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Lemma 21.1

Lemma 21.1

Lemma 21.1. The highest power of p that divides n! is
[n/p] + [n/p2] + [n/p3] + · · · .

Proof. Each multiple of p less than or equal to n adds one power of p to
n!; there are [n/p] such multiples. Each multiple of p2 less than or equal
to n adds an additional power of p to n!; there are [n/p2] such multiples
(notice that p2 is both a multiple of p and a multiple of p2 and it is
counted twice here, once in [n/p] and once as [n/p2], as needed).
Similarly, each multiple of pk less than or equal to n adds an additional
power of p to n!; there are [n/pk ] such multiples. Hence p to the power
[n/p] + [n/p2] + [n/p3] + · · · divides n!. (Notice that for pk > n, we have
[n/pk ] = 0, so there are no convergence concerns here and, in fact,
[n/p] + [n/p2] + [n/p3] + · · · can be treated as a finite sum.)
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Lemma 21.2

Lemma 21.2

Lemma 21.2 The highest power of p that divides

(
2n

n

)
is

[2n/p]− 2[n/p] + 2[n/p2]− 2[n/p2] + [2n/p3]− 2[n/p3] + · · · .

Proof. Since

(
2n

n

)
=

(2n)!

(n!)2
, then we can apply Lemma 21.1 to the

numerator and (twice) to the denominator. By Lemma 21.1, the
numerator contains exactly [2n/p] + [2n/p2] + p2n/p3] + · · · factors of p.
The denominator contains exactly 2([n/p] + [n/p2] + [n/p3] + · · · ) factors
of p. So the quotient (2n!)/(n!)2 contains the claimed number of factors
of p. (Again, the sums here are effectively finite, so that rearrangement is
no concern.)
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Lemma 21.3

Lemma 21.3

Lemma 21.3. For any x , [2x ]− x [x ] ≤ 1.

Proof. By the definition of the greatest integer function, we have
[2x ] ≤ 2x and [x ] > x − 1 for all x ≥ 1 (say), so
[2x ]− 2[x ] < 2x − 2(x − 1) = 2. Since [2x ]− 2[x ] is an integer, then we
must in fact have [2n]− 2[x ] ≤ 1.
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Lemma 21.4

Lemma 21.4

Lemma 21.4. Each prime-power in the prime-power decomposition of(
2n

n

)
is less than or equal to 2n.

Proof. Suppose pr is in the prime-power decomposition of
(2n

n

)
. ASSUME

pr > 2n. Then [2n/pr ] = [2n/pr+1] = · · · = 0 and
[n/pr ] = [n/pr+1] = · · · = 0. So by Lemma 21.2, the highest power of p

that divides

(
2n

n

)
is

r = ([2/p]− 2[n/p]) + (2n/p2]− 2[n/p2]) + · · ·+ ([2n/pr−1]− 2[n/pr−1]).

But by Lemma 21.3, each of the terms in parentheses is at most 1, so that
r ≤ 1 + 1 + · · ·+ 1︸ ︷︷ ︸

r−1 times

= r − 1, a CONTRADICTION. So the assumption

that pr > 2n is false, and hence we have pr ≤ 2n, as claimed.
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Lemma 21.5

Lemma 21.5

Lemma 21.5. For n ≥ 1, we have 2n ≤
(

2n

n

)
≤ 22n.

Proof. We give a proof using induction. For the base case, with n = 1 we
have

(2
1

)
= 2 and 21 ≤ 2 ≤ 22(1). For the induction hypothesis, suppose

the claim holds for n = k and that 2k ≤
(2k

k

)
≤ 22k . Consider n = k + 1.

We have (
2(k + 1)

k + 1

)
=

(2k + 2)!

((k + 1)!)2
=

(2k + 2)(2k + 1)(2k)!

(k + 1)k!(k + 1)k!

=
2(k + 1)(2k + 1)

(k + 1)(k + 1)

(2k)!

k!k!
=

2(2k + 1)

k + 1

(
2k

k

)
.
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Lemma 21.5

Lemma 21.5 (continued 1)

Lemma 21.5. For n ≥ 1, we have 2n ≤
(

2n

n

)
≤ 22n.

Proof (continued). . . .

(
2(k + 1)

k + 1

)
=

2(2k + 1)

k + 1

(
2k

k

)
.

Next we have

2(2k + 1)

k + 1

(
2k

k

)
<

2(2k + 2)

k + 1

(
2k

k

)
since 2k + 1 < 2k + 2

= 4

(
2k

k

)
≤ 4 · 22k by the induction hypothesis

= 22(k+1),

and the upper bound holds for n = k + 1:(
2(k + 1)

k + 1

)
=

2(2k + 1)

k + 1

(
2k

k

)
< 22(k+1).
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Lemma 21.5

Lemma 21.5 (continued 2)

Lemma 21.5. For n ≥ 1, we have 2n ≤
(

2n

n

)
≤ 22n.

Proof (continued). . . .

(
2(k + 1)

k + 1

)
=

2(2k + 1)

k + 1

(
2k

k

)
. Similarly,

2(2k + 1)

k + 1

(
2k

k

)
>

2(k + 1)

k + 1

(
2k

k

)
since 2k + 1 > k + 1

= 2

(
2k

k

)
≥ 2 · 22k by the induction hypothesis

= 2k+1,

and the lower bound holds for n = k + 1:(
2(k + 1)

k + 1

)
=

2(2k + 1)

k + 1

(
2k

k

)
> 2k+1.

Therefore, by induction, the bound holds for all n ≥ 1, as claimed.
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Lemma 21.6

Lemma 21.6

Lemma 21.6. For n ≥ 2, we have π(2n)− π(n) ≤ (2n log 2)/ log n.

