Elementary Number Theory

Section 3. Linear Diophantine Equations—Proofs of Theorems

Table of contents

(1) Lemma 3.1
(2) Lemma 3.2
(3) Exercise 3.3(b).
(4) Lemma 3.3

Lemma 3.1

Lemma 3.1. If $x=x_{0}$ and $y=y_{0}$ is a solution of $a x+b y=c$, then so is $x=x_{0}+b t$ and $y=y_{0}-a t$ for any integer $t \in \mathbb{Z}$.

Proof. Since $x=x_{0}$ and $y=y_{0}$ is a solution, then $a x_{0}+b y_{0}=c$. We simply substitute $x=x_{0}+b t$ and $y=y_{0}-a t$ and confirm that it is a solution. We have

$$
a\left(x_{0}+b t\right)+b\left(y_{0}-a t\right)=a x_{0}+a b t+b y_{0}-b a t=a x_{0}+b y_{0}=c
$$

as claimed.

Lemma 3.1

Lemma 3.1. If $x=x_{0}$ and $y=y_{0}$ is a solution of $a x+b y=c$, then so is $x=x_{0}+b t$ and $y=y_{0}-a t$ for any integer $t \in \mathbb{Z}$.

Proof. Since $x=x_{0}$ and $y=y_{0}$ is a solution, then $a x_{0}+b y_{0}=c$. We simply substitute $x=x_{0}+b t$ and $y=y_{0}-a t$ and confirm that it is a solution. We have

$$
a\left(x_{0}+b t\right)+b\left(y_{0}-a t\right)=a x_{0}+a b t+b y_{0}-b a t=a x_{0}+b y_{0}=c
$$

as claimed.

Lemma 3.2

Lemma 3.2. If $(a, b) \not \backslash c$ then $a x+b y=c$ has no solutions, and if $(a, b) \mid c$ then $a x+b y=c$ has a solution.

Proof. Suppose there is a solution to $a x+$ by $=c$, say $x=x_{0}, y=y_{0}$.
Then $a x_{0}+b y_{0}=c$. Also $(a, b) \mid a x_{0}$ and $(a, b) \mid b y_{0}$. So by Lemma 1.1, we have $(a, b) \mid c$. That is, if $a x+b y=c$ has a solution then $(a, b) \mid c$. The (logically equivalent) contrapositive of this implication is: "If $(a, b) \mid c$ then $a x+b y=c$ does not have a solution." So the first claim holds.

Lemma 3.2

Lemma 3.2. If $(a, b) \not \backslash c$ then $a x+b y=c$ has no solutions, and if $(a, b) \mid c$ then $a x+b y=c$ has a solution.

Proof. Suppose there is a solution to $a x+b y=c$, say $x=x_{0}, y=y_{0}$. Then $a x_{0}+b y_{0}=c$. Also $(a, b) \mid a x_{0}$ and $(a, b) \mid b y_{0}$. So by Lemma 1.1, we have $(a, b) \mid c$. That is, if $a x+b y=c$ has a solution then $(a, b) \mid c$. The (logically equivalent) contrapositive of this implication is: "If $(a, b) \mid c$ then $a x+b y=c$ does not have a solution." So the first claim holds.

Now suppose that $(a, b) \mid c$. Then $c=m(a, b)$ for some integer m. By Theorem 1.4, there are integers r and s such that $a r+b s=(a, b)$. Then $m(a r+b s)=m(a, b)$ or $a(r m)+b(s m)=m(a, b)=c$, so we have $x=r m, y=s m$ as a solution to $a x+b y=c$. That is, the second claim holds.

Lemma 3.2

Lemma 3.2. If $(a, b) \not \backslash c$ then $a x+b y=c$ has no solutions, and if $(a, b) \mid c$ then $a x+b y=c$ has a solution.

Proof. Suppose there is a solution to $a x+b y=c$, say $x=x_{0}, y=y_{0}$.
Then $a x_{0}+b y_{0}=c$. Also $(a, b) \mid a x_{0}$ and $(a, b) \mid b y_{0}$. So by Lemma 1.1, we have $(a, b) \mid c$. That is, if $a x+b y=c$ has a solution then $(a, b) \mid c$. The (logically equivalent) contrapositive of this implication is: "If $(a, b) \mid c$ then $a x+b y=c$ does not have a solution." So the first claim holds.

