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Section 21. Bounds for 7(x)—Proofs of Theorems
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Lemma 21.1

Lemma 21.1. The highest power of p that divides n! is
[n/p] +[n/p?] + [n/P%] +--- .
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Lemma 21.1

Lemma 21.1. The highest power of p that divides n! is
[n/p] +[n/p?] + [n/P%] +--- .

Proof. Each multiple of p less than or equal to n adds one power of p to
n!; there are [n/p] such multiples. Each multiple of p? less than or equal
to n adds an additional power of p to n!; there are [n/p?] such multiples
(notice that p? is both a multiple of p and a multiple of p? and it is
counted twice here, once in [n/p] and once as [n/p?], as needed).
Similarly, each multiple of pX less than or equal to n adds an additional
power of p to n!; there are [n/p*] such multiples. Hence p to the power
[n/p] + [n/p?] + [n/p3] + - -- divides n!. (Notice that for p¥ > n, we have
[n/pX] = 0, so there are no convergence concerns here and, in fact,

[n/p] + [n/p?] + [n/p3] + -+ can be treated as a finite sum.) O
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Lemma 21.2

2
Lemma 21.2 The highest power of p that divides ( nn> is

[2n/p] — 2[n/p] + 2[n/p°] — 2[n/p?] + [2n/p*] — 2[n/P°] + - - .
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Lemma 21.2

Lemma 21.2 The highest power of p that divides <2nn> is
[2n/p] = 2[n/p] + 2[n/p?] = 2[n/p*] + [2n/P°] = 2[n/P°] + - - .

2n\ _ _ (@)

2’ then we can apply Lemma 21.1 to the

Proof. Since <
n

numerator and (twice) to the denominator. By Lemma 21.1, the
numerator contains exactly [2n/p] + [2n/p?] + p2n/p3] + - - - factors of p.
The denominator contains exactly 2([n/p] + [n/p?] + [n/p%] + - -+ ) factors
of p. So the quotient (2n!)/(n!)? contains the claimed number of factors
of p. (Again, the sums here are effectively finite, so that rearrangement is
no concern.) O
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Lemma 21.3

Lemma 21.3. For any x, [2x] — x[x] < 1.
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Lemma 21.3

Lemma 21.3. For any x, [2x] — x[x] < 1.

Proof. By the definition of the greatest integer function, we have

[2x] < 2x and [x] > x — 1 for all x > 1 (say), so

[2x] — 2[x] < 2x —2(x — 1) = 2. Since [2x] — 2[x] is an integer, then we
must in fact have [2n] — 2[x] < 1. O
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Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of

2
< n> is less than or equal to 2n.
n
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Lemma 21.4

Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of

2
< n> is less than or equal to 2n.
n

Proof. Suppose p” is in the prime-power decomposition of (2n”). ASSUME

p” >2n. Then [2n/p"] = [2n/p" ] = --- =0 and

[n/p] = [n/p*] =---=0. So by Lemma 21.2, the highest power of p
- 2n\ .

that divides L, ) s

r=([2/p] = 2[n/p]) + (2n/p*] = 2[n/p*]) + -+ ([2n/p" 1] = 2[n/p"1]).
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Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of

2
< n> is less than or equal to 2n.
n

Proof. Suppose p” is in the prime-power decomposition of (2n”). ASSUME

p” >2n. Then [2n/p"] = [2n/p" ] = --- =0 and

[n/p] = [n/p*] =---=0. So by Lemma 21.2, the highest power of p
- 2n\ .

that divides L, ) s

r=([2/p] = 2[n/p]) + (2n/p*] = 2[n/p*]) + -+ ([2n/p" 1] = 2[n/p"1]).

