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Theorem 4.1

Theorem 4.1

Theorem 4.1. We have a ≡ b (mod m) if and only if there is integer k
such that a = b + km.

Proof. Suppose that a ≡ b (mod m). Then by definition, m | (a− b). By
the definition of divisibility, there is some integer k with km = a− b, or
a = b + km as claimed.

Conversely, suppose a = b + km (this is Exercise 4.3 in the book). Then
km = a− b and by the definition of divisibility, m | (a− b). By the
definition of equivalent modulo m, this implies a ≡ b (mod m), as
claimed.
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Theorem 4.2

Theorem 4.2

Theorem 4.2. Every integer is congruent modulo m to exactly one of
0, 1, 2, . . . ,m − 1. This number is called the least residue of the integer
modulo m.

Proof. Let a be an integer. Then by Theorem 1.2 (The Division
Algorithm), we have a = qm + r where 0 ≤ r < m for unique integers q
and r . Since a = qm + r then by the definition of equivalent modulo m we
have a ≡ r (mod m). Since r is uniquely determined by a and m, the
claim follows.
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Theorem 4.3.

Theorem 4.3.

Theorem 4.3. We have a ≡ b (mod m) if and only if a and b leave the
same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r , when divided
by m. Then a = q1m + r and b = q2m + r for some integers q1 and q2.
Then a− b = (q1m + r)− (q2m + r) = m(q1 − q2), and by the definition
of divisibility we have m | (a− b). So by the definition of equivalent
modulo m, we have a ≡ b (mod m).

Conversely, suppose a ≡ b (mod m). Then a ≡ b ≡ r (mod m), where r is
the least residue given by Theorem 4.2. Then, as in the proof of Theorem
4.3, by Theorem 1.2 (The Division Algorithm) we have a = q1m + r and
b = q2m + r for some integers q1 and q2. Since 0 ≤ r < m − 1, then we
have that r is the remainder both when a is divided by m and when b is
divided by m, as claimed.
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Lemma 4.1

Lemma 4.1

Lemma 4.1. For integers a, b, c , and d we have

(a) a ≡ a (mod m).

(b) If a ≡ b (mod m) then b ≡ a (mod m).

(c) If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

(d) If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d
(mod m).

(e) If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod
m).

Proof. (a) (This is Exercise 4.6.) Notice that m | 0, or m | (a− a), so by
the definition of equivalent modulo m, a ≡ a (mod m), as claimed.

(b) (This is Exercise 4.7.) a ≡ b (mod m) then by the definition of
equivalent modulo m, we have m | (a− b). By the definition of divisibility,
a− b = km for some integer k. Hence b − a = (−k)m for integer −k and
so by the definition of equivalent modulo m, b ≡ a (mod m), as claimed.
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Lemma 4.1

Lemma 4.1 (continued 1)

Lemma 4.1. For integers a, b, c , and d we have

(c) If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

(d) If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d
(mod m).

(e) If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod
m).

Proof. (c) (This is Exercise 4.8.) Since a ≡ b (mod m) then by the
definition of equivalent modulo m, we have m | (a− b). Since b ≡ c (mod
m) then by the definition of equivalent modulo m, we have m | (b− c). By
the definition of divisibility, a− b = k1m and b − c = k2m for some
integers k1 and k2. Hence a− c = (a− b) + (b − c) = k1m + k2m
= (k1 + k2)m and by the definition of divisibility m | (a− c). Then by the
definition of equivalent modulo m, a ≡ c (mod m), as claimed.
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Lemma 4.1

Lemma 4.1 (continued 2)

Lemma 4.1. For integers a, b, c , and d we have

(d) If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d
(mod m).

(e) If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod
m).

Proof. (d) (This is Exercise 4.9.) As in part (c), a− b = k1m and
c − d = k2m for some integers k1 and k2. Hence,
(a + c)− (b + d) = (a− b) + (c − d) = k1,+k2m = (k1 + k2)m. Then by
the definition of equivalent modulo m, a + c ≡ b + d (mod m), as claimed.

(e) Since a ≡ b (mod m) then b − a = km for some integer k by Theorem
4.1. Similarly, c ≡ d (mod m) implies d − c = jm for some integer j . So
ac − bd = ac − (a + km)(c + jm) = ac − ac − ajm − ckm − kjm2 =
m(−aj − ck − kjm), and by the definition of equivalent modulo m,
ac ≡ bd (mod m), as claimed.
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Theorem 4.4.

Theorem 4.4.

Theorem 4.4. If ac ≡ bc (mod m) and (c ,m) = 1, then a ≡ b (mod m).
That is, we can cancel a factor on both sides of a congruence if the factor
is relatively prime to the modulus.

Proof. Since ac ≡ bc (mod m) then by the definition of congruence
modulo m, m | (ac − bc) or m | c(a− b). Since (m, c) = 1 then by
Theorem 1.5 we have m | (a− b). So by the definition of congruence
modulo m, a ≡ b (mod m), as claimed.
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Theorem 4.5.

Theorem 4.5.

Theorem 4.5. If ac ≡ bc (mod m) and (c ,m) = d , then a ≡ b (mod
m/d).

Proof. Since ac ≡ bc (mod m) then by the definition of congruence
modulo m, m | (ac − bc) or m | c(a− b). By the definition of divisibility,
c(a− b) = km for some integer k. Since d = (c ,m) then c/d and m/d
are integers. So c(a− b)/d = km/d of (c/d)(a− b) = k(m/d); that is,
(m/d) | (c/d)(a− b). By Theorem 1.1 we have (m/d , c/d) = 1, and so
by Corollary 1.1 we have (m/d) | (a− b). By the definition of congruence
modulo m/d we have a ≡ b (mod m/d), as claimed.
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Theorem 4.6.

Theorem 4.6.

Theorem 4.6. Every integer is congruent modulo 9 to the sum of its
digits.

Proof. Let n be an integer with decimal representation
±dkdk−1dk−2 · · · d1d0. That is,

n = ±(dk10k + dk−210k−1 + dk−210k−2 + · · · d1101 + d0100).

Now 10 ≡ 1 (mod 9) and, more generally, for any i ∈ N we have 10i ≡ 1
(mod 9). So

n ≡ ±(dk + dk−1 + dk−2 + · · ·+ d1 + d0) (mod 9),

as claimed.
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