Elementary Number Theory

Section 21. Bounds for $\pi(x)$ —Proofs of Theorems

Table of contents

(1) Lemma 21.1
(2) Lemma 21.2
(3) Lemma 21.3
(4) Lemma 21.4
(5) Lemma 21.5
(6) Lemma 21.6
(7) Lemma 21.7
(8) Lemma 21.8
(9) Theorem 21.1

Lemma 21.1

Lemma 21.1. The highest power of p that divides $n!$ is $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$.

Proof. Each multiple of p less than or equal to n adds one power of p to $n!$; there are $[n / p]$ such multiples. Each multiple of p^{2} less than or equal to n adds an additional power of p to $n!$; there are $\left[n / p^{2}\right]$ such multiples (notice that p^{2} is both a multiple of p and a multiple of p^{2} and it is counted twice here, once in $[n / p]$ and once as $\left[n / p^{2}\right]$, as needed). Similarly, each multiple of p^{k} less than or equal to n adds an additional power of p to $n!$; there are $\left[n / p^{k}\right]$ such multiples. Hence p to the power $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$ divides $n!$. (Notice that for $p^{k}>n$, we have $\left[n / p^{k}\right]=0$, so there are no convergence concerns here and, in fact, $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$ can be treated as a finite sum.)

Lemma 21.1

Lemma 21.1. The highest power of p that divides $n!$ is $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$.

Proof. Each multiple of p less than or equal to n adds one power of p to $n!$; there are $[n / p]$ such multiples. Each multiple of p^{2} less than or equal to n adds an additional power of p to $n!$; there are $\left[n / p^{2}\right]$ such multiples (notice that p^{2} is both a multiple of p and a multiple of p^{2} and it is counted twice here, once in $[n / p]$ and once as $\left[n / p^{2}\right]$, as needed). Similarly, each multiple of p^{k} less than or equal to n adds an additional power of p to $n!$; there are $\left[n / p^{k}\right]$ such multiples. Hence p to the power $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$ divides $n!$. (Notice that for $p^{k}>n$, we have $\left[n / p^{k}\right]=0$, so there are no convergence concerns here and, in fact, $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$ can be treated as a finite sum.)

Lemma 21.2

Lemma 21.2 The highest power of p that divides $\binom{2 n}{n}$ is

$$
[2 n / p]-2[n / p]+2\left[n / p^{2}\right]-2\left[n / p^{2}\right]+\left[2 n / p^{3}\right]-2\left[n / p^{3}\right]+\cdots .
$$

Proof. Since $\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$, then we can apply Lemma 21.1 to the numerator and (twice) to the denominator. By Lemma 21.1, the numerator contains exactly $\left.[2 n / p]+\left[2 n / p^{2}\right]+p 2 n / p^{3}\right]+\cdots$ factors of p. The denominator contains exactly $2\left([n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots\right)$ factors of p. So the quotient $(2 n!) /(n!)^{2}$ contains the claimed number of factors of p. (Again, the sums here are effectively finite, so that rearrangement is no concern.)

Lemma 21.2

Lemma 21.2 The highest power of p that divides $\binom{2 n}{n}$ is

$$
[2 n / p]-2[n / p]+2\left[n / p^{2}\right]-2\left[n / p^{2}\right]+\left[2 n / p^{3}\right]-2\left[n / p^{3}\right]+\cdots .
$$

Proof. Since $\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$, then we can apply Lemma 21.1 to the numerator and (twice) to the denominator. By Lemma 21.1, the numerator contains exactly $\left.[2 n / p]+\left[2 n / p^{2}\right]+p 2 n / p^{3}\right]+\cdots$ factors of p. The denominator contains exactly $2\left([n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots\right)$ factors of p. So the quotient $(2 n!) /(n!)^{2}$ contains the claimed number of factors of p. (Again, the sums here are effectively finite, so that rearrangement is no concern.)

Lemma 21.3

Lemma 21.3. For any $x,[2 x]-x[x] \leq 1$.

Proof. By the definition of the greatest integer function, we have $[2 x] \leq 2 x$ and $[x]>x-1$ for all $x \geq 1$ (say), so $[2 x]-2[x]<2 x-2(x-1)=2$. Since $[2 x]-2[x]$ is an integer, then we must in fact have $[2 n]-2[x] \leq 1$.

