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Lemma 3.1

Lemma 3.1

Lemma 3.1. If x = x0 and y = y0 is a solution of ax + by = c , then so is
x = x0 + bt and y = y0 − at for any integer t ∈ Z.

Proof. Since x = x0 and y = y0 is a solution, then ax0 + by0 = c . We
simply substitute x = x0 + bt and y = y0 − at and confirm that it is a
solution. We have

a(x0 + bt) + b(y0 − at) = ax0 + abt + by0 − bat = ax0 + by0 = c ,

as claimed.
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Lemma 3.2

Lemma 3.2

Lemma 3.2. If (a, b) 6 | c then ax + by = c has no solutions, and if
(a, b) | c then ax + by = c has a solution.

Proof. Suppose there is a solution to ax + by = c , say x = x0, y = y0.
Then ax0 + by0 = c . Also (a, b) |ax0 and (a, b) | by0. So by Lemma 1.1, we
have (a, b) | c . That is, if ax + by = c has a solution then (a, b) | c . The
(logically equivalent) contrapositive of this implication is: “If (a, b) | c then
ax + by = c does not have a solution.” So the first claim holds.

Now suppose that (a, b) | c . Then c = m(a, b) for some integer m. By
Theorem 1.4, there are integers r and s such that ar + bs = (a, b). Then
m(ar + bs) = m(a, b) or a(rm) + b(sm) = m(a, b) = c , so we have
x = rm, y = sm as a solution to ax + by = c . That is, the second claim
holds.

() Elementary Number Theory July 6, 2021 4 / 7



Lemma 3.2

Lemma 3.2

Lemma 3.2. If (a, b) 6 | c then ax + by = c has no solutions, and if
(a, b) | c then ax + by = c has a solution.

Proof. Suppose there is a solution to ax + by = c , say x = x0, y = y0.
Then ax0 + by0 = c . Also (a, b) |ax0 and (a, b) | by0. So by Lemma 1.1, we
have (a, b) | c . That is, if ax + by = c has a solution then (a, b) | c . The
(logically equivalent) contrapositive of this implication is: “If (a, b) | c then
ax + by = c does not have a solution.” So the first claim holds.

Now suppose that (a, b) | c . Then c = m(a, b) for some integer m. By
Theorem 1.4, there are integers r and s such that ar + bs = (a, b). Then
m(ar + bs) = m(a, b) or a(rm) + b(sm) = m(a, b) = c , so we have
x = rm, y = sm as a solution to ax + by = c . That is, the second claim
holds.

() Elementary Number Theory July 6, 2021 4 / 7



Lemma 3.2

Lemma 3.2

Lemma 3.2. If (a, b) 6 | c then ax + by = c has no solutions, and if
(a, b) | c then ax + by = c has a solution.

Proof. Suppose there is a solution to ax + by = c , say x = x0, y = y0.
Then ax0 + by0 = c . Also (a, b) |ax0 and (a, b) | by0. So by Lemma 1.1, we
have (a, b) | c . That is, if ax + by = c has a solution then (a, b) | c . The
(logically equivalent) contrapositive of this implication is: “If (a, b) | c then
ax + by = c does not have a solution.” So the first claim holds.

Now suppose that (a, b) | c . Then c = m(a, b) for some integer m. By
Theorem 1.4, there are integers r and s such that ar + bs = (a, b). Then
m(ar + bs) = m(a, b) or a(rm) + b(sm) = m(a, b) = c , so we have
x = rm, y = sm as a solution to ax + by = c . That is, the second claim
holds.

() Elementary Number Theory July 6, 2021 4 / 7



Exercise 3.3(b).

Exercise 3.3(b).

Exercise 3.3(b). Find all solutions of 14x + 35y = 91.

Solution. First, we find the greatest common divisor of the coefficients:
(a, b) = (14, 35) = 7 = d . Notice that 7 | 91 (or (a, b) |c) so that by
Lemma 3.2 the given equation has a solution. Dividing the both sides of
14x + 35y = 91 by 7, gives 2x + 5y = 13 (or a′x + b′y = c ′ where a′ = 2,
b′ = 5, and c ′ = 13).

Now if we can find one solution of 2x + 5y = 13,
then we can find infinitely many solutions using Lemma 3.1 (and we will
see that the solutions given by Lemma 3.1 are all of the solutions in
Lemma 3.3). Observe that x0 = 4 and y0 = 1 is a solution. By Lemma
3.1, x = x0 + b′t = 4 + 5t and y = y0 − a′t = 1− 2t is a solution for all
t ∈ Z. By Lemma 3.3 (to be done next), these are all of the solutions of

the original equation: x = 4 + 5t and y = 1− 2t for t ∈ Z. �
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Lemma 3.3

Lemma 3.3

Lemma 3.3. Suppose that (a, b) = 1 and x = x0, y = y0 is a solution of
ax + by = c . Then all solutions of ax + by = c are given by x = x0 + bt,
y = y0 − at where t ∈ Z.

Proof. Since we have hypothesized that (a, b) = 1 then we have (a, b) | c
and by Lemma 3.2 we know that the equation has a solution. Let x = r ,
y = s be any solution; we want to show that r = x0 + bt, y = y0 − at for
some integer t. Since x = x0, y = y0 is a solution, then we have
ax0 + by0 = c and hence

c − c = (ax0 + by0)− (ar + bs) or a(x0 − r) + b(y0 − s) = 0. (∗)

Since a | a(x0 − r) and a | 0 then by Lemma 1.2 a | b(y0 − s). Since
(a, b) = 1 by hypothesis, then by Corollary 1.1 we have that a |(y0 − s).
That is (by the definition of divisibility), at = y0 − s for some integer t, or
s = y0 − at where t ∈ Z, as claimed.
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Lemma 3.3

Lemma 3.3 (continued)

Lemma 3.3. Suppose that (a, b) = 1 and x = x0, y = y0 is a solution of
ax + by = c . Then all solutions of ax + by = c are given by x = x0 + bt,
y = y0 − at where t ∈ Z.

Proof (continued). Since a(x0 − r) + b(y0 − s) = 0 by (∗), then
a(x0 − r) + b(at) = 0 or (x0 − r) + bt = 0 (since a 6= 0, as implied by the
hypothesis that (a, b) = 1). That is, r = x0 + bt where t ∈ Z, as claimed.
Since x = r and y = s is an arbitrary solution, then the result follows.
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