Elementary Number Theory

Section 4. Congruences—Proofs of Theorems

Table of contents

- **1** Theorem 4.1
- 2 Theorem 4.2
- 3 Theorem 4.3.
- 4.1 Lemma 4.1
- 5 Theorem 4.4.
- 6 Theorem 4.5.
 - Theorem 4.6.

Theorem 4.1

Theorem 4.1. We have $a \equiv b \pmod{m}$ if and only if there is integer k such that a = b + km.

Proof. Suppose that $a \equiv b \pmod{m}$. Then by definition, $m \mid (a - b)$. By the definition of divisibility, there is some integer k with km = a - b, or a = b + km as claimed.

Theorem 4.1. We have $a \equiv b \pmod{m}$ if and only if there is integer k such that a = b + km.

Proof. Suppose that $a \equiv b \pmod{m}$. Then by definition, $m \mid (a - b)$. By the definition of divisibility, there is some integer k with km = a - b, or a = b + km as claimed.

Conversely, suppose a = b + km (this is Exercise 4.3 in the book). Then km = a - b and by the definition of divisibility, m | (a - b). By the definition of equivalent modulo m, this implies $a \equiv b \pmod{m}$, as claimed.

Theorem 4.1. We have $a \equiv b \pmod{m}$ if and only if there is integer k such that a = b + km.

Proof. Suppose that $a \equiv b \pmod{m}$. Then by definition, $m \mid (a - b)$. By the definition of divisibility, there is some integer k with km = a - b, or a = b + km as claimed.

Conversely, suppose a = b + km (this is Exercise 4.3 in the book). Then km = a - b and by the definition of divisibility, m | (a - b). By the definition of equivalent modulo m, this implies $a \equiv b \pmod{m}$, as claimed.

Theorem 4.2. Every integer is congruent modulo m to exactly one of $0, 1, 2, \ldots, m-1$. This number is called the *least residue* of the integer modulo m.

Proof. Let *a* be an integer. Then by Theorem 1.2 (The Division Algorithm), we have a = qm + r where $0 \le r < m$ for unique integers *q* and *r*. Since a = qm + r then by the definition of equivalent modulo *m* we have $a \equiv r \pmod{m}$. Since *r* is uniquely determined by *a* and *m*, the claim follows.

Theorem 4.2. Every integer is congruent modulo m to exactly one of $0, 1, 2, \ldots, m-1$. This number is called the *least residue* of the integer modulo m.

Proof. Let *a* be an integer. Then by Theorem 1.2 (The Division Algorithm), we have a = qm + r where $0 \le r < m$ for unique integers *q* and *r*. Since a = qm + r then by the definition of equivalent modulo *m* we have $a \equiv r \pmod{m}$. Since *r* is uniquely determined by *a* and *m*, the claim follows.

Theorem 4.3.

Theorem 4.3. We have $a \equiv b \pmod{m}$ if and only if a and b leave the same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided by m. Then $a = q_1m + r$ and $b = q_2m + r$ for some integers q_1 and q_2 . Then $a - b = (q_1m + r) - (q_2m + r) = m(q_1 - q_2)$, and by the definition of divisibility we have $m \mid (a - b)$. So by the definition of equivalent modulo m, we have $a \equiv b \pmod{m}$.

Theorem 4.3.

Theorem 4.3. We have $a \equiv b \pmod{m}$ if and only if a and b leave the same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided by m. Then $a = q_1m + r$ and $b = q_2m + r$ for some integers q_1 and q_2 . Then $a - b = (q_1m + r) - (q_2m + r) = m(q_1 - q_2)$, and by the definition of divisibility we have $m \mid (a - b)$. So by the definition of equivalent modulo m, we have $a \equiv b \pmod{m}$.

Conversely, suppose $a \equiv b \pmod{m}$. Then $a \equiv b \equiv r \pmod{m}$, where r is the least residue given by Theorem 4.2. Then, as in the proof of Theorem 4.3, by Theorem 1.2 (The Division Algorithm) we have $a = q_1m + r$ and $b = q_2m + r$ for some integers q_1 and q_2 . Since $0 \le r < m - 1$, then we have that r is the remainder both when a is divided by m and when b is divided by m, as claimed.

Theorem 4.3.

Theorem 4.3. We have $a \equiv b \pmod{m}$ if and only if a and b leave the same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided by m. Then $a = q_1m + r$ and $b = q_2m + r$ for some integers q_1 and q_2 . Then $a - b = (q_1m + r) - (q_2m + r) = m(q_1 - q_2)$, and by the definition of divisibility we have $m \mid (a - b)$. So by the definition of equivalent modulo m, we have $a \equiv b \pmod{m}$.