Lemma 21.3

Lemma 21.3. For any $x,[2 x]-x[x] \leq 1$.

Proof. By the definition of the greatest integer function, we have $[2 x] \leq 2 x$ and $[x]>x-1$ for all $x \geq 1$ (say), so $[2 x]-2[x]<2 x-2(x-1)=2$. Since $[2 x]-2[x]$ is an integer, then we must in fact have $[2 n]-2[x] \leq 1$.

Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of $\binom{2 n}{n}$ is less than or equal to $2 n$.
Proof. Suppose p^{r} is in the prime-power decomposition of $\binom{2 n}{n}$. ASSUME $p^{r}>2 n$. Then $\left[2 n / p^{r}\right]=\left[2 n / p^{r+1}\right]=\cdots=0$ and $\left[n / p^{r}\right]=\left[n / p^{r+1}\right]=\cdots=0$. So by Lemma 21.2, the highest power of p that divides $\binom{2 n}{n}$ is
$\left.r=([2 / p]-2[n / p])+\left(2 n / p^{2}\right]-2\left[n / p^{2}\right]\right)+\cdots+\left(\left[2 n / p^{r-1}\right]-2\left[n / p^{r-1}\right]\right)$.

Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of $\binom{2 n}{n}$ is less than or equal to $2 n$.
Proof. Suppose p^{r} is in the prime-power decomposition of $\binom{2 n}{n}$. ASSUME $p^{r}>2 n$. Then $\left[2 n / p^{r}\right]=\left[2 n / p^{r+1}\right]=\cdots=0$ and
$\left[n / p^{r}\right]=\left[n / p^{r+1}\right]=\cdots=0$. So by Lemma 21.2, the highest power of p
that divides $\binom{2 n}{n}$ is
$\left.r=([2 / p]-2[n / p])+\left(2 n / p^{2}\right]-2\left[n / p^{2}\right]\right)+\cdots+\left(\left[2 n / p^{r-1}\right]-2\left[n / p^{r-1}\right]\right)$.
But by Lemma 21.3, each of the terms in parentheses is at most 1 , so that $r \leq \underbrace{1+1+\cdots+1}=r-1$, a CONTRADICTION. So the assumption
that $p^{r}>2 n$ is false, and hence we have $p^{r} \leq 2 n$, as claimed.

Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of $\binom{2 n}{n}$ is less than or equal to $2 n$.
Proof. Suppose p^{r} is in the prime-power decomposition of $\binom{2 n}{n}$. ASSUME $p^{r}>2 n$. Then $\left[2 n / p^{r}\right]=\left[2 n / p^{r+1}\right]=\cdots=0$ and
$\left[n / p^{r}\right]=\left[n / p^{r+1}\right]=\cdots=0$. So by Lemma 21.2, the highest power of p that divides $\binom{2 n}{n}$ is
$\left.r=([2 / p]-2[n / p])+\left(2 n / p^{2}\right]-2\left[n / p^{2}\right]\right)+\cdots+\left(\left[2 n / p^{r-1}\right]-2\left[n / p^{r-1}\right]\right)$.
But by Lemma 21.3, each of the terms in parentheses is at most 1 , so that $r \leq \underbrace{1+1+\cdots+1}=r-1$, a CONTRADICTION. So the assumption $r-1$ times
that $p^{r}>2 n$ is false, and hence we have $p^{r} \leq 2 n$, as claimed.

Lemma 21.5

Lemma 21.5. For $n \geq 1$, we have $2^{n} \leq\binom{ 2 n}{n} \leq 2^{2 n}$.
Proof. We give a proof using induction. For the base case, with $n=1$ we have $\binom{2}{1}=2$ and $2^{1} \leq 2 \leq 2^{2(1)}$. For the induction hypothesis, suppose the claim holds for $n=k$ and that $2^{k} \leq\binom{ 2 k}{k} \leq 2^{2 k}$. Consider $n=k+1$. We have

$$
\begin{gathered}
\binom{2(k+1)}{k+1}=\frac{(2 k+2)!}{((k+1)!)^{2}}=\frac{(2 k+2)(2 k+1)(2 k)!}{(k+1) k!(k+1) k!} \\
\quad=\frac{2(k+1)(2 k+1)}{(k+1)(k+1)} \frac{(2 k)!}{k!k!}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k} .
\end{gathered}
$$

