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Lemma 2.1

Lemma 2.1

Lemma 2.1. Every integer n, with n > 1, is divisible by a prime.

Proof. Consider the set D of divisors of n which are greater than 1 and
less than n. First, if D is empty then n is prime by definition and since it
divides itself then n has a prime divisor.

Second, if D is nonempty, then the Least-Integer Principle implies that D
has a least element d . If d had a divisor a greater than 1 and less than d ,
then a would also be a divisor of n (by the definition of divisiblity). But
since d is the least such divisor of n, then no such a exists and hence d is
prime. That is, d is a prime divisor of n.

So in both cases (namely, D = ∅ and D 6= ∅) we have a prime divisor of
n and the claim follows.
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Lemma 2.2

Lemma 2.2

Lemma 2.2. Every integer n, with n > 1, can be written as a product of
primes.

Proof. By Lemma 2.1, there is a prime p1 such that p1 | n. That is,
n = p1n where 1 ≤ n1 < n. If n1 = 1 then n = p1 and we are done. If
n1 > 1 then from Lemma 2.1 again there is a prime p2 that divides n1.
That is, n1 = p2n2 where p2 is prime and 1 ≤ n2 < n1. If n2 = 1 then
n = p1p2 and we are done. If n2 > 1 then, similarly, by Lemma 2.1 we
have n2 = p3n3 with p3 prime and 1 ≤ n3 < n2. If n3 = 1 then n = p1p2p3

and we are done. Continuing we produce n > n1 > n2 > n3 > · · · and
each n1 is positive, so the must end at some nk = 1 in which case
n = p1p2 · · · pk ; that is, n is a product of primes.
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Theorem 2.1. Euclid’s Theorem

Theorem 2.1

Theorem 2.1. Euclid’s Theorem.
There are infinitely many primes.

Proof. We give a proof by contradiction. ASSUME there are only finitely
many primes, say p1, p2, . . . , pr . Consider the integer n = p1p2 · · · pr + 1.
By Lemma 2.1, n is divisible by a prime and since we have assumed there
are only finitely many primes, the divisor must be one of p1, p2, . . . , pr .
Suppose that it is pk .

Then we have pk | n and p | p1p2 · · · pr and so, by Lemma 1.2,
pk | (n − p1p2 · · · pr ) or, in other words, pk | 1. But this is a
CONTRADICTION since no prime divides 1. So the assumption that there
are finitely many primes must be false and hence there are infinitely many
primes, as claimed.
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Lemma 2.3

Lemma 2.3

Lemma 2.3. If n is composite, then it has a divisor d such that
1 < d ≤ n1/2.

Proof. Since n is composite, then there are integers d1 and d2 such that
d1d2 = n, 1 < d1 < n, and 1 < d2 < n. If d1 > n1/2 and d2 > n1/2 then
n = d1d2 > n1/2n1/2 = n, a contradictions. So one of d1 or d2 must be
less than or equal to n1/2, as claimed.
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Lemma 2.4

Lemma 2.4

Lemma 2.4. If n is composite, then it has a prime divisor d such that
1 < d ≤ n1/2.

Proof. By Lemma 2.3, n has a divisor d such that 1 < d ≤ n1/2. By
Lemma 2.1, d has a prime divisor p. So 1 < p ≤ d ≤ n1/2 and the claim
holds.
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Lemma 2.5. Euclid’s Lemma

Lemma 2.5

Lemma 2.5. Euclid’s Lemma.
For p prime, if p | ab then either p | a or p | b.

Proof. Since p is prime, its only positive divisors are 1 and p. So the
greatest common divisor (p, a) must be either 1 or p; that is, either
(p, a) = 1 or (p, a) = p. If (p, a) = p then p | a and we are done. If
(p, a) = 1 then, since p | ab by hypothesis, by Corollary 1.1 we have p | b.
So either p | a or p | b, as claimed.
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Lemma 2.6

Lemma 2.6

Lemma 2.6. For p prime, if p | (a1a2 · · · ak) then p | ai for some
i = 1, 2, . . . , k.

Proof. If k = 1 then the result holds trivially. If k = 2 the the result holds
by Lemma 2.5. We now give a proof using Mathematical Induction with
k = 1 and k = 2 as Base Cases. Suppose the claim holds for k = r ; that
is, suppose p | (a1a2 · · · ar ) implies p | ai for some i = 1, 2, . . . , r (this is the
Induction Hypothesis).