Conversely, suppose $a \equiv b \pmod{m}$. Then $a \equiv b \equiv r \pmod{m}$, where *r* is the least residue given by Theorem 4.2. Then, as in the proof of Theorem 4.3, by Theorem 1.2 (The Division Algorithm) we have $a = q_1m + r$ and $b = q_2m + r$ for some integers q_1 and q_2 . Since $0 \le r < m - 1$, then we have that *r* is the remainder both when *a* is divided by *m* and when *b* is divided by *m*, as claimed.

Lemma 4.1

Lemma 4.1. For integers a, b, c, and d we have (a) $a \equiv a \pmod{m}$. (b) If $a \equiv b \pmod{m}$ then $b \equiv a \pmod{m}$. (c) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$. (d) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$. (e) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Proof. (a) (This is Exercise 4.6.) Notice that $m \mid 0$, or $m \mid (a - a)$, so by the definition of equivalent modulo m, $a \equiv a \pmod{m}$, as claimed.

Lemma 4.1

Lemma 4.1. For integers a, b, c, and d we have (a) $a \equiv a \pmod{m}$. (b) If $a \equiv b \pmod{m}$ then $b \equiv a \pmod{m}$. (c) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$. (d) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$. (e) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Proof. (a) (This is Exercise 4.6.) Notice that $m \mid 0$, or $m \mid (a - a)$, so by the definition of equivalent modulo m, $a \equiv a \pmod{m}$, as claimed.

(b) (This is Exercise 4.7.) $a \equiv b \pmod{m}$ then by the definition of equivalent modulo m, we have $m \mid (a - b)$. By the definition of divisibility, a - b = km for some integer k. Hence b - a = (-k)m for integer -k and so by the definition of equivalent modulo m, $b \equiv a \pmod{m}$, as claimed.

Lemma 4.1

Lemma 4.1. For integers a, b, c, and d we have (a) $a \equiv a \pmod{m}$. (b) If $a \equiv b \pmod{m}$ then $b \equiv a \pmod{m}$. (c) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$. (d) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$. (e) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Proof. (a) (This is Exercise 4.6.) Notice that $m \mid 0$, or $m \mid (a - a)$, so by the definition of equivalent modulo m, $a \equiv a \pmod{m}$, as claimed.

(b) (This is Exercise 4.7.) $a \equiv b \pmod{m}$ then by the definition of equivalent modulo m, we have $m \mid (a - b)$. By the definition of divisibility, a - b = km for some integer k. Hence b - a = (-k)m for integer -k and so by the definition of equivalent modulo m, $b \equiv a \pmod{m}$, as claimed.

Lemma 4.1 (continued 1)

Lemma 4.1. For integers a, b, c, and d we have

(c) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$.

(d) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

(e) If
$$a \equiv b \pmod{m}$$
 and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Proof. (c) (This is Exercise 4.8.) Since $a \equiv b \pmod{m}$ then by the definition of equivalent modulo m, we have $m \mid (a - b)$. Since $b \equiv c \pmod{m}$ then by the definition of equivalent modulo m, we have $m \mid (b - c)$. By the definition of divisibility, $a - b = k_1 m$ and $b - c = k_2 m$ for some integers k_1 and k_2 . Hence $a - c = (a - b) + (b - c) = k_1 m + k_2 m = (k_1 + k_2)m$ and by the definition of divisibility $m \mid (a - c)$. Then by the definition of equivalent modulo m, $a \equiv c \pmod{m}$, as claimed.

Lemma 4.1 (continued 2)

Lemma 4.1. For integers a, b, c, and d we have

- (d) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.
- (e) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Proof. (d) (This is Exercise 4.9.) As in part (c), $a - b = k_1m$ and $c - d = k_2m$ for some integers k_1 and k_2 . Hence, $(a+c) - (b+d) = (a-b) + (c-d) = k_1, +k_2m = (k_1+k_2)m$. Then by the definition of equivalent modulo m, $a + c \equiv b + d \pmod{m}$, as claimed.

(e) Since $a \equiv b \pmod{m}$ then b - a = km for some integer k by Theorem 4.1. Similarly, $c \equiv d \pmod{m}$ implies d - c = jm for some integer j. So $ac - bd = ac - (a + km)(c + jm) = ac - ac - ajm - ckm - kjm^2 = m(-aj - ck - kjm)$, and by the definition of equivalent modulo m, $ac \equiv bd \pmod{m}$, as claimed.

Lemma 4.1 (continued 2)

Lemma 4.1. For integers a, b, c, and d we have

- (d) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.
- (e) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Proof. (d) (This is Exercise 4.9.) As in part (c), $a - b = k_1m$ and $c - d = k_2m$ for some integers k_1 and k_2 . Hence, $(a+c) - (b+d) = (a-b) + (c-d) = k_1, +k_2m = (k_1+k_2)m$. Then by the definition of equivalent modulo m, $a + c \equiv b + d \pmod{m}$, as claimed.