Lemma 21.5

Lemma 21.5. For $n \geq 1$, we have $2^{n} \leq\binom{ 2 n}{n} \leq 2^{2 n}$.
Proof. We give a proof using induction. For the base case, with $n=1$ we have $\binom{2}{1}=2$ and $2^{1} \leq 2 \leq 2^{2(1)}$. For the induction hypothesis, suppose the claim holds for $n=k$ and that $2^{k} \leq\binom{ 2 k}{k} \leq 2^{2 k}$. Consider $n=k+1$. We have

$$
\begin{gathered}
\binom{2(k+1)}{k+1}=\frac{(2 k+2)!}{((k+1)!)^{2}}=\frac{(2 k+2)(2 k+1)(2 k)!}{(k+1) k!(k+1) k!} \\
\quad=\frac{2(k+1)(2 k+1)}{(k+1)(k+1)} \frac{(2 k)!}{k!k!}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k}
\end{gathered}
$$

Lemma 21.5 (continued 1)

Lemma 21.5. For $n \geq 1$, we have $2^{n} \leq\binom{ 2 n}{n} \leq 2^{2 n}$.
Proof (continued). ... $\binom{2(k+1)}{k+1}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k}$.
Next we have

$$
\begin{aligned}
\frac{2(2 k+1)}{k+1}\binom{2 k}{k} & <\frac{2(2 k+2)}{k+1}\binom{2 k}{k} \text { since } 2 k+1<2 k+2 \\
& =4\binom{2 k}{k} \leq 4 \cdot 2^{2 k} \text { by the induction hypothesis } \\
& =2^{2(k+1)},
\end{aligned}
$$

and the upper bound holds for $n=k+1$:

$$
\binom{2(k+1)}{k+1}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k}<2^{2(k+1)} .
$$

Lemma 21.5 (continued 1)

Lemma 21.5. For $n \geq 1$, we have $2^{n} \leq\binom{ 2 n}{n} \leq 2^{2 n}$.
Proof (continued). ... $\binom{2(k+1)}{k+1}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k}$.
Next we have

$$
\begin{aligned}
\frac{2(2 k+1)}{k+1}\binom{2 k}{k} & <\frac{2(2 k+2)}{k+1}\binom{2 k}{k} \text { since } 2 k+1<2 k+2 \\
& =4\binom{2 k}{k} \leq 4 \cdot 2^{2 k} \text { by the induction hypothesis } \\
& =2^{2(k+1)},
\end{aligned}
$$

and the upper bound holds for $n=k+1$:

$$
\binom{2(k+1)}{k+1}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k}<2^{2(k+1)} .
$$

Lemma 21.5 (continued 2)

Lemma 21.5. For $n \geq 1$, we have $2^{n} \leq\binom{ 2 n}{n} \leq 2^{2 n}$.
Proof (continued). ... $\binom{2(k+1)}{k+1}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k}$. Similarly,

$$
\begin{aligned}
\frac{2(2 k+1)}{k+1}\binom{2 k}{k} & >\frac{2(k+1)}{k+1}\binom{2 k}{k} \text { since } 2 k+1>k+1 \\
& =2\binom{2 k}{k} \geq 2 \cdot 2^{2 k} \text { by the induction hypothesis } \\
& =2^{k+1},
\end{aligned}
$$

and the lower bound holds for $n=k+1$:

$$
\binom{2(k+1)}{k+1}=\frac{2(2 k+1)}{k+1}\binom{2 k}{k}>2^{k+1} .
$$

Therefore, by induction, the bound holds for all $n \geq 1$, as claimed.

Lemma 21.6

Lemma 21.6. For $n \geq 2$, we have $\pi(2 n)-\pi(n) \leq(2 n \log 2) / \log n$. Proof. Because $\binom{2 n}{n}=\frac{(2 n)(2 n-1) \cdots(n+1)}{n(n-1) \cdots(2)(1)}$, the prime power decomposition of $\binom{2 n}{n}$ contains each prime strictly between n and $2 n$ (since these primes appear in the numerator and cannot be canceled by any factor in the denominator). Thus (since $2 n$ is not prime)

