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Theorem 22.A

Theorem 22.A

Theorem 22.A. An arithmetic progression of prime numbers must be
finite in length.

Proof. Suppose the arithmetic progression is given by the function
f (n) = an + b. Let p be prime and suppose p - a, so that (a, p) = 1. So
by Lemma 5.2 there is (exactly one) integer r such that ax ≡ −b (mod p).
Then a(r + kp) + b ≡ ar + b ≡ 0 (mod p) for all k ∈ {0, 1, 2, . . .}. So
every pth term in the sequence is divisible by p (that is, ar + b is divisible
by p, ar + b + p is divisible by p, ar + b + 2p is divisible by p, etc.).

Since
one of these multiples of p must be in the sequence (and hence p-terms
later the sequence repeats a multiple of p), then the sequence cannot
consist of only primes (any multiple of p greater then p is not prime).
That is, the arithmetic progression of primes must be finite in length, as
claimed.
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Theorem 22.C

Theorem 22.C

Theorem 22.C. If f (n) = aknk + ak−1n
k−1 + · · ·+ a2n

2 + a1n + a0 is a
polynomial function with integer coefficients, and if r is such that f (r) ≡ 0
(mod p) for some p, then f (r + mp) ≡ f (r) ≡ 0 (mod p) for all m ∈ N.
That is, no polynomial can have only prime values.

Proof. Notice that we cannot have f (r) ∈ {−1, 0, 1} for all r ∈ N, unless
f is a constant function (and constant functions don’t count as polynomial
functions). So there is r ∈ N such that f (r) 6∈ {−1, 0, 1}. For p a prime
divisor of such f (r), we have f (r) ≡ 0 (mod p).

Notice that by the
Binomial Theorem (r + mp)N =

∑N
i=0

(N
i

)
rN−i (mp)i ≡ rN (mod p), so

f (r+mp) = ak(r+mp)k+ak−1(r+mp)k−1+· · ·+a2(r+mp)2+a1(r+mp)+a0

≡ ak rk + ak−1r
k−1 + · · ·+ a2r

2 + a1r + a0 ≡ f (r) (mod p).

So, as with arithmetic progressions, every pth term in the sequence is
divisible by p, and so is not prime. Hence, no polynomial can have only
prime values, as claimed
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Theorem 22.1

Theorem 22.1

Theorem 22.1. There is a real number θ such that [θ3n
] is a prime for all

n ∈ N.

Proof. Let p1 be any prime greater than integer A given in Theorem
2.2.D. Define a sequence of prime numbers recursively for n = 1, 2, . . .
where pn+1 satisfies p3

n < pn+1 < (pn + 1)3 − 1. Notice that such pn+1

always exists by Theorem 2.2.D. Let un = p3−n

n and vn = (pn + 1)3
−n

for
n = 1, 2, . . .. Since pn+1 > p3

n and 3−n−1 is a positive exponent, then
p3−n−1

n+1 > (p3
n)

3−n−1
and so as n increases, un increases because:

un+1 = p3−n−1

n+1 > (p3
n)

3−n−1
= p3−n

n = un.

Similarly, since pn+1 < (pn + 1)3 − 1 and 3−n−1 is a positive exponent,
then (pn+1 + 1)3

−n−1
< ((pn + 1)3 − 1 + 1)3

−n−1
and so as n increases then

vn decreases because:

vn+1 = (pn+1 + 1)3
−n−1

< ((pn + 1)3 − 1 + 1)3
−n−1

= (pn + 1)3
−n

= vn.
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Theorem 22.1

Theorem 22.1 (continued)

Theorem 22.1. There is a real number θ such that [θ3n
] is a prime for all

n ∈ N.