Now suppose that $(a, b) \mid c$. Then $c=m(a, b)$ for some integer m. By Theorem 1.4, there are integers r and s such that $a r+b s=(a, b)$. Then $m(a r+b s)=m(a, b)$ or $a(r m)+b(s m)=m(a, b)=c$, so we have $x=r m, y=s m$ as a solution to $a x+b y=c$. That is, the second claim holds.

Exercise 3.3(b).

Exercise 3.3(b). Find all solutions of $14 x+35 y=91$.
Solution. First, we find the greatest common divisor of the coefficients: $(a, b)=(14,35)=7=d$. Notice that $7 \mid 91($ or $(a, b) \mid c)$ so that by
Lemma 3.2 the given equation has a solution. Dividing the both sides of $14 x+35 y=91$ by 7 , gives $2 x+5 y=13$ (or $a^{\prime} x+b^{\prime} y=c^{\prime}$ where $a^{\prime}=2$, $b^{\prime}=5$, and $c^{\prime}=13$).

Exercise 3.3(b).

Exercise 3.3(b). Find all solutions of $14 x+35 y=91$.
Solution. First, we find the greatest common divisor of the coefficients: $(a, b)=(14,35)=7=d$. Notice that $7 \mid 91$ (or $(a, b) \mid c)$ so that by Lemma 3.2 the given equation has a solution. Dividing the both sides of $14 x+35 y=91$ by 7 , gives $2 x+5 y=13$ (or $a^{\prime} x+b^{\prime} y=c^{\prime}$ where $a^{\prime}=2$, $b^{\prime}=5$, and $c^{\prime}=13$). Now if we can find one solution of $2 x+5 y=13$, then we can find infinitely many solutions using Lemma 3.1 (and we will see that the solutions given by Lemma 3.1 are all of the solutions in Lemma 3.3). Observe that $x_{0}=4$ and $y_{0}=1$ is a solution. By Lemma 3.1, $x=x_{0}+b^{\prime} t=4+5 t$ and $y=y_{0}-a^{\prime} t=1-2 t$ is a solution for all $t \in \mathbb{Z}$. By Lemma 3.3 (to be done next), these are all of the solutions of the original equation: $x=4+5 t$ and $y=1-2 t$ for $t \in \mathbb{Z}$.

Exercise 3.3(b).

Exercise 3.3(b). Find all solutions of $14 x+35 y=91$.
Solution. First, we find the greatest common divisor of the coefficients: $(a, b)=(14,35)=7=d$. Notice that $7 \mid 91$ (or $(a, b) \mid c)$ so that by Lemma 3.2 the given equation has a solution. Dividing the both sides of $14 x+35 y=91$ by 7 , gives $2 x+5 y=13$ (or $a^{\prime} x+b^{\prime} y=c^{\prime}$ where $a^{\prime}=2$, $b^{\prime}=5$, and $c^{\prime}=13$). Now if we can find one solution of $2 x+5 y=13$, then we can find infinitely many solutions using Lemma 3.1 (and we will see that the solutions given by Lemma 3.1 are all of the solutions in Lemma 3.3). Observe that $x_{0}=4$ and $y_{0}=1$ is a solution. By Lemma 3.1, $x=x_{0}+b^{\prime} t=4+5 t$ and $y=y_{0}-a^{\prime} t=1-2 t$ is a solution for all $t \in \mathbb{Z}$. By Lemma 3.3 (to be done next), these are all of the solutions of the original equation: $x=4+5 t$ and $y=1-2 t$ for $t \in \mathbb{Z}$.

Lemma 3.3

Lemma 3.3. Suppose that $(a, b)=1$ and $x=x_{0}, y=y_{0}$ is a solution of $a x+b y=c$. Then all solutions of $a x+b y=c$ are given by $x=x_{0}+b t$, $y=y_{0}-a t$ where $t \in \mathbb{Z}$.