$$
\binom{2 n}{n} \geq \prod_{n<p<2 n} p=\prod_{n<p \leq 2 n} p
$$

Lemma 21.6

Lemma 21.6. For $n \geq 2$, we have $\pi(2 n)-\pi(n) \leq(2 n \log 2) / \log n$.
Proof. Because $\binom{2 n}{n}=\frac{(2 n)(2 n-1) \cdots(n+1)}{n(n-1) \cdots(2)(1)}$, the prime power decomposition of $\binom{2 n}{n}$ contains each prime strictly between n and $2 n$ (since these primes appear in the numerator and cannot be canceled by any factor in the denominator). Thus (since $2 n$ is not prime)

$$
\binom{2 n}{n} \geq \prod_{n<p<2 n} p=\prod_{n<p \leq 2 n} p
$$

But each prime p in the product is strictly larger than n, so
 n and, since there are $\pi(2 n)-\pi(n)$ primes p satisfying $n<p \leq 2 n \quad n<p \leq 2 n$
$n<p \leq 2 n$, then

$$
\llbracket n=n^{\pi(2 n)-\pi(n)}
$$

Lemma 21.6

Lemma 21.6. For $n \geq 2$, we have $\pi(2 n)-\pi(n) \leq(2 n \log 2) / \log n$.
Proof. Because $\binom{2 n}{n}=\frac{(2 n)(2 n-1) \cdots(n+1)}{n(n-1) \cdots(2)(1)}$, the prime power decomposition of $\binom{2 n}{n}$ contains each prime strictly between n and $2 n$ (since these primes appear in the numerator and cannot be canceled by any factor in the denominator). Thus (since $2 n$ is not prime)

$$
\binom{2 n}{n} \geq \prod_{n<p<2 n} p=\prod_{n<p \leq 2 n} p
$$

But each prime p in the product is strictly larger than n, so
$\prod p \geq \prod n$ and, since there are $\pi(2 n)-\pi(n)$ primes p satisfying
$n<p \leq 2 n \quad n<p \leq 2 n$
$n<p \leq 2 n$, then $\prod_{n<p \leq 2 n} n=n^{\pi(2 n)-\pi(n)}$.

Lemma 21.6 (continued)

Lemma 21.6. For $n \geq 2$, we have $\pi(2 n)-\pi(n) \leq(2 n \log 2) / \log n$.
Proof (continued). Combining these three inequalities we have

$$
\binom{2 n}{n} \geq \prod_{n<p \leq 2 n} p \geq \prod_{n<p \leq 2 n} n=n^{\pi(2 n)-\pi(n)}
$$

By Lemma 21.5, we have

$$
2^{2 n} \geq\binom{ 2 n}{n} \geq n^{\pi(2 n)-\pi(n)}
$$

taking logarithms of both sides gives $2 n \log 2 \geq(\pi(2 n)-\pi(n)) \log n$, as claimed.

Lemma 21.7

Lemma 21.7. For $n \geq 2$, we have $\pi(2 n) \geq(n \log 2) / \log (2 n)$.

Proof. By Lemma 21.4, each prime-power in the prime-power

decomposition of $\binom{2 n}{n}$ is at most $2 n$. There are most $\pi(2 n)$ such prime powers, so $\binom{2 n}{n} \leq(2 n)^{\pi(2 n)}$. By Lemma 21.5, we get $2^{n} \leq(2 n)^{\pi(2 n)}$, so taking logarithms of both sides gives $n \log 2 \leq \pi(2 n) \log (2 n)$, as claimed.

Lemma 21.7

Lemma 21.7. For $n \geq 2$, we have $\pi(2 n) \geq(n \log 2) / \log (2 n)$.

Proof. By Lemma 21.4, each prime-power in the prime-power decomposition of $\binom{2 n}{n}$ is at most $2 n$. There are most $\pi(2 n)$ such prime powers, so $\binom{2 n}{n} \leq(2 n)^{\pi(2 n)}$. By Lemma 21.5 , we get $2^{n} \leq(2 n)^{\pi(2 n)}$, so taking logarithms of both sides gives $n \log 2 \leq \pi(2 n) \log (2 n)$, as claimed.

Lemma 21.8

Lemma 21.8. For $r \geq 1$, we have $\pi\left(2^{2 r}\right)<2^{2 r+2} / r$.
Proof. We use induction. With $r=1$ we have
$\pi\left(2^{2(1)}\right)=\pi(4)=2<2^{2(1)+2} /(1)=16$, so that the base case is established. For the induction step, suppose that the lemma holds for $r=k: \pi\left(2^{2 k}\right)<2^{2 k+2} / k$.

