.6

Lemma 2.6. For p prime, if $p \mid\left(a_{1} a_{2} \cdots a_{k}\right)$ then $p \mid a_{i}$ for some $i=1,2, \ldots, k$.

Proof. If $k=1$ then the result holds trivially. If $k=2$ the the result holds by Lemma 2.5. We now give a proof using Mathematical Induction with $k=1$ and $k=2$ as Base Cases. Suppose the claim holds for $k=r$; that is, suppose $p \mid\left(a_{1} a_{2} \cdots a_{r}\right)$ implies $p \mid a_{i}$ for some $i=1,2, \ldots, r$ (this is the Induction Hypothesis).

Lemma 2.6

Lemma 2.6. For p prime, if $p \mid\left(a_{1} a_{2} \cdots a_{k}\right)$ then $p \mid a_{i}$ for some $i=1,2, \ldots, k$.

Proof. If $k=1$ then the result holds trivially. If $k=2$ the the result holds by Lemma 2.5. We now give a proof using Mathematical Induction with $k=1$ and $k=2$ as Base Cases. Suppose the claim holds for $k=r$; that is, suppose $p \mid\left(a_{1} a_{2} \cdots a_{r}\right)$ implies $p \mid a_{i}$ for some $i=1,2, \ldots, r$ (this is the Induction Hypothesis).

Next, suppose that $p \mid\left(a_{1} a_{2} \cdots a_{r+1}\right)$. Then $p \mid\left(a_{1} a_{2} \cdots a_{r}\right) a_{r+1}$ and by Lemma 2.5 we have that either $p \mid\left(a_{1} a_{2} \cdots a_{r}\right)$ or $p \mid a_{r+1}$. If
$p \mid\left(a_{1} a_{2} \cdots a_{r}\right)$ then by the Induction Hypothesis we have that $p \mid a_{i}$ for
some $i=1,2, \ldots, r$. If $p \mid a_{r+1}$ then we have $p \mid a_{i}$ for $i=r+1$. Since one of these must be the case, then we have $p \mid a_{i}$ for some
$i=1,2, \ldots, r, r+1$. That is, the claim holds for $k=r+1$. So by
Mathematical Induction, the result holds for all positive integers k, as claimed.

Lemma 2.6

Lemma 2.6. For p prime, if $p \mid\left(a_{1} a_{2} \cdots a_{k}\right)$ then $p \mid a_{i}$ for some $i=1,2, \ldots, k$.

Proof. If $k=1$ then the result holds trivially. If $k=2$ the the result holds by Lemma 2.5. We now give a proof using Mathematical Induction with $k=1$ and $k=2$ as Base Cases. Suppose the claim holds for $k=r$; that is, suppose $p \mid\left(a_{1} a_{2} \cdots a_{r}\right)$ implies $p \mid a_{i}$ for some $i=1,2, \ldots, r$ (this is the Induction Hypothesis).

Next, suppose that $p \mid\left(a_{1} a_{2} \cdots a_{r+1}\right)$. Then $p \mid\left(a_{1} a_{2} \cdots a_{r}\right) a_{r+1}$ and by Lemma 2.5 we have that either $p \mid\left(a_{1} a_{2} \cdots a_{r}\right)$ or $p \mid a_{r+1}$. If $p \mid\left(a_{1} a_{2} \cdots a_{r}\right)$ then by the Induction Hypothesis we have that $p \mid a_{i}$ for some $i=1,2, \ldots, r$. If $p \mid a_{r+1}$ then we have $p \mid a_{i}$ for $i=r+1$. Since one of these must be the case, then we have $p \mid a_{i}$ for some $i=1,2, \ldots, r, r+1$. That is, the claim holds for $k=r+1$. So by Mathematical Induction, the result holds for all positive integers k, as claimed.

Lemma 2.7

Lemma 2.7. If $q_{1}, q_{2}, \ldots, q_{n}$ are primes and $p \mid\left(q_{1} q_{2} \cdots q_{n}\right)$ then $p=q_{k}$ for some $k=1,2, \ldots, n$.

Proof. Since $p \mid\left(q_{1} q_{2} \cdots q_{n}\right)$, then by Lemma 2.6 we have that $p \mid q_{k}$ for some $k=1,2, \ldots, n$. Since q_{k} is prime then the only positive divisors of q_{k} are 1 and q_{k} itself. Since p is prime then it is not 1 , so it must be that $p=q_{k}$ as claimed.

Lemma 2.7

Lemma 2.7. If $q_{1}, q_{2}, \ldots, q_{n}$ are primes and $p \mid\left(q_{1} q_{2} \cdots q_{n}\right)$ then $p=q_{k}$ for some $k=1,2, \ldots, n$.

Proof. Since $p \mid\left(q_{1} q_{2} \cdots q_{n}\right)$, then by Lemma 2.6 we have that $p \mid q_{k}$ for some $k=1,2, \ldots, n$. Since q_{k} is prime then the only positive divisors of q_{k} are 1 and q_{k} itself. Since p is prime then it is not 1 , so it must be that $p=q_{k}$ as claimed.

Theorem 2.2

Theorem 2.2. The Unique Factorization Theorem or The Fundamental Theorem of Arithmetic.
Any positive integer greater than 1 can be written as a product of primes in one and only one way.

Proof. First, we comment on what we mean by "unique." Two factorizations of a positive integer are considered the same if they involve the exact same factors, but the factors may appear in any order (because of the commutivity of multiplication).

Theorem 2.2

Theorem 2.2. The Unique Factorization Theorem or The Fundamental Theorem of Arithmetic.

Any positive integer greater than 1 can be written as a product of primes in one and only one way.

