Elementary Number Theory

Section 20. $x^{2}-N y^{2}=1$ —Proofs of Theorems

Table of contents

(1) Lemma 20.1
(2) Lemma 20.3
(3) Lemma 20.4
(4) Lemma 20.5
(5) Lemma 20.6
(6) Theorem 20.1

Lemma 20.1

Lemma 20.1. If $N>0$ is not a square, then $x+y \sqrt{N}=r+s \sqrt{N}$ if and only if $x=r$ and $y=s$.

Proof. If $x=r$ and $y=s$, then $x+y \sqrt{N}=r+s \sqrt{N}$. For the converse, suppose that $x+y \sqrt{N}=r+s \sqrt{N}$. ASSUME $y \neq s$. Then $\sqrt{N}=\frac{x-r}{s-y}$ is a rational number. But N is not a square, so \sqrt{N} is irrational by Note 20.B, a CONTRADICTION. So the assumption that $y \neq s$ is false, and we must have $y=s$. It then follows that $x=r$, as claimed.

Lemma 20.1

Lemma 20.1. If $N>0$ is not a square, then $x+y \sqrt{N}=r+s \sqrt{N}$ if and only if $x=r$ and $y=s$.

Proof. If $x=r$ and $y=s$, then $x+y \sqrt{N}=r+s \sqrt{N}$. For the converse, suppose that $x+y \sqrt{N}=r+s \sqrt{N}$. ASSUME $y \neq s$. Then $\sqrt{N}=\frac{x-r}{s-y}$ is a rational number. But N is not a square, so \sqrt{N} is irrational by Note 20.B, a CONTRADICTION. So the assumption that $y \neq s$ is false, and we must have $y=s$. It then follows that $x=r$, as claimed.

Lemma 20.3

Lemma 20.3. If α gives a solution of $x^{2}-N y^{2}=1$, then so does $1 / \alpha$.
Proof. Let $\alpha=r+s \sqrt{N}$. Then we know that $r^{2}-N s^{2}=1$ by the definition of "gives a solution." Next,

$$
\frac{1}{\alpha}=\frac{1}{r+s \sqrt{N}} \frac{r-s \sqrt{N}}{r-s \sqrt{N}}=\frac{r-s \sqrt{N}}{r^{2}-N s^{2}}=r-s \sqrt{N},
$$

because $r^{2}-N s^{2}=1$. So $1 / \alpha$ also gives a solution of $x^{2}-N y^{2}=1$, by the definition of "gives a solution," as claimed.

Lemma 20.3

Lemma 20.3. If α gives a solution of $x^{2}-N y^{2}=1$, then so does $1 / \alpha$.
Proof. Let $\alpha=r+s \sqrt{N}$. Then we know that $r^{2}-N s^{2}=1$ by the definition of "gives a solution." Next,

$$
\frac{1}{\alpha}=\frac{1}{r+s \sqrt{N}} \frac{r-s \sqrt{N}}{r-s \sqrt{N}}=\frac{r-s \sqrt{N}}{r^{2}-N s^{2}}=r-s \sqrt{N}
$$

because $r^{2}-N s^{2}=1$. So $1 / \alpha$ also gives a solution of $x^{2}-N y^{2}=1$, by the definition of "gives a solution," as claimed.

Lemma 20.4

Lemma 20.4. Let α and β give solutions of $x^{2}-N y^{2}=1$, then so does $\alpha \beta$.

Proof. By the definition of "give a solution," we know that $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ for some a, b, c, d with $a^{2}-N b^{2}=1$ and $c^{2}-N d^{2}=1$. Then (by FOIL)

$$
\alpha \beta=(a+b \sqrt{N})(c+d \sqrt{N})=(a c+N b d)+(a d+b c) \sqrt{N},
$$

and from Lemma 20.2,

$$
\begin{aligned}
(a c+N b d)^{2}-N(a d+b c)^{2} & =\left(a^{2}-N b^{2}\right)\left(c^{2}-N d^{2}\right) \text { by Lemma } 20.2 \\
& =(1)(1)=1 \text { since } \alpha \text { and } \beta \text { give solutions. }
\end{aligned}
$$

So by definition, $\alpha \beta$ gives a solution, as claimed.

