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Section 21. Bounds for 7(x)—Proofs of Theorems
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Lemma 21.2

Lemma 21.2

2
Lemma 21.2 The highest power of p that divides ( n”) is

[2n/p] — 2[n/p] + 2[n/p?] — 2[n/p*] + [2n/p’] — 2[n/pP’] + - .

2 2n)!
Proof. Since (nn) = En7;2' then we can apply Lemma 21.1 to the

numerator and (twice) to the denominator. By Lemma 21.1, the
numerator contains exactly [2n/p] + [2n/p?] + p2n/p3] + - - - factors of p.
The denominator contains exactly 2([n/p] + [n/p?] + [n/p3] + - -+ ) factors
of p. So the quotient (2n!)/(n!)? contains the claimed number of factors
of p. (Again, the sums here are effectively finite, so that rearrangement is
no concern.) O
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Lemma 21.1

Lemma 21.1. The highest power of p that divides n! is
[n/p]+ [n/p?] +[n/P°] + - - .

Proof. Each multiple of p less than or equal to n adds one power of p to
n!; there are [n/p] such multiples. Each multiple of p? less than or equal
to n adds an additional power of p to n!; there are [n/p?] such multiples
(notice that p? is both a multiple of p and a multiple of p? and it is
counted twice here, once in [n/p] and once as [n/p?], as needed).
Similarly, each multiple of p¥ less than or equal to n adds an additional
power of p to n!; there are [n/p*] such multiples. Hence p to the power
[n/p] + [n/p?] + [n/p3] + - -- divides n!. (Notice that for p¥ > n, we have
[n/p¥] = 0, so there are no convergence concerns here and, in fact,

[n/p] + [n/p?] + [n/p3] + - -+ can be treated as a finite sum.) O
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Lemma 21.3

Lemma 21.3. For any x, [2x] — x[x] < 1.

Proof. By the definition of the greatest integer function, we have

[2x] < 2x and [x] > x — 1 for all x > 1 (say), so

[2x] — 2[x] < 2x —2(x — 1) = 2. Since [2x] — 2[x] is an integer, then we
must in fact have [2n] — 2[x] < 1. O
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Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of

2n
( n) is less than or equal to 2n.

Proof. Suppose p” is in the prime-power decomposition of (2:) ASSUME

p" > 2n. Then [2n/p"] = [2n/p] =--- =0 and

[n/p"] =[n/p™*1] = --- = 0. So by Lemma 21.2, the highest power of p
- 2n\ .

that divides L, ) s

r=([2/p] —2[n/p]) + (2n/p°] = 2[n/p*]) +-- -+ ([2n/p" '] = 2[n/p"]).

But by Lemma 21.3, each of the terms in parentheses is at most 1, so that
r<l+1+---+1=r—1, a CONTRADICTION. So the assumption
————

r—1 times
that p” > 2n is false, and hence we have p” < 2n, as claimed. ]
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Lemma 21.5 (continued 1)

2
Lemma 21.5. For n > 1, we have 2" < ( n) < 22

n
Proof (continued). ... <2(kk:—11)> = 2(12(k—4j_11) <2kk>'

Next we have

2(2k + 1) (2k)

k+1 k

2(2k +2) (2k
k+1 \k

) since 2k +1 <2k +2
2k 2k . : :
= 4 P < 4 -2°% by the induction hypothesis

— 2k+1)

and the upper bound holds for n = k + 1:

2k +1) _ 22k +1) 2K\ _ k)
k+1 k+1 \k
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Lemma 21.5

2
Lemma 21.5. For n > 1, we have 2" < <nn> < 220,

Proof. We give a proof using induction. For the base case, with n =1 we
have (3) =2 and 2! <2 < 22(1). For the induction hypothesis, suppose

the claim holds for n = k and that 2k < (2kk) < 22k Consider n= k + 1.
We have

(2(: ++11)> _ ((2k +2)!

(2k + 2)(2k + 1)(2Kk)!
(k + 1)k!(k + 1)k!

(k+ 102 ~

(k4 1)(2k +1) (2k)! 22k +1) (2K
T (k+1)(k+1) KK k1 (k>
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Lemma 21.5 (continued 2)

2
Lemma 21.5. For n > 1, we have 2" < ( n) < 22

n
. 2k +1)\ 22k +1) (2k\ . .
Proof (continued). ... < P > i L) Similarly,
2(2k 4 1) (2k 2k +1) [2k\ .
k——|—1<k> k——|—1 k Slnce2k+1>k+l

2k
2<k) > 2. 22K by the induction hypothesis

k+1
25,

and the lower bound holds for n = k + 1:

<2(k + 1)) _ 2(2k + 1) <2k> o gkl

k+1 k+1 k
Therefore, by induction, the bound holds for all n > 1, as claimed. O
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Lemma 21.6

Lemma 21.6. For n > 2, we have 7(2n) — m(n) < (2nlog?2)/ log n.