Proof (continued). Now un = p3−n

n < (pn + 1)3
−n

= vn, so we now have
un < vn < vn−1 < · · · < v1. So un < v1 for all n ∈ N. That is, {un} is an
increasing sequence (and hence nondecreasing) of real numbers that is
bounded above by v1. So by Lemma 22.A, {un} has a limit, say
limn→∞ un = θ. Similarly, vn > un > un−1 > · · · > u1, so we also have
vn > u1 for all n ∈ N. That is, {vn} is a decreasing sequence (and hence
nonincreasing) of real numbers that is bounded below by u1. So by
Lemma 22.B, {vn} has a limit, say limn→∞ vn = ϕ. Since {un} increases
and {vn} decreases, we have un < θ ≤ ϕ < vn for all n ∈ N. Thus
u3n

n < θ3n ≤ ϕ3n
< v3n

n for all n ∈ N. Since u3n

n = pn and v3n

n = pn + 1,
then we have pn < θ3n

< pn + 1. So θ3n
lies between two consecutive

integers, and hence [θ3n
] = pn. That is, [θ3n

] is prime for all n ∈ N, as
claimed.

() Elementary Number Theory March 11, 2022 6 / 17



Theorem 22.1

Theorem 22.1 (continued)

Theorem 22.1. There is a real number θ such that [θ3n
] is a prime for all

n ∈ N.

Proof (continued). Now un = p3−n

n < (pn + 1)3
−n

= vn, so we now have
un < vn < vn−1 < · · · < v1. So un < v1 for all n ∈ N. That is, {un} is an
increasing sequence (and hence nondecreasing) of real numbers that is
bounded above by v1. So by Lemma 22.A, {un} has a limit, say
limn→∞ un = θ. Similarly, vn > un > un−1 > · · · > u1, so we also have
vn > u1 for all n ∈ N. That is, {vn} is a decreasing sequence (and hence
nonincreasing) of real numbers that is bounded below by u1. So by
Lemma 22.B, {vn} has a limit, say limn→∞ vn = ϕ. Since {un} increases
and {vn} decreases, we have un < θ ≤ ϕ < vn for all n ∈ N. Thus
u3n

n < θ3n ≤ ϕ3n
< v3n

n for all n ∈ N. Since u3n

n = pn and v3n

n = pn + 1,
then we have pn < θ3n

< pn + 1. So θ3n
lies between two consecutive

integers, and hence [θ3n
] = pn. That is, [θ3n

] is prime for all n ∈ N, as
claimed.

() Elementary Number Theory March 11, 2022 6 / 17



Lemma 22.E

Lemma 22.E

Lemma 22.E. For n ≥ 2, we have
∏

p≤n p ≤ 22n where p is prime.

Proof. First, observe that by the Binomial Theorem,

22m+1 = (1+1)2m+1 = 1+

(
2m + 1

1

)
+

(
2m

2

)
+· · ·+

(
2m + 1

m

)
+

(
2m + 1

m + 1

)

+ · · ·+
(

2m + 1

2m

)
+ 1 ≥

(
2m + 1

m

)
+

(
2m + 1

m + 1

)
= 2

(
2m + 1

m

)
,

and so 22m ≥
(

2m + 1

m

)
=

(2m + 1)(2M) · · · (m + 2)

m(m − 1) · · · (2)(1)
.

Now

(
2m + 1

m

)
is

divisible by each prime p such that m + 1 < p ≤ 2m + 1, so∏
m+1<p≤2m+1

p ≤
(

2m + 1

m

)
≤ 22m. (∗)
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Lemma 22.E

Lemma 22.E (continued 1)

Lemma 22.E. For n ≥ 2, we have
∏

p≤n p ≤ 22n where p is prime.

Proof (continued). We now prove the claim by induction. The claim
holds for n = 2 since

∏
p≤2 p = 2 ≤ 4 = 22(2), so the base case is

established. For the induction hypothesis, suppose the claim holds for all
n ≤ k. If k is odd, then k + 1 is even and∏

p≤k+1

p =
∏
p≤k

p ≤ 22k by the induction hypothesis

≤ 22(k+1),

and the induction step holds when k is odd.
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Lemma 22.E

Lemma 22.E (continued 2)

Lemma 22.E. For n ≥ 2, we have
∏

p≤n p ≤ 22n where p is prime.

Proof (continued). If k is even, say k = 2m, then

∏
p≤k+1

p =

 ∏
p≤m+1

p

  ∏
m+1<p≤2m+1

p


≤ 22(m+1)22m by the induction hypothesis and (∗)
= 24m+2 = 22(2m+1) = 22(k+1),

and the induction step holds when k is even. So by induction, the claim
holds for all n ≥ 2.
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Lemma 22.F

Lemma 22.F

Lemma 22.F. For n ≥ 1, we have

(
2n

n

)
≥ 22n

2n
.

