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Theorem 4.1

Theorem 4.1. We have a = b (mod m) if and only if there is integer k
such that a = b+ km.
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Theorem 4.1

Theorem 4.1

Theorem 4.1. We have a = b (mod m) if and only if there is integer k
such that a = b+ km.

Proof. Suppose that a = b (mod m). Then by definition, m|(a — b). By
the definition of divisibility, there is some integer k with km = a — b, or
a = b+ km as claimed.
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Theorem 4.1

Theorem 4.1. We have a = b (mod m) if and only if there is integer k
such that a = b+ km.

Proof. Suppose that a = b (mod m). Then by definition, m|(a — b). By
the definition of divisibility, there is some integer k with km = a — b, or
a = b+ km as claimed.

Conversely, suppose a = b+ km (this is Exercise 4.3 in the book). Then
km = a — b and by the definition of divisibility, m|(a — b). By the
definition of equivalent modulo m, this implies a = b (mod m), as
claimed. O
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Theorem 4.2

Theorem 4.2. Every integer is congruent modulo m to exactly one of
0,1,2,...,m— 1. This number is called the least residue of the integer
modulo m.
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Theorem 4.2

Theorem 4.2. Every integer is congruent modulo m to exactly one of
0,1,2,...,m— 1. This number is called the least residue of the integer
modulo m.

Proof. Let a be an integer. Then by Theorem 1.2 (The Division
Algorithm), we have a = gm + r where 0 < r < m for unique integers ¢
and r. Since a = gm + r then by the definition of equivalent modulo m we
have a = r (mod m). Since r is uniquely determined by a and m, the
claim follows. O
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Theorem 4.3.

Theorem 4.3. We have a = b (mod m) if and only if a and b leave the
same remainder when divided by m.
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Theorem 4.3.

Theorem 4.3. We have a = b (mod m) if and only if a and b leave the
same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided
by m. Then a=qgim+ r and b= gom + r for some integers g; and g>.
Thena— b= (qgim+r)—(g2m+ r) = m(q1 — g2), and by the definition
of divisibility we have m|(a — b). So by the definition of equivalent
modulo m, we have a = b (mod m).
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Theorem 4.3.

Theorem 4.3. We have a = b (mod m) if and only if a and b leave the
same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided
by m. Then a=qgim+ r and b= gom + r for some integers g; and g>.
Thena— b= (qgim+r)—(g2m+ r) = m(q1 — g2), and by the definition
of divisibility we have m|(a — b). So by the definition of equivalent
modulo m, we have a = b (mod m).

Conversely, suppose a = b (mod m). Then a= b = r (mod m), where r is
the least residue given by Theorem 4.2. Then, as in the proof of Theorem
4.3, by Theorem 1.2 (The Division Algorithm) we have a = gym + r and
b = gom + r for some integers g1 and go. Since 0 < r < m — 1, then we
have that r is the remainder both when a is divided by m and when b is
divided by m, as claimed. O
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Lemma 4.1

Lemma 4.1. For integers a, b, ¢, and d we have

(a) a=a (mod m).

(b) If a= b (mod m) then b= a (mod m).

(c) If a= b (mod m) and b = ¢ (mod m) then a = ¢ (mod m).

(d) If a= b (mod m) and ¢ = d (mod m), then a+c=b+d
(mod m).

(e) If a= b (mod m) and ¢ = d (mod m), then ac = bd (mod
m).
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Lemma 4.1

Lemma 4.1. For integers a, b, ¢, and d we have

(a) a=a (mod m).

(b) If a= b (mod m) then b= a (mod m).

(c) If a= b (mod m) and b = ¢ (mod m) then a = ¢ (mod m).

(d) If a= b (mod m) and ¢ = d (mod m), then a+c=b+d
(mod m).

(e) If a= b (mod m) and ¢ = d (mod m), then ac = bd (mod
m).

Proof. (a) (This is Exercise 4.6.) Notice that m|0, or m|(a — a), so by
the definition of equivalent modulo m, a = a (mod m), as claimed.
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Lemma 4.1

Lemma 4.1. For integers a, b, ¢, and d we have

(a) a=a (mod m).

(b) If a= b (mod m) then b= a (mod m).

(c) If a= b (mod m) and b = ¢ (mod m) then a = ¢ (mod m).

(d) If a= b (mod m) and ¢ = d (mod m), then a+c=b+d
(mod m).

(e) If a= b (mod m) and ¢ = d (mod m), then ac = bd (mod
m).

Proof. (a) (This is Exercise 4.6.) Notice that m|0, or m|(a — a), so by
the definition of equivalent modulo m, a = a (mod m), as claimed.

