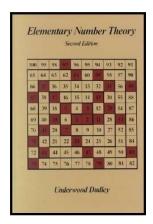
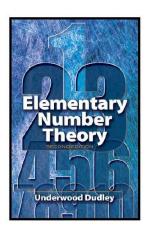
Elementary Number Theory

Section 20. $x^2 - Ny^2 = 1$ —Proofs of Theorems





U

Elementary Number Theory

March 29, 2022

1 / 8

()

Elementary Number Theory

March 29, 2022

2 / 0

Lemma 20.3

Lemma 20.3

Lemma 20.3. If α gives a solution of $x^2 - Ny^2 = 1$, then so does $1/\alpha$.

Proof. Let $\alpha = r + s\sqrt{N}$. Then we know that $r^2 - Ns^2 = 1$ by the definition of "gives a solution." Next,

$$\frac{1}{\alpha} = \frac{1}{r + s\sqrt{N}} \frac{r - s\sqrt{N}}{r - s\sqrt{N}} = \frac{r - s\sqrt{N}}{r^2 - Ns^2} = r - s\sqrt{N},$$

because $r^2 - Ns^2 = 1$. So $1/\alpha$ also gives a solution of $x^2 - Ny^2 = 1$, by the definition of "gives a solution," as claimed.

Lemma 20.1

Lemma 20.1. If N > 0 is not a square, then $x + y\sqrt{N} = r + s\sqrt{N}$ if and only if x = r and y = s.

Proof. If x=r and y=s, then $x+y\sqrt{N}=r+s\sqrt{N}$. For the converse, suppose that $x+y\sqrt{N}=r+s\sqrt{N}$. ASSUME $y\neq s$. Then $\sqrt{N}=\frac{x-r}{s-y}$ is a rational number. But N is not a square, so \sqrt{N} is irrational by Note 20.B, a CONTRADICTION. So the assumption that $y\neq s$ is false, and we must have y=s. It then follows that x=r, as claimed.

.

Lemma 20.4

Lemma 20.4. Let α and β give solutions of $x^2 - Ny^2 = 1$, then so does $\alpha\beta$.

Proof. By the definition of "give a solution," we know that $\alpha = a + b\sqrt{N}$ and $\beta = c + d\sqrt{N}$ for some a, b, c, d with $a^2 - Nb^2 = 1$ and $c^2 - Nd^2 = 1$. Then (by FOIL)

$$\alpha\beta = (a + b\sqrt{N})(c + d\sqrt{N}) = (ac + Nbd) + (ad + bc)\sqrt{N},$$

and from Lemma 20.2,

$$(ac + Nbd)^2 - N(ad + bc)^2 = (a^2 - Nb^2)(c^2 - Nd^2)$$
 by Lemma 20.2
= $(1)(1) = 1$ since α and β give solutions.

So by definition, $\alpha\beta$ gives a solution, as claimed.

Elementary Number Theory March 29, 2022 5 / 8

Lemma 20.5

Lemma 20.5

Lemma 20.5. If α gives a solution of $x^2 - Ny^2 = 1$, then so does α^k for any integer k, positive, negative, or zero.

Proof. If α gives a solution, then from Lemma 20.4 and induction α^k gives a solution for all integers $k \ge 1$. From Lemma 20.3, $1/\alpha = \alpha^{-1}$ gives a solution and, again, by Lemma 20.4 and induction $(\alpha^{-1})^k = \alpha^{-k}$ gives a solution for all integers $-k \le -1$. Finally, with k = 0 we have that $\alpha^0 = 1$ and this gives a solution (namely, the trivial solution x = 1 and y = 0). That is, α^k gives a solution for all integers k, as claimed.

Elementary Number Theory

March 29, 2022 6

Theorem 20.

Theorem 20.1

Theorem 20.1. If θ is the generator for $x^n - Ny^2 = 1$, then all nontrivial solutions of the equation with x and y positive are given by θ^k , $k = 1, 2, \ldots$ That is, if x = r, y = s is a solution then $\alpha = r + s\sqrt{N}$ is some positive power of θ .

Proof. Let x=r and y=s be any nontrivial solution of $x^2-Ny^2=1$ with r>0 and s>0. Let $\alpha=r+s\sqrt{N}$. We have $\alpha\geq\theta$ by the choice of generator θ . So there is some positive integer k such that $\theta^k\leq\alpha<\theta^{k+1}$. Thus $1\leq\theta^{-k}\alpha<\theta$. By Lemma 20.5, θ^{-k} gives a solution of $x^2-Ny^2=1$ and then, by Lemma 20.4, $\theta^{-k}\alpha$ also gives a solution. But $1\leq\theta^{-k}\alpha<\theta$ and θ is the smallest nontrivial solution, so it must be that $1=\theta^{-k}\alpha$, or $\alpha=\theta^k$. That is, α is an arbitrary real number that gives solutions and $\alpha=\theta^k$ for some k, as claimed.

Lemma 20.6

Lemma 20.6. Suppose that a,b,c,d are nonnegative and that $\alpha=a+b\sqrt{N}$ and $\beta=c+d\sqrt{N}$ give solutions of $x^2-Ny^2=1$. Then $\alpha<\beta$ if and only if a< c.

Proof. First, suppose a < c. Then $a^2 < c^2$. Since $\alpha = a + b\sqrt{N}$ and $\beta = c + d\sqrt{N}$ give solutions, then by the definition of "give solutions" we have $a^2 = 1 + Nb^2$ and $c^2 = 1 + Nd^2$. Hence, $Nb^2 < Nd^2$. Because none of b, d, N are negative, then b < d. Therefore, $\alpha = a + b\sqrt{N} < c + d\sqrt{N} = \beta$, as claimed.

Second, suppose $\alpha < \beta$. ASSUME $a \ge c$. Then $a^2 \ge c^2$. As above, this implies $Nb^2 \ge Nd^2$, or $b^2 \ge d^2$. But then $\alpha = a + b\sqrt{N} \ge c + d\sqrt{N} = \beta$, a CONTRADICTION. So the assumption that $a \ge c$ is false, and we must have a < c, as claimed.

Elementary Number Theory March 29, 2022 7 / 8