Lemma 21.8

Lemma 21.8. For $r \geq 1$, we have $\pi\left(2^{2 r}\right)<2^{2 r+2} / r$.
Proof. We use induction. With $r=1$ we have $\pi\left(2^{2(1)}\right)=\pi(4)=2<2^{2(1)+2} /(1)=16$, so that the base case is established. For the induction step, suppose that the lemma holds for $r=k: \pi\left(2^{2 k}\right)<2^{2 k+2} / k$. Then for $r=k+1$ we have
$\pi\left(2^{2(k+1)}\right)=\pi\left(2^{2 k+2}\right)=\pi\left(2 \cdot 2^{2 k+1}\right)$
$\leq \frac{2\left(2^{2 k+1}\right) \log 2}{\log 2^{2 k+1}}+\pi\left(2^{2 k+1}\right)$ by Lemma 21.6 with $n=2^{2 k+1}$
$=\frac{2^{2 k+2} \log 2}{(2 k+1) \log 2}+\pi\left(2^{2 k+1}\right)=\frac{2^{2 k+2}}{2 k+1}+\pi\left(2 \cdot 2^{2 k}\right)$
$\leq \frac{2^{2 k+2}}{2 k+1}+\frac{2\left(2^{2 k}\right) \log 2}{\log 2^{2 k}}+\pi\left(2^{2 k}\right)$ by Lemma 21.6
with $n=2^{2 k}$

Lemma 21.8

Lemma 21.8. For $r \geq 1$, we have $\pi\left(2^{2 r}\right)<2^{2 r+2} / r$.
Proof. We use induction. With $r=1$ we have $\pi\left(2^{2(1)}\right)=\pi(4)=2<2^{2(1)+2} /(1)=16$, so that the base case is established. For the induction step, suppose that the lemma holds for $r=k: \pi\left(2^{2 k}\right)<2^{2 k+2} / k$. Then for $r=k+1$ we have

$$
\pi\left(2^{2(k+1)}\right)=\pi\left(2^{2 k+2}\right)=\pi\left(2 \cdot 2^{2 k+1}\right)
$$

$$
\begin{aligned}
& \leq \frac{2\left(2^{2 k+1}\right) \log 2}{\log 2^{2 k+1}}+\pi\left(2^{2 k+1}\right) \text { by Lemma } 21.6 \text { with } n=2^{2 k+1} \\
& =\frac{2^{2 k+2} \log 2}{(2 k+1) \log 2}+\pi\left(2^{2 k+1}\right)=\frac{2^{2 k+2}}{2 k+1}+\pi\left(2 \cdot 2^{2 k}\right) \\
& \leq \frac{2^{2 k+2}}{2 k+1}+\frac{2\left(2^{2 k}\right) \log 2}{\log 2^{2 k}}+\pi\left(2^{2 k}\right) \text { by Lemma } 21.6 \\
& \quad \text { with } n=2^{2 k}
\end{aligned}
$$

Lemma 21.8 (continued 1)

Lemma 21.8. For $r \geq 1$, we have $\pi\left(2^{2 r}\right)<2^{2 r+2} / r$.

Proof (continued). . .

$$
\begin{aligned}
\pi\left(2^{2(k+1)}\right) & \leq \frac{2^{2 k+2}}{2 k+1}+\frac{2\left(2^{2 k}\right) \log 2}{\log 2^{2 k}}+\pi\left(2^{2 k}\right) \\
& <\frac{2^{2 k+2}}{2 k+1}+\frac{2^{2 k+1}}{2 k}+\frac{2^{2 k+2}}{k} \text { by the induction hypothesis } \\
& =\frac{2^{2 k+2}}{2 k+1}+\frac{2^{2 k}}{k}+\frac{2^{2 k+2}}{k} \\
& <\frac{2^{2 k+2}}{2 k}+\frac{2^{2 k}}{k}+\frac{2^{2 k+2}}{k} \text { since } \frac{1}{2 k+1}<\frac{1}{2 k} \\
& =\frac{2^{2 k+1}+2^{2 k}+2^{2 k+2}}{k}=\frac{3 \cdot 2^{2 k}+2^{2 k+2}}{k}
\end{aligned}
$$

Lemma 21.8 (continued 2)

Lemma 21.8. For $r \geq 1$, we have $\pi\left(2^{2 r}\right)<2^{2 r+2} / r$.