Next, suppose that p | (a1a2 · · · ar+1). Then p | (a1a2 · · · ar )ar+1 and by
Lemma 2.5 we have that either p | (a1a2 · · · ar ) or p | ar+1. If
p | (a1a2 · · · ar ) then by the Induction Hypothesis we have that p | ai for
some i = 1, 2, . . . , r . If p | ar+1 then we have p | ai for i = r + 1. Since one
of these must be the case, then we have p | ai for some
i = 1, 2, . . . , r , r + 1. That is, the claim holds for k = r + 1. So by
Mathematical Induction, the result holds for all positive integers k, as
claimed.
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Lemma 2.7

Lemma 2.7

Lemma 2.7. If q1, q2, . . . , qn are primes and p | (q1q2 · · · qn) then p = qk

for some k = 1, 2, . . . , n.

Proof. Since p |(q1q2 · · · qn), then by Lemma 2.6 we have that p | qk for
some k = 1, 2, . . . , n. Since qk is prime then the only positive divisors of
qk are 1 and qk itself. Since p is prime then it is not 1, so it must be that
p = qk as claimed.

() Elementary Number Theory July 4, 2021 10 / 13



Lemma 2.7

Lemma 2.7

Lemma 2.7. If q1, q2, . . . , qn are primes and p | (q1q2 · · · qn) then p = qk

for some k = 1, 2, . . . , n.

Proof. Since p |(q1q2 · · · qn), then by Lemma 2.6 we have that p | qk for
some k = 1, 2, . . . , n. Since qk is prime then the only positive divisors of
qk are 1 and qk itself. Since p is prime then it is not 1, so it must be that
p = qk as claimed.

() Elementary Number Theory July 4, 2021 10 / 13



Theorem 2.2. The Unique Factorization Theorem or The
Fundamental Theorem of Arithmetic

Theorem 2.2

Theorem 2.2. The Unique Factorization Theorem or The
Fundamental Theorem of Arithmetic.
Any positive integer greater than 1 can be written as a product of primes
in one and only one way.

Proof. First, we comment on what we mean by “unique.” Two
factorizations of a positive integer are considered the same if they involve
the exact same factors, but the factors may appear in any order (because
of the commutivity of multiplication).

Let n be an integer greater than 1. By Lemma 2.2, n can be written as a
product of primes. We just need to show that this product is unique in the
sense described above. Consider two factorizations of n into products of
primes:

n = p1p2 · · · pm and n = q1q2 · · · qr ,

where each pi is prime for i = 1, 2, . . . ,m and each qi is prime for
i = 1, 2, . . . , r .
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Theorem 2.2. The Unique Factorization Theorem or The
Fundamental Theorem of Arithmetic

Theorem 2.2 (continued 1)

Theorem 2.2. The Unique Factorization Theorem or The
Fundamental Theorem of Arithmetic.
Any positive integer greater than 1 can be written as a product of primes
in one and only one way.

Proof. We want to show that the same primes appear in each product
and appear the same number of times; that is, we want to show that the
integers p1, p2, . . . , pm is a rearrangement of the integers q1, q2, . . . , qr

(notice that we will also need to show m = r).

Since p1 | n then p1 | (q1q2 · · · qr ). Lemma 2.7 then implies that p1 = qi

for some i = 1, 2, . . . , r . Then dividing out p1 = qi in the equation
p1p2 · · · pm = q1q2 · · · qr we get p2p3 · · · pm = q1q2 · · · qi−1qi+1qi+2 · · · qr .
Similarly, p2 divides p2p3 · · · pm = q1q2 · · · qi−1qi+1qi+2 · · · qr and again by
Lema 2.7 we have p2 = qj for some j = 1, 2, . . . , i − 1, i + 1, i + 2, . . . , r .
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Theorem 2.2. The Unique Factorization Theorem or The
Fundamental Theorem of Arithmetic

Theorem 2.2 (continued 2)

Theorem 2.2. The Unique Factorization Theorem or The
Fundamental Theorem of Arithmetic.
Any positive integer greater than 1 can be written as a product of primes
in one and only one way.

Proof. Dividing out the common factor gives

p3p4 · · · pm = q1q2 · · · qi−1qi+1qi+2 · · · qj−1qj+1qj+2 · · · qr

(where, for the sake of illustration, we take i < j). We continue this
process of dividing out prime factors. We cannot run out of q’s before all
the p’s are gone since this would give an equality between 1 and a product
of primes, which cannot happen. Similarly, we cannot divide out all the p’s
before all the q’s are gone. That is, we must have the same number of p’s
and q’s; in other words, m = r . So the pi ’s can be rearranged to give
(correspondingly) the qj ’s. Hence the prime factors in p1p2 · · · pm and the
prime factors in q1q2 · · · qr are exactly the same. That is, the prime
factorization of n is unique, as claimed.
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