Lemma 20.4

Lemma 20.4. Let α and β give solutions of $x^{2}-N y^{2}=1$, then so does $\alpha \beta$.

Proof. By the definition of "give a solution," we know that $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ for some a, b, c, d with $a^{2}-N b^{2}=1$ and $c^{2}-N d^{2}=1$. Then (by FOIL)

$$
\alpha \beta=(a+b \sqrt{N})(c+d \sqrt{N})=(a c+N b d)+(a d+b c) \sqrt{N},
$$

and from Lemma 20.2,

$$
\begin{aligned}
(a c+N b d)^{2}-N(a d+b c)^{2} & =\left(a^{2}-N b^{2}\right)\left(c^{2}-N d^{2}\right) \text { by Lemma } 20.2 \\
& =(1)(1)=1 \text { since } \alpha \text { and } \beta \text { give solutions. }
\end{aligned}
$$

So by definition, $\alpha \beta$ gives a solution, as claimed.

Lemma 20.5

Lemma 20.5. If α gives a solution of $x^{2}-N y^{2}=1$, then so does α^{k} for any integer k, positive, negative, or zero.

Proof. If α gives a solution, then from Lemma 20.4 and induction α^{k} gives a solution for all integers $k>\geq 1$. From Lemma 20.3, $1 / \alpha=\alpha^{-1}$ gives a solution and, again, by Lemma 20.4 and induction $\left(\alpha^{-1}\right)^{k}=\alpha^{-k}$ gives a solution for all integers $-k \leq-1$. Finally, with $k=0$ we have that $\alpha^{0}=1$ and this gives a solution (namely, the trivial solution $x=1$ and $y=0$). That is, α^{k} gives a solution for all integers k, as claimed.

Lemma 20.5

Lemma 20.5. If α gives a solution of $x^{2}-N y^{2}=1$, then so does α^{k} for any integer k, positive, negative, or zero.

Proof. If α gives a solution, then from Lemma 20.4 and induction α^{k} gives a solution for all integers $k>\geq 1$. From Lemma 20.3, $1 / \alpha=\alpha^{-1}$ gives a solution and, again, by Lemma 20.4 and induction $\left(\alpha^{-1}\right)^{k}=\alpha^{-k}$ gives a solution for all integers $-k \leq-1$. Finally, with $k=0$ we have that $\alpha^{0}=1$ and this gives a solution (namely, the trivial solution $x=1$ and $y=0$). That is, α^{k} gives a solution for all integers k, as claimed.

Lemma 20.6

Lemma 20.6. Suppose that a, b, c, d are nonnegative and that $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ give solutions of $x^{2}-N y^{2}=1$. Then $\alpha<\beta$ if and only if $a<c$.

Proof. First, suppose $a<c$. Then $a^{2}<c^{2}$. Since $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ give solutions, then by the definition of "give solutions" we have $a^{2}=1+N b^{2}$ and $c^{2}=1+N d^{2}$. Hence, $N b^{2}<N d^{2}$. Because none of b, d, N are negative, then $b<d$. Therefore, $\alpha=a+b \sqrt{N}<c+d \sqrt{N}=\beta$, as claimed.

Lemma 20.6

Lemma 20.6. Suppose that a, b, c, d are nonnegative and that $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ give solutions of $x^{2}-N y^{2}=1$. Then $\alpha<\beta$ if and only if $a<c$.

Proof. First, suppose $a<c$. Then $a^{2}<c^{2}$. Since $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ give solutions, then by the definition of "give solutions" we have $a^{2}=1+N b^{2}$ and $c^{2}=1+N d^{2}$. Hence, $N b^{2}<N d^{2}$. Because none of b, d, N are negative, then $b<d$. Therefore, $\alpha=a+b \sqrt{N}<c+d \sqrt{N}=\beta$, as claimed.