Proof. We prove the claim by induction. For the base case, with n = 1 we

have

(
2n

n

)
=

(
2

1

)
= 2 =

4

2
=

22(1)

2(1)
=

22n

2n
. For the induction hypothesis,

suppose the claim holds for n = k so that

(
2k

k

)
≥ 22k

2k
.

With n = k + 1

we have(
2(k + 1)

k + 1

)
=

(
2k + 2

k + 1

)
=

(2k + 2)!

(k + 1)!(k + 1)!
=

(2k + 2)(2k + 1)(2k)!

(k + 1)2k!k!

=
2(k + 1)(2k + 1)

(k + 1)2
(2k)!

k!k!
=

2(k + 1)(2k + 1)

(k + 1)2

(
2k

k

)
≥ 2(k + 1)(2k + 1)

(k + 1)2
22k

2k
by the induction hypothesis
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Lemma 22.F

Lemma 22.F (continued)

Lemma 22.F. For n ≥ 1, we have

(
2n

n

)
≥ 22n

2n
.

Proof (continued). . . .(
2(k + 1)

k + 1

)
≥ 2(k + 1)(2k + 1)

(k + 1)2
22k

2k

=
2k + 1

k + 1

22k+1

2k
=

(2k + 2)(2k + 1)

(2k + 2)(k + 1)

22k+1

2k

=
2(k + 1)

k + 1

2k + 1

2k

22k+1

2k + 2
≥ 22(k+1)

2(k + 1)
,

so the induction step is established. Hence, the claim holds by induction
for all n ∈ N.
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Theorem 22.2. Bertrand’s Theorem

Theorem 22.2. Bertrand’s Theorem

Theorem 22.2. Bertrand’s Theorem.
For all integers n ≥ 2, there is a prime p such that n < p < 2n.

Proof. ASSUME that for some n ∈ N there are no primes p such that
n < p < 2n or, equivalently, such that n < p ≤ 2n. For this value of n, let

N =

(
2n

n

)
=

(2n)(2n − 1)(2n − 2) · · · (n + 1)

n(n − 1)(n − 2) · · · (2)(1)
.

So if 2n/3 < p ≤ n, then p is a factor of the denominator, and since
2p > 4n/3 ≥ n + 1, then 2p is a factor of the numerator. The two p’s
cancel and, since 3p > 2n, there are no more factors of p in the numerator.
Thus all prime divisors of N are at most 2n/3, so that by Lemma 22.E∏

p |N

≤
∏

p≤2n/3

p ≤ 22(2n/3) = 24n/3. (∗)
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n(n − 1)(n − 2) · · · (2)(1)
.

So if 2n/3 < p ≤ n, then p is a factor of the denominator, and since
2p > 4n/3 ≥ n + 1, then 2p is a factor of the numerator. The two p’s
cancel and, since 3p > 2n, there are no more factors of p in the numerator.
Thus all prime divisors of N are at most 2n/3, so that by Lemma 22.E∏

p |N

≤
∏

p≤2n/3

p ≤ 22(2n/3) = 24n/3. (∗)
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Theorem 22.2. Bertrand’s Theorem

Theorem 22.2. Bertrand’s Theorem (continued 1)

Theorem 22.2. Bertrand’s Theorem.
For all integers n ≥ 2, there is a prime p such that n < p < 2n.

Proof (continued). By Lemma 21.4, each prime power in the
prime-power decomposition of N =

(2n
n

)
is at most 2n. So, if p appears in

the prime-power decomposition of N to a power greater than 1, then
p2 ≤ 2n (in fact if pk is in the prime-power decomposition then pk ≤ 2n,
but we only need the case k = 2 since if pk ≤ 2n, where k ≥ 2, then also
p2 ≤ 2n) and so p ≤

√
2n. There are at most

√
2n such primes, and since

each prime power is at most 2n, so their total contribution to the
prime-power decomposition is at most (2n)

√
2n. All of the other primes

appear to the power 1 and, from (∗), their product is at most 24n/3. That
is, the prime divisors of N that appear to the power 1 in the prime-power
decomposition of N are bounded by 24n/3, and those that appear to a
power greater than 1 have a product bounded by (2n)

√
2n.
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Theorem 22.2. Bertrand’s Theorem (continued 2)

Theorem 22.2. Bertrand’s Theorem.
For all integers n ≥ 2, there is a prime p such that n < p < 2n.