Proof. Because <2n> = (2n)(2n—1)---(n+ 1), the prime power
n n(n—1)---(2)(1)

decomposition of (2n") contains each prime strictly between n and 2n

(since these primes appear in the numerator and cannot be canceled by

any factor in the denominator). Thus (since 2n is not prime)

(2:)2 II = I] »

n<p<2n n<p<2n

But each prime p in the product is strictly larger than n, so

H p> H n and, since there are m(2n) — 7(n) primes p satisfying
n<p<2n n<p<2n

n < p < 2n, then H n = pr@n-m(n),
n<p<2n

Elementary Number Theory

Lemma 21.7

Lemma 21.7. For n > 2, we have 7(2n) > (nlog2)/log(2n).

Proof. By Lemma 21.4, each prime-power in the prime-power

. 2n\ . .
decomposition of ( ) is at most 2n. There are most 7(2n) such prime
n

powers, so < (2n)’r(2”). By Lemma 21.5, we get 2" < (2n)”(2"), S0

taking logarithms of both sides gives nlog2 < 7(2n) log(2n), as
claimed. ]
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Lemma 21.6 (continued)

Lemma 21.6. For n > 2, we have 7(2n) — m(n) < (2nlog?2)/ log n.

Proof (continued). Combining these three inequalities we have

(2[:1)2 H P2 H n:n‘;r(2n)—7r(n)‘

n<p<2n n<p<2n

By Lemma 21.5, we have
22n > <2n> > n7r(2n)77r(n).
2\, 2

taking logarithms of both sides gives 2nlog?2 > (7(2n) — 7(n)) log n, as
claimed. O
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Lemma 21.8

Lemma 21.8. For r > 1, we have 7(227) < 227+2/r,

Proof. We use induction. With r = 1 we have

7(22()) = 7(4) = 2 < 22042 /(1) = 16, so that the base case is
established. For the induction step, suppose that the lemma holds for
r=k: m(2%) < 2252 /k. Then for r = k 4+ 1 we have

7T(22(k+1)) 7T(22k+2) — 7T(2 . 22k+1)

2(2%k+1) Jog 2
log 22k+1

_ 2log2 (22k+1) =

(2k + 1) log 2 2k +1

22k+2 2(22/() log 2
2k +1 log 22k

with n = 2%k

IN

+ 7(2%1) by Lemma 21.6 with n = 22k*1

22k+2

+ (2 - 22K)

+ (22K) by Lemma 21.6
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Lemma 21.8 (continued 1)

Lemma 21.8. For r > 1, we have 7(227) < 227+2/r,

Proof (continued). ...

22k+2 2(22k) log 2

92(k+1) 02k
m( ) S 1T gk T
22k+2 22k+1 22k+2
< K1 + K + p by the induction hypothesis
22k+2 22/( 22k+2
T k1 Kk Tk
22k+2 22k 22k+2 1 1
< — [ < —
2k Tk Tk M1 S
22k+1 4 22k + 22k+2 3. 22k + 22k+2
- k - k
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Theorem 21.1

Theorem 21.1. For x > 2, we have

%Iog 2(x/ log x) < m(x) < (32log2)(x/ log x).

Proof. For the lower bound, fix x and let n be so that 2n < x < 2n + 2.
We have

w(x) > 7(2n) since 7(x) is an increasing function
log 2
> o8 by Lemma 21.7
log(2n)
log 2
> nog since 2n < x so that log(2n) < log x
log x
2 2 log?2 2 2
> n Oisincenz nt forn>1
4  logx
xlog2 |
> ——— since 2n+ 2 > x.
4 log x
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Lemma 21.8 (continued 2)

Lemma 21.8. For r > 1, we have 7(227) < 2272 /r,

Proof (continued). ...

22k+1 4 22k + 22k+2 3. 22k + 22k+2

52(k+1)
m( ) p p
3. 22/( 22k+2 2k
< : k+lsince1§k+1fork21
3. 22k+1 4 22k+3 4. 22k+1 4 22k+3
= <
k+1 k+1
22k+3 + 22k+3 22k+4 22(k+1)+2
- k+1  k+1  k+1
So the claim holds for r = k + 1 and, by induction, holds for all integers
r > 1, as claimed. ]
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Theorem 21.1 (continued)
Theorem 21.1. For x > 2, we have
%Iog 2(x/ log x) < 7(x) < (32l0g 2)(x/ log x).

Proof (continued). For the upper bound, fix x and let r be so that
22r=2 < x < 2'. We have

22r
mx) < m(27) since 7(x) is an increasing function
X X

22r

< —7;(2“2) since 22772 < x
D2r+2

< 52r3, by Lemma 21.8
= 16/r.

Since x < 22" then log x < log(2%") = 2rlog?2, and 1/r < (2log2)/(log x).

Therefore @ < E < 32log 2
X r log x

, as claimed. O]
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