(b) (This is Exercise 4.7.) a= b (mod m) then by the definition of
equivalent modulo m, we have m|(a — b). By the definition of divisibility,
a — b = km for some integer k. Hence b — a = (—k)m for integer —k and
so by the definition of equivalent modulo m, b = a (mod m), as claimed.
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Lemma 4.1 (continued 1)

Lemma 4.1. For integers a, b, ¢, and d we have
(c) If a= b (mod m) and b = ¢ (mod m) then a = ¢ (mod m).
(d) If a= b (mod m) and ¢ = d (mod m), then a+c=b+d

(mod m).
(e) If a= b (mod m) and ¢ = d (mod m), then ac = bd (mod
m).

Proof. (c) (This is Exercise 4.8.) Since a = b (mod m) then by the
definition of equivalent modulo m, we have m|(a — b). Since b = ¢ (mod
m) then by the definition of equivalent modulo m, we have m| (b — ¢). By
the definition of divisibility, a — b = kym and b — ¢ = kym for some
integers k1 and ko. Hence a—c=(a—b)+ (b—c¢) = kim+ kam

= (k1 + k2)m and by the definition of divisibility m|(a — ¢). Then by the
definition of equivalent modulo m, a = ¢ (mod m), as claimed.
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Lemma 4.1 (continued 2)

Lemma 4.1. For integers a, b, ¢, and d we have

(d) If a= b (mod m) and ¢ = d (mod m), then a+c=b+d

(mod m).
(e) If a= b (mod m) and ¢ = d (mod m), then ac = bd (mod
m).

Proof. (d) (This is Exercise 4.9.) As in part (c), a— b = kym and

¢ — d = kom for some integers k; and k. Hence,
(a+c)—(b+d)=(a—b)+(c—d) = ki,+kaem = (k1 + k2)m. Then by
the definition of equivalent modulo m, a4+ ¢ = b+ d (mod m), as claimed.
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Lemma 4.1 (continued 2)

Lemma 4.1. For integers a, b, ¢, and d we have
(d) If a= b (mod m) and ¢ = d (mod m), then a+c=b+d

(mod m).
(e) If a= b (mod m) and ¢ = d (mod m), then ac = bd (mod
m).

Proof. (d) (This is Exercise 4.9.) As in part (c), a— b = kym and

¢ — d = kom for some integers k; and k. Hence,
(a+c)—(b+d)=(a—b)+(c—d) = ki,+kaem = (k1 + k2)m. Then by
the definition of equivalent modulo m, a4+ ¢ = b+ d (mod m), as claimed.

(e) Since a = b (mod m) then b — a = km for some integer k by Theorem
4.1. Similarly, ¢ = d (mod m) implies d — ¢ = jm for some integer j. So
ac — bd = ac — (a+ km)(c + jm) = ac — ac — ajm — ckm — kjm?® =
m(—aj — ck — kjim), and by the definition of equivalent modulo m,

ac = bd (mod m), as claimed. O
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Theorem 4.4.

Theorem 4.4. If ac = bc (mod m) and (¢, m) =1, then a = b (mod m).
That is, we can cancel a factor on both sides of a congruence if the factor
is relatively prime to the modulus.
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Theorem 4.4.

Theorem 4.4. If ac = bc (mod m) and (¢, m) =1, then a = b (mod m).
That is, we can cancel a factor on both sides of a congruence if the factor
is relatively prime to the modulus.

Proof. Since ac = bc (mod m) then by the definition of congruence
modulo m, m|(ac — bc) or m|c(a— b). Since (m,c) =1 then by
Theorem 1.5 we have m|(a — b). So by the definition of congruence
modulo m, a = b (mod m), as claimed. O
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Theorem 4.5.

Theorem 4.5. If ac = bc (mod m) and (¢, m) = d, then a = b (mod
m/d).
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Theorem 4.5.

Theorem 4.5. If ac = bc (mod m) and (¢, m) = d, then a = b (mod
m/d).

Proof. Since ac = bc (mod m) then by the definition of congruence
modulo m, m|(ac — bc) or m|c(a — b). By the definition of divisibility,
c(a — b) = km for some integer k. Since d = (c, m) then ¢/d and m/d
are integers. So c(a— b)/d = km/d of (c/d)(a— b) = k(m/d); that is,
(m/d)|(c/d)(a— b). By Theorem 1.1 we have (m/d,c/d) =1, and so
by Corollary 1.1 we have (m/d) | (a — b). By the definition of congruence
modulo m/d we have a = b (mod m/d), as claimed. O
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Theorem 4.6.

Theorem 4.6. Every integer is congruent modulo 9 to the sum of its
digits.
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Theorem 4.6.

Theorem 4.6. Every integer is congruent modulo 9 to the sum of its
digits.

Proof. Let n be an integer with decimal representation
+didik_1dk_o---didy. That is,

n = +(d10% + dx 210571 + dj 210572 + - d110" + dp10°).

Now 10 = 1 (mod 9) and, more generally, for any i € N we have 10’ = 1
(mod 9). So

n==+(dx + dxk—1+ dk—2 + -+ di + do) (mod 9),

as claimed. ]
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