Proof. Because

(
2n

n

)
=

(2n)(2n − 1) · · · (n + 1)

n(n − 1) · · · (2)(1)
, the prime power

decomposition of
(2n

n

)
contains each prime strictly between n and 2n

(since these primes appear in the numerator and cannot be canceled by
any factor in the denominator). Thus (since 2n is not prime)(

2n

n

)
≥

∏
n<p<2n

p =
∏

n<p≤2n

p.

But each prime p in the product is strictly larger than n, so∏
n<p≤2n

p ≥
∏

n<p≤2n

n and, since there are π(2n)− π(n) primes p satisfying

n < p ≤ 2n, then
∏

n<p≤2n

n = nπ(2n)−π(n).
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Lemma 21.6

Lemma 21.6 (continued)

Lemma 21.6. For n ≥ 2, we have π(2n)− π(n) ≤ (2n log 2)/ log n.

Proof (continued). Combining these three inequalities we have(
2n

n

)
≥

∏
n<p≤2n

p ≥
∏

n<p≤2n

n = nπ(2n)−π(n).

By Lemma 21.5, we have

22n ≥
(

2n

n

)
≥ nπ(2n)−π(n).

taking logarithms of both sides gives 2n log 2 ≥ (π(2n)− π(n)) log n, as
claimed.
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Lemma 21.7

Lemma 21.7

Lemma 21.7. For n ≥ 2, we have π(2n) ≥ (n log 2)/ log(2n).

Proof. By Lemma 21.4, each prime-power in the prime-power

decomposition of

(
2n

n

)
is at most 2n. There are most π(2n) such prime

powers, so

(
2n

n

)
≤ (2n)π(2n). By Lemma 21.5, we get 2n ≤ (2n)π(2n), so

taking logarithms of both sides gives n log 2 ≤ π(2n) log(2n), as
claimed.
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Lemma 21.8

Lemma 21.8

Lemma 21.8. For r ≥ 1, we have π(22r ) < 22r+2/r .

Proof. We use induction. With r = 1 we have
π(22(1)) = π(4) = 2 < 22(1)+2/(1) = 16, so that the base case is
established. For the induction step, suppose that the lemma holds for
r = k: π(22k) < 22k+2/k.

Then for r = k + 1 we have

π(22(k+1)) = π(22k+2) = π(2 · 22k+1)

≤ 2(22k+1) log 2

log 22k+1
+ π(22k+1) by Lemma 21.6 with n = 22k+1

=
22k+2 log 2

(2k + 1) log 2
+ π(22k+1) =

22k+2

2k + 1
+ π(2 · 22k)

≤ 22k+2

2k + 1
+

2(22k) log 2

log 22k
+ π(22k) by Lemma 21.6

with n = 22k
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Lemma 21.8

Lemma 21.8 (continued 1)

Lemma 21.8. For r ≥ 1, we have π(22r ) < 22r+2/r .

Proof (continued). . . .

π(22(k+1)) ≤ 22k+2

2k + 1
+

2(22k) log 2

log 22k
+ π(22k)

<
22k+2

2k + 1
+

22k+1

2k
+

22k+2

k
by the induction hypothesis

=
22k+2

2k + 1
+

22k

k
+

22k+2

k

<
22k+2

2k
+

22k

k
+

22k+2

k
since

1

2k + 1
<

1

2k

=
22k+1 + 22k + 22k+2

k
=

3 · 22k + 22k+2

k
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Lemma 21.8

Lemma 21.8 (continued 2)

Lemma 21.8. For r ≥ 1, we have π(22r ) < 22r+2/r .

Proof (continued). . . .

π(22(k+1)) <
22k+1 + 22k + 22k+2

k
=

3 · 22k + 22k+2

k

≤ 3 · 22k + 22k+2

k

2k

k + 1
since 1 ≤ 2k

k + 1
for k ≥ 1

=
3 · 22k+1 + 22k+3

k + 1
<

4 · 22k+1 + 22k+3

k + 1

=
22k+3 + 22k+3

k + 1
=

22k+4

k + 1
=

22(k+1)+2

k + 1
.

So the claim holds for r = k + 1 and, by induction, holds for all integers
r ≥ 1, as claimed.
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Theorem 21.1

Theorem 21.1

Theorem 21.1. For x ≥ 2, we have

1

4
log 2(x/ log x) ≤ π(x) ≤ (32 log 2)(x/ log x).

Proof. For the lower bound, fix x and let n be so that 2n ≤ x < 2n + 2.
We have

π(x) ≥ π(2n) since π(x) is an increasing function

≥ n log 2

log(2n)
by Lemma 21.7

≥ n log 2

log x
since 2n ≤ x so that log(2n) ≤ log x

≥ 2n + 2

4

log 2

log x
since n ≥ 2n + 2

4
for n ≥ 1

>
x

4

log 2

log x
since 2n + 2 > x .
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Theorem 21.1

Theorem 21.1 (continued)

Theorem 21.1. For x ≥ 2, we have

1

4
log 2(x/ log x) ≤ π(x) ≤ (32 log 2)(x/ log x).

Proof (continued). For the upper bound, fix x and let r be so that
22r−2 ≤ x < 2r . We have

π(x)

x
≤ π(22r )

x
since π(x) is an increasing function

≤ π(22r )

22r−2
since 22r−2 ≤ x

<
22r+2

22r−2r
by Lemma 21.8

= 16/r .

Since x < 22r then log x < log(22r ) = 2r log 2, and 1/r < (2 log 2)/(log x).

Therefore
π(x)

x
<

16

r
<

32 log 2

log x
, as claimed.
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