Proof (continued). Thus N =

(
2n

n

)
≤ 24/3(2n)

√
2n. By Lemma 22.F,(

2n

n

)
≥ 22n

2n
, so we now have

22n

2n
≤ 24n/3(2n)

√
2n. Taking logarithms of

this inequality (remember, the log function is increasing and so preserves
inequalities), we get 2n log 2− log 2n ≤ (4n/3) log 2 +

√
2n log 2n, or

(2n/3) log 2 ≤ (
√

2n + 1) log 2n ≤ (
√

2n +
√

2n) log 2n = 2
√

2
√

n log 2n,

or
√

n ≤ 2
√

2 log 2n

log 2
.

() Elementary Number Theory March 11, 2022 14 / 17



Theorem 22.2. Bertrand’s Theorem

Theorem 22.2. Bertrand’s Theorem (continued 3)

Theorem 22.2. Bertrand’s Theorem.
For all integers n ≥ 2, there is a prime p such that n < p < 2n.

Proof (continued). . . .
√

n ≤ 2
√

2 log 2n

log 2
. But

√
n increases more rapidly

that log 2n, then this inequality if false for n sufficiently large. In fact, we
can numerically verify that for n > 2787 the inequality is false, and we
have CONTRADICTION. So the assumption that there are no primes p
such that n < p < 2n is false for n > 2787, and so the claim holds
provided n > 2787. By Note 22.C, we see that the claim holds for
n ≤ 9973, and hence the claim holds for all n ∈ N, as needed.
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Theorem 22.3

Theorem 22.3. There exists a real number θ such that [2θ], [22θ
], [222θ

],
. . . are all prime.

Proof. Let p1 be any prime, and for n ∈ N let pn+1 be a prime such that
2p2 < pn+1 < 2pn+1; notice that such a pn+1 exists by Theorem 22.2. Let
un = log(n) pn and vn = log(n) log(n)(pn + 1), where the function log(n) is
defined recursively as: log(1) k = log2 k and log(n) k = log2(log(n−1) k).
Since 2p2 < pn+1 < 2pn+1, we have by taking logarithms base 2 that

log2 2p2 < log2 pn+1 < log2 2pn+1 or pn < log2 pn+1 < pn + 1.

Since pn+1 + 1 ≤ 2pn+1 (because pn+1 < 2pn+1) then we have

pn < log(1) pn+1 < log(1)(pn+1 + 1) ≤ log(1)(2pn+1) = pn + 1.

Taking logarithms base 2 of this inequality n times gives

log(n) pn < log(n+1) pn+1 < log(n+1)(pn+1 + 1) ≤ log(n)(pn + 1)

or un < un+1 < vn+1 ≤ vn.
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Theorem 22.3

Theorem 22.3 (continued)

Theorem 22.3. There exists a real number θ such that [2θ], [22θ
], [222θ

],
. . . are all prime.

Proof (continued). . . . un < un+1 < vn+1 ≤ vn. So sequence {un} is an
increasing (that is, nondecreasing) sequence which is bounded above by v1,
so that it converges by Lemma 22.A, say limn→∞ un = θ. Sequence {vn} is
a nonincreasing sequence which is bounded below below by u1, so that it
converges by Lemma 22.B, say limn→∞ vn = ϕ. Define exp(n) k recursively
as: exp(1) k = 2k and exp(n) k = 2exp(n+1) k . Since un < θ < vn for all
n ∈ N, then exp(n) un < exp(n) θ < exp(n) vn, or pn < exp(n) < pn + 1.
Since exp(n) θ lies between two consecutive integers, then [exp(n) θ] = pn.
That is, [exp(n) θ] is prime for all n ∈ N. Since exp(n) k is defined as an
iterated composition of base 2 exponential functions, then we have that

each of [2θ], [22θ
], [222θ

], . . . are prime, , as claimed.
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Theorem 22.3 (continued)
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