But by Lemma 21.3, each of the terms in parentheses is at most 1, so that
r<l+1+---+1=r—1,a CONTRADICTION. So the assumption
~—_——

r—1 times
that p” > 2n is false, and hence we have p” < 2n, as claimed. O
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Lemma 21.5

2
Lemma 21.5. For n > 1, we have 2" < <nn> < 227,
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Lemma 21.5

2
Lemma 21.5. For n > 1, we have 2" < <nn> < 227,

Proof. We give a proof using induction. For the base case, with n =1 we
have (3) =2 and 2! <2 < 22(1). For the induction hypothesis, suppose
the claim holds for n = k and that 2k < (2kk) < 22k Consider n = k + 1.
We have
2(k+1)\  (2k+2)!  (2k+2)(2k + 1)(2k)!
< k+1 > —(

(k+1))2 ~  (k+ 1)kl(k + 1)k

(k4 1)(2k +1) (2K)!  2(2k +1) 2k
T (k+1)(k+1) KK T k+1 <k>
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Lemma 21.5 (continued 1)

2
Lemma 21.5. For n > 1, we have 2" < < n) < 22n,
n

Proof (continued). ... <2(kk—|—_k11)> = 2(ik++11) (2:)_
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Lemma 21.5

Lemma 21.5 (continued 1)

2
Lemma 21.5. For n > 1, we have 2" < < n) < 22n,
n

Proof (continued). ... <2(kk—|—_k11)> = 2(ik++11) (2:)_

Next we have

22k +1) 2k 2(2k +2) [2k\ .
Sk S A L. 2k +1 <2k +2
Kr1 ( K ) < K1 B since 2k + 1 <2k +
2k ok : . .
= 4 p < 4 - 2°% by the induction hypothesis

2(k+1)

and the upper bound holds for n = k + 1:
2(k+1) _ 2(2k+1) (2k < 92(kt1)
k+1 k+1 k
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Lemma 21.5

Lemma 21.5 (continued 2)

2
Lemma 21.5. For n > 1, we have 2" < < n) < 22n,
n

Proof (continued). ... <2(kkj11)> = 2(ik++11) <2kk). Similarly,

2(2k +1) (2k 2k +1) (2k\ .
k—l—]_(k) > ﬁ k SInC62k+1>k+1

2k
= 2< k) > 222K by the induction hypothesis
2k+1

and the lower bound holds for n = k + 1:
2(k+1) B 2(2k +1) [2k o okt
k+1  k+1 k '

Therefore, by induction, the bound holds for all n > 1, as claimed.

L]
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Lemma 21.6

Lemma 21.6. For n > 2, we have m(2n) — w(n) < (2nlog2)/ log n.
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Lemma 21.6

Lemma 21.6

Lemma 21.6. For n > 2, we have m(2n) — w(n) < (2nlog2)/ log n.
2 2n)(2n—1)--- 1

Proof. Because ™ = (2n)(2n ). nt ), the prime power
n n(n—1)---(2)(1)

decomposition of (Zn") contains each prime strictly between n and 2n

(since these primes appear in the numerator and cannot be canceled by
any factor in the denominator). Thus (since 2n is not prime)

<2nn>2 II = I] ~»

n<p<2n n<p<2n
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Lemma 21.6

Lemma 21.6. For n > 2, we have m(2n) — w(n) < (2nlog2)/ log n.

2 2n)(2n—1)--- 1
Proof. Because ™ = (2n)(2n ). nt ), the prime power

n n(n—1)---(2)(1)
decomposition of (Zn") contains each prime strictly between n and 2n
(since these primes appear in the numerator and cannot be canceled by

any factor in the denominator). Thus (since 2n is not prime)

<2nn>2 II = I] ~»

n<p<2n n<p<2n

But each prime p in the product is strictly larger than n, so

H p> H n and, since there are w(2n) — 7(n) primes p satisfying
n<p<2n n<p<2n

n < p <2n, then H n = n*@2n)—mn(n)
n<p<2n
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Lemma 21.6 (continued)

Lemma 21.6. For n > 2, we have 7(2n) — m(n) < (2nlog2)/log n.

Proof (continued). Combining these three inequalities we have

<2nn>Z H PZ H n:nw(2n)f7r(n)'

n<p<2n n<p<2n

By Lemma 21.5, we have

22n > <2n> > n71'(2n)77r(n).
=\ p)=

taking logarithms of both sides gives 2nlog2 > (7(2n) — 7(n)) log n, as
claimed. O
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Lemma 21.7

Lemma 21.7. For n > 2, we have 7(2n) > (nlog?2)/log(2n).
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Lemma 21.7

Lemma 21.7. For n > 2, we have 7(2n) > (nlog?2)/log(2n).