Proof. Since we have hypothesized that $(a, b)=1$ then we have $(a, b) \mid c$ and by Lemma 3.2 we know that the equation has a solution. Let $x=r$, $y=s$ be any solution; we want to show that $r=x_{0}+b t, y=y_{0}-a t$ for some integer t. Since $x=x_{0}, y=y_{0}$ is a solution, then we have $a x_{0}+b y_{0}=c$ and hence

$$
\begin{equation*}
c-c=\left(a x_{0}+b y_{0}\right)-(a r+b s) \text { or } a\left(x_{0}-r\right)+b\left(y_{0}-s\right)=0 . \tag{*}
\end{equation*}
$$

Lemma 3.3

Lemma 3.3. Suppose that $(a, b)=1$ and $x=x_{0}, y=y_{0}$ is a solution of $a x+b y=c$. Then all solutions of $a x+b y=c$ are given by $x=x_{0}+b t$, $y=y_{0}-a t$ where $t \in \mathbb{Z}$.

Proof. Since we have hypothesized that $(a, b)=1$ then we have $(a, b) \mid c$ and by Lemma 3.2 we know that the equation has a solution. Let $x=r$, $y=s$ be any solution; we want to show that $r=x_{0}+b t, y=y_{0}-a t$ for some integer t. Since $x=x_{0}, y=y_{0}$ is a solution, then we have $a x_{0}+b y_{0}=c$ and hence

$$
\begin{equation*}
c-c=\left(a x_{0}+b y_{0}\right)-(a r+b s) \text { or } a\left(x_{0}-r\right)+b\left(y_{0}-s\right)=0 . \tag{*}
\end{equation*}
$$

Since $a \mid a\left(x_{0}-r\right)$ and $a \mid 0$ then by Lemma $1.2 a \mid b\left(y_{0}-s\right)$. Since $(a, b)=1$ by hypothesis, then by Corollary 1.1 we have that $a \mid\left(y_{0}-s\right)$ That is (by the definition of divisibility), at $=y_{0}-s$ for some integer t, or $s=y_{0}-a t$ where $t \in \mathbb{Z}$, as claimed.

Lemma 3.3

Lemma 3.3. Suppose that $(a, b)=1$ and $x=x_{0}, y=y_{0}$ is a solution of $a x+b y=c$. Then all solutions of $a x+b y=c$ are given by $x=x_{0}+b t$, $y=y_{0}-a t$ where $t \in \mathbb{Z}$.

Proof. Since we have hypothesized that $(a, b)=1$ then we have $(a, b) \mid c$ and by Lemma 3.2 we know that the equation has a solution. Let $x=r$, $y=s$ be any solution; we want to show that $r=x_{0}+b t, y=y_{0}-a t$ for some integer t. Since $x=x_{0}, y=y_{0}$ is a solution, then we have $a x_{0}+b y_{0}=c$ and hence

$$
\begin{equation*}
c-c=\left(a x_{0}+b y_{0}\right)-(a r+b s) \text { or } a\left(x_{0}-r\right)+b\left(y_{0}-s\right)=0 . \tag{*}
\end{equation*}
$$

Since $a \mid a\left(x_{0}-r\right)$ and $a \mid 0$ then by Lemma $1.2 a \mid b\left(y_{0}-s\right)$. Since $(a, b)=1$ by hypothesis, then by Corollary 1.1 we have that $a \mid\left(y_{0}-s\right)$. That is (by the definition of divisibility), at $=y_{0}-s$ for some integer t, or $s=y_{0}-a t$ where $t \in \mathbb{Z}$, as claimed.

Lemma 3.3 (continued)

Lemma 3.3. Suppose that $(a, b)=1$ and $x=x_{0}, y=y_{0}$ is a solution of $a x+b y=c$. Then all solutions of $a x+b y=c$ are given by $x=x_{0}+b t$, $y=y_{0}-a t$ where $t \in \mathbb{Z}$.

Proof (continued). Since $a\left(x_{0}-r\right)+b\left(y_{0}-s\right)=0$ by $(*)$, then $a\left(x_{0}-r\right)+b(a t)=0$ or $\left(x_{0}-r\right)+b t=0$ (since $a \neq 0$, as implied by the hypothesis that $(a, b)=1)$. That is, $r=x_{0}+b t$ where $t \in \mathbb{Z}$, as claimed. Since $x=r$ and $y=s$ is an arbitrary solution, then the result follows.