Proof (continued). ...

$$
\begin{aligned}
\pi\left(2^{2(k+1)}\right) & <\frac{2^{2 k+1}+2^{2 k}+2^{2 k+2}}{k}=\frac{3 \cdot 2^{2 k}+2^{2 k+2}}{k} \\
& \leq \frac{3 \cdot 2^{2 k}+2^{2 k+2}}{k} \frac{2 k}{k+1} \text { since } 1 \leq \frac{2 k}{k+1} \text { for } k \geq 1 \\
& =\frac{3 \cdot 2^{2 k+1}+2^{2 k+3}}{k+1}<\frac{4 \cdot 2^{2 k+1}+2^{2 k+3}}{k+1} \\
& =\frac{2^{2 k+3}+2^{2 k+3}}{k+1}=\frac{2^{2 k+4}}{k+1}=\frac{2^{2(k+1)+2}}{k+1}
\end{aligned}
$$

So the claim holds for $r=k+1$ and, by induction, holds for all integers $r \geq 1$, as claimed.

Theorem 21.1

Theorem 21.1. For $x \geq 2$, we have

$$
\frac{1}{4} \log 2(x / \log x) \leq \pi(x) \leq(32 \log 2)(x / \log x)
$$

Proof. For the lower bound, fix x and let n be so that $2 n \leq x<2 n+2$. We have

$$
\begin{aligned}
\pi(x) & \geq \pi(2 n) \text { since } \pi(x) \text { is an increasing function } \\
& \geq \frac{n \log 2}{\log (2 n)} \text { by Lemma } 21.7 \\
& \geq \frac{n \log 2}{\log x} \text { since } 2 n \leq x \text { so that } \log (2 n) \leq \log x \\
& \geq \frac{2 n+2 \log 2}{4} \text { since } n \geq \frac{2 n+2}{4} \text { for } n \geq 1 \\
& >\frac{x \log 2}{4} \frac{\log x}{\log } \text { since } 2 n+2>x .
\end{aligned}
$$

Theorem 21.1

Theorem 21.1. For $x \geq 2$, we have

$$
\frac{1}{4} \log 2(x / \log x) \leq \pi(x) \leq(32 \log 2)(x / \log x)
$$

Proof. For the lower bound, fix x and let n be so that $2 n \leq x<2 n+2$. We have

$$
\begin{aligned}
\pi(x) & \geq \pi(2 n) \text { since } \pi(x) \text { is an increasing function } \\
& \geq \frac{n \log 2}{\log (2 n)} \text { by Lemma } 21.7 \\
& \geq \frac{n \log 2}{\log x} \text { since } 2 n \leq x \text { so that } \log (2 n) \leq \log x \\
& \geq \frac{2 n+2}{4} \frac{\log 2}{\log x} \text { since } n \geq \frac{2 n+2}{4} \text { for } n \geq 1 \\
& >\frac{x}{4} \frac{\log 2}{\log x} \text { since } 2 n+2>x .
\end{aligned}
$$

Theorem 21.1 (continued)

Theorem 21.1. For $x \geq 2$, we have

$$
\frac{1}{4} \log 2(x / \log x) \leq \pi(x) \leq(32 \log 2)(x / \log x)
$$

Proof (continued). For the upper bound, fix x and let r be so that $2^{2 r-2} \leq x<2^{r}$. We have

$$
\begin{aligned}
\frac{\pi(x)}{x} & \leq \frac{\pi\left(2^{2 r}\right)}{x} \text { since } \pi(x) \text { is an increasing function } \\
& \leq \frac{\pi\left(2^{2 r}\right)}{2^{2 r-2}} \text { since } 2^{2 r-2} \leq x \\
& <\frac{2^{2 r+2}}{2^{2 r-2} r} \text { by Lemma } 21.8 \\
& =16 / r .
\end{aligned}
$$

Since $x<2^{2 r}$ then $\log x<\log \left(2^{2 r}\right)=2 r \log 2$, and $1 / r<(2 \log 2) /(\log x)$. Therefore $\frac{\pi(x)}{x}<\frac{16}{r}<\frac{32 \log 2}{\log x}$, as claimed.