Proof. First, we comment on what we mean by "unique." Two factorizations of a positive integer are considered the same if they involve the exact same factors, but the factors may appear in any order (because of the commutivity of multiplication).

Let n be an integer greater than 1. By Lemma 2.2, n can be written as a product of primes. We just need to show that this product is unique in the sense described above. Consider two factorizations of n into products of primes:

$$
n=p_{1} p_{2} \cdots p_{m} \text { and } n=q_{1} q_{2} \cdots q_{r}
$$

where each p_{i} is prime for $i=1,2, \ldots, m$ and each q_{i} is prime for
$i=1,2$,

Theorem 2.2

Theorem 2.2. The Unique Factorization Theorem or The Fundamental Theorem of Arithmetic.

Any positive integer greater than 1 can be written as a product of primes in one and only one way.
Proof. First, we comment on what we mean by "unique." Two factorizations of a positive integer are considered the same if they involve the exact same factors, but the factors may appear in any order (because of the commutivity of multiplication).

Let n be an integer greater than 1. By Lemma 2.2, n can be written as a product of primes. We just need to show that this product is unique in the sense described above. Consider two factorizations of n into products of primes:

$$
n=p_{1} p_{2} \cdots p_{m} \text { and } n=q_{1} q_{2} \cdots q_{r}
$$

where each p_{i} is prime for $i=1,2, \ldots, m$ and each q_{i} is prime for $i=1,2, \ldots, r$.

Theorem 2.2 (continued 1)

Theorem 2.2. The Unique Factorization Theorem or The Fundamental Theorem of Arithmetic.
Any positive integer greater than 1 can be written as a product of primes in one and only one way.

Proof. We want to show that the same primes appear in each product and appear the same number of times; that is, we want to show that the integers $p_{1}, p_{2}, \ldots, p_{m}$ is a rearrangement of the integers $q_{1}, q_{2}, \ldots, q_{r}$ (notice that we will also need to show $m=r$).

Theorem 2.2 (continued 1)

Theorem 2.2. The Unique Factorization Theorem or The Fundamental Theorem of Arithmetic.

Any positive integer greater than 1 can be written as a product of primes in one and only one way.

Proof. We want to show that the same primes appear in each product and appear the same number of times; that is, we want to show that the integers $p_{1}, p_{2}, \ldots, p_{m}$ is a rearrangement of the integers $q_{1}, q_{2}, \ldots, q_{r}$ (notice that we will also need to show $m=r$).

Since $p_{1} \mid n$ then $p_{1} \mid\left(q_{1} q_{2} \cdots q_{r}\right)$. Lemma 2.7 then implies that $p_{1}=q_{i}$ for some $i=1,2, \ldots, r$. Then dividing out $p_{1}=q_{i}$ in the equation $p_{1} p_{2} \cdots p_{m}=q_{1} q_{2} \cdots q_{r}$ we get $p_{2} p_{3} \cdots p_{m}=q_{1} q_{2} \cdots q_{i-1} q_{i+1} q_{i+2} \cdots q_{r}$. Similarly, p_{2} divides $p_{2} p_{3} \cdots p_{m}=q_{1} q_{2} \cdots q_{i-1} q_{i+1} q_{i+2} \cdots q_{r}$ and again by Lema 2.7 we have $p_{2}=q_{j}$ for some $j=1,2, \ldots, i-1, i+1, i+2, \ldots, r$.

Theorem 2.2 (continued 2)

Theorem 2.2. The Unique Factorization Theorem or The Fundamental Theorem of Arithmetic.
Any positive integer greater than 1 can be written as a product of primes in one and only one way.

Proof. Dividing out the common factor gives

$$
p_{3} p_{4} \cdots p_{m}=q_{1} q_{2} \cdots q_{i-1} q_{i+1} q_{i+2} \cdots q_{j-1} q_{j+1} q_{j+2} \cdots q_{r}
$$

(where, for the sake of illustration, we take $i<j$). We continue this process of dividing out prime factors. We cannot run out of q 's before all the p 's are gone since this would give an equality between 1 and a product of primes, which cannot happen. Similarly, we cannot divide out all the p 's before all the q 's are gone. That is, we must have the same number of p 's and q 's; in other words, $m=r$. So the p_{i} 's can be rearranged to give (correspondingly) the q_{j} 's. Hence the prime factors in $p_{1} p_{2} \cdots p_{m}$ and the prime factors in $q_{1} q_{2} \cdots q_{r}$ are exactly the same. That is, the prime factorization of n is unique, as claimed.

Theorem 2.2 (continued 2)

Theorem 2.2. The Unique Factorization Theorem or The

 Fundamental Theorem of Arithmetic.Any positive integer greater than 1 can be written as a product of primes in one and only one way.

Proof. Dividing out the common factor gives

$$
p_{3} p_{4} \cdots p_{m}=q_{1} q_{2} \cdots q_{i-1} q_{i+1} q_{i+2} \cdots q_{j-1} q_{j+1} q_{j+2} \cdots q_{r}
$$

(where, for the sake of illustration, we take $i<j$). We continue this process of dividing out prime factors. We cannot run out of q 's before all the p 's are gone since this would give an equality between 1 and a product of primes, which cannot happen. Similarly, we cannot divide out all the p 's before all the q 's are gone. That is, we must have the same number of p 's and q 's; in other words, $m=r$. So the p_{i} 's can be rearranged to give (correspondingly) the q_{j} 's. Hence the prime factors in $p_{1} p_{2} \cdots p_{m}$ and the prime factors in $q_{1} q_{2} \cdots q_{r}$ are exactly the same. That is, the prime factorization of n is unique, as claimed.