Second, suppose $\alpha<\beta$. ASSUME $a \geq c$. Then $a^{2} \geq c^{2}$. As above, this implies $N b^{2} \geq N d^{2}$, or $b^{2} \geq d^{2}$. But then $\alpha=a+b \sqrt{N} \geq c+d \sqrt{N}=\beta$, a CONTRADICTION. So the assumption that $a \geq c$ is false, and we must have $a<c$, as claimed.

Lemma 20.6

Lemma 20.6. Suppose that a, b, c, d are nonnegative and that $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ give solutions of $x^{2}-N y^{2}=1$. Then $\alpha<\beta$ if and only if $a<c$.

Proof. First, suppose $a<c$. Then $a^{2}<c^{2}$. Since $\alpha=a+b \sqrt{N}$ and $\beta=c+d \sqrt{N}$ give solutions, then by the definition of "give solutions" we have $a^{2}=1+N b^{2}$ and $c^{2}=1+N d^{2}$. Hence, $N b^{2}<N d^{2}$. Because none of b, d, N are negative, then $b<d$. Therefore, $\alpha=a+b \sqrt{N}<c+d \sqrt{N}=\beta$, as claimed.

Second, suppose $\alpha<\beta$. ASSUME $a \geq c$. Then $a^{2} \geq c^{2}$. As above, this implies $N b^{2} \geq N d^{2}$, or $b^{2} \geq d^{2}$. But then $\alpha=a+b \sqrt{N} \geq c+d \sqrt{N}=\beta$, a CONTRADICTION. So the assumption that $a \geq c$ is false, and we must have $a<c$, as claimed.

Theorem 20.1

Theorem 20.1. If θ is the generator for $x^{n}-N y^{2}=1$, then all nontrivial solutions of the equation with x and y positive are given by θ^{k}, $k=1,2, \ldots$. That is, if $x=r, y=s$ is a solution then $\alpha=r+s \sqrt{N}$ is some positive power of θ.

Proof. Let $x=r$ and $y=s$ be any nontrivial solution of $x^{2}-N y^{2}=1$ with $r>0$ and $s>0$. Let $\alpha=r+s \sqrt{N}$. We have $\alpha \geq \theta$ by the choice of generator θ. So there is some positive integer k such that $\theta^{k} \leq \alpha<\theta^{k+1}$. Thus $1 \leq \theta^{-k} \alpha<\theta$. By Lemma 20.5, θ^{-k} gives a solution of $x^{2}-N y^{2}=1$ and then, by Lemma 20.4, $\theta^{-k} \alpha$ also gives a solution. But $1 \leq \theta^{-k} \alpha<\theta$ and θ is the smallest nontrivial solution, so it must be that $1=\theta^{-k} \alpha$, or $\alpha=\theta^{k}$. That is, α is an arbitrary real number that gives solutions and $\alpha=\theta^{k}$ for some k, as claimed.

Theorem 20.1

Theorem 20.1. If θ is the generator for $x^{n}-N y^{2}=1$, then all nontrivial solutions of the equation with x and y positive are given by θ^{k}, $k=1,2, \ldots$. That is, if $x=r, y=s$ is a solution then $\alpha=r+s \sqrt{N}$ is some positive power of θ.

Proof. Let $x=r$ and $y=s$ be any nontrivial solution of $x^{2}-N y^{2}=1$ with $r>0$ and $s>0$. Let $\alpha=r+s \sqrt{N}$. We have $\alpha \geq \theta$ by the choice of generator θ. So there is some positive integer k such that $\theta^{k} \leq \alpha<\theta^{k+1}$. Thus $1 \leq \theta^{-k} \alpha<\theta$. By Lemma 20.5, θ^{-k} gives a solution of $x^{2}-N y^{2}=1$ and then, by Lemma 20.4, $\theta^{-k} \alpha$ also gives a solution. But $1 \leq \theta^{-k} \alpha<\theta$ and θ is the smallest nontrivial solution, so it must be that $1=\theta^{-k} \alpha$, or $\alpha=\theta^{k}$. That is, α is an arbitrary real number that gives solutions and $\alpha=\theta^{k}$ for some k, as claimed.