Proof. By Lemma 21.4, each prime-power in the prime-power

. 2n\ . ,
decomposition of is at most 2n. There are most 7(2n) such prime
n

2
powers, so ( n> < (2n)"". By Lemma 21.5, we get 2" < (2n)(2") so
n

taking logarithms of both sides gives nlog2 < 7(2n)log(2n), as
claimed. []
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Lemma 21.8

Lemma 21.8. For r > 1, we have 7(22") < 2272/,
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Lemma 21.8

Lemma 21.8

Lemma 21.8. For r > 1, we have 7(22") < 2272/,

Proof. We use induction. With r = 1 we have

7(221)) = 7(4) = 2 < 22(+2/(1) = 16, so that the base case is
established. For the induction step, suppose that the lemma holds for
r=k: m(22k) < 22k+2/k,
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Lemma 21.8

Lemma 21.8

Lemma 21.8. For r > 1, we have 7(22") < 2272/,

Proof. We use induction. With r = 1 we have

7(221)) = 7(4) = 2 < 22(+2/(1) = 16, so that the base case is
established. For the induction step, suppose that the lemma holds for
r=k: m(22%) < 22k*2/k. Then for r = k + 1 we have

7_[_(22(l<—s—1)) _ (22k+2) (2 22k+1)

2(2%k+1) log 2
(k)zz)kffg + 7(22KT1) by Lemma 21.6 with n = 22k*!
g

2k+2 2k+2
_ 2TTlog2 ok 20T Lo gk
(2k +1)log?2 2k +1
22k+2 (22k) |Og 2
< 2°K) by L 21.6
S k+1 ' iogk T 7(27)bylemma
with n = 22
Elementary Number Theory
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Lemma 21.8 (continued 1)

Lemma 21.8. For r > 1, we have 7(22) < 2272/,

Proof (continued). ...

22k+2 (22k) |0g2

22(k+1) 02k
m ) = 2k +1 log 22k +7(27)
22k+2 92k+1  92k+2
< 2k +1 + ok + P by the induction hypothesis
22k+2 22k 22k+2
T 2%kr1 kT Tk
02k+2 o2k Q2k+2
< ok + 3 + p since

22k+1 4 22k 4 22k+2 3. 22k + 22k+2

k
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Lemma 21.8 (continued 2)

Lemma 21.8. For r > 1, we have 7(2%7) < 2272/,

Proof (continued). ...

22k+1 4 22k + 22k+2 3. 22k + 22k+2

71,(22(k+1)) <

k N k
3. 22k 22k+2
< : k+1since1§k+1fork21
3. 22k+1 4 22k+3 4. 22k+1 4 22k+3
= <
k+1 k+1
B 22k+3 4 22k+3 B 22k+4 B 22(k+1)+2
N k+1 Ck+1 0 k41

So the claim holds for r = k 4+ 1 and, by induction, holds for all integers
r > 1, as claimed. OJ
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Theorem 21.1

Theorem 21.1. For x > 2, we have

% log 2(x/ log x) < m(x) < (32log2)(x/ log x).
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Theorem 21.1

Theorem 21.1. For x > 2, we have

% log 2(x/ log x) < m(x) < (32log2)(x/ log x).

Proof. For the lower bound, fix x and let n be so that 2n < x < 2n + 2.

since 2n < x so that log(2n) < log x

forn>1

We have
7(x) > 7(2n) since m(x) is an increasing function
log 2
> N8 by Lemma 21.7
log(2n)
S nlog?2
~  logx
2
> nt2log2 since n >
4  logx
xlog2 |
> ——— since 2n+2 > x.
4 log x
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Theorem 21.1 (continued)

Theorem 21.1. For x > 2, we have
1
" log 2(x/ log x) < m(x) < (32log2)(x/ log x).

Proof (continued). For the upper bound, fix x and let r be so that
22r-2 < x < 2" We have

) ()

since 7(x) is an increasing function
X

2r
< m(2%) since 2°77? < x

22r—2
22r+2
< m by Lemma 21.8
= 16/r.
Since x < 227 then log x < log(22") = 2rlog2, and 1/r < (2log2)/(log x).
1 2log 2
Therefore @ < 16 < 32log , as claimed. ]
X r log x
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