(e) Since $a \equiv b \pmod{m}$ then b - a = km for some integer k by Theorem 4.1. Similarly, $c \equiv d \pmod{m}$ implies d - c = jm for some integer j. So $ac - bd = ac - (a + km)(c + jm) = ac - ac - ajm - ckm - kjm^2 = m(-aj - ck - kjm)$, and by the definition of equivalent modulo m, $ac \equiv bd \pmod{m}$, as claimed.

Theorem 4.4.

Theorem 4.4. If $ac \equiv bc \pmod{m}$ and (c, m) = 1, then $a \equiv b \pmod{m}$. That is, we can cancel a factor on both sides of a congruence if the factor is relatively prime to the modulus.

Proof. Since $ac \equiv bc \pmod{m}$ then by the definition of congruence modulo m, $m \mid (ac - bc)$ or $m \mid c(a - b)$. Since (m, c) = 1 then by Theorem 1.5 we have $m \mid (a - b)$. So by the definition of congruence modulo m, $a \equiv b \pmod{m}$, as claimed.

Theorem 4.4.

Theorem 4.4. If $ac \equiv bc \pmod{m}$ and (c, m) = 1, then $a \equiv b \pmod{m}$. That is, we can cancel a factor on both sides of a congruence if the factor is relatively prime to the modulus.

Proof. Since $ac \equiv bc \pmod{m}$ then by the definition of congruence modulo m, $m \mid (ac - bc)$ or $m \mid c(a - b)$. Since (m, c) = 1 then by Theorem 1.5 we have $m \mid (a - b)$. So by the definition of congruence modulo m, $a \equiv b \pmod{m}$, as claimed.

Theorem 4.5.

Theorem 4.5. If $ac \equiv bc \pmod{m}$ and (c, m) = d, then $a \equiv b \pmod{m/d}$.

Proof. Since $ac \equiv bc \pmod{m}$ then by the definition of congruence modulo $m, m \mid (ac - bc)$ or $m \mid c(a - b)$. By the definition of divisibility, c(a - b) = km for some integer k. Since d = (c, m) then c/d and m/dare integers. So c(a - b)/d = km/d of (c/d)(a - b) = k(m/d); that is, $(m/d) \mid (c/d)(a - b)$. By Theorem 1.1 we have (m/d, c/d) = 1, and so by Corollary 1.1 we have $(m/d) \mid (a - b)$. By the definition of congruence modulo m/d we have $a \equiv b \pmod{m/d}$, as claimed.

Theorem 4.5.

Theorem 4.5. If $ac \equiv bc \pmod{m}$ and (c, m) = d, then $a \equiv b \pmod{m/d}$.

Proof. Since $ac \equiv bc \pmod{m}$ then by the definition of congruence modulo $m, m \mid (ac - bc)$ or $m \mid c(a - b)$. By the definition of divisibility, c(a - b) = km for some integer k. Since d = (c, m) then c/d and m/dare integers. So c(a - b)/d = km/d of (c/d)(a - b) = k(m/d); that is, $(m/d) \mid (c/d)(a - b)$. By Theorem 1.1 we have (m/d, c/d) = 1, and so by Corollary 1.1 we have $(m/d) \mid (a - b)$. By the definition of congruence modulo m/d we have $a \equiv b \pmod{m/d}$, as claimed.

Theorem 4.6.

Theorem 4.6. Every integer is congruent modulo 9 to the sum of its digits.

Proof. Let *n* be an integer with decimal representation $\pm d_k d_{k-1} d_{k-2} \cdots d_1 d_0$. That is,

$$n = \pm (d_k 10^k + d_{k-2} 10^{k-1} + d_{k-2} 10^{k-2} + \cdots + d_1 10^1 + d_0 10^0).$$

Now $10 \equiv 1 \pmod{9}$ and, more generally, for any $i \in \mathbb{N}$ we have $10^i \equiv 1 \pmod{9}$. So

$$n \equiv \pm (d_k + d_{k-1} + d_{k-2} + \dots + d_1 + d_0) \pmod{9},$$

as claimed.

Theorem 4.6.

Theorem 4.6. Every integer is congruent modulo 9 to the sum of its digits.

Proof. Let *n* be an integer with decimal representation $\pm d_k d_{k-1} d_{k-2} \cdots d_1 d_0$. That is,

$$n = \pm (d_k 10^k + d_{k-2} 10^{k-1} + d_{k-2} 10^{k-2} + \cdots + d_1 10^1 + d_0 10^0).$$

Now $10 \equiv 1 \pmod{9}$ and, more generally, for any $i \in \mathbb{N}$ we have $10^i \equiv 1 \pmod{9}$. So

$$n \equiv \pm (d_k + d_{k-1} + d_{k-2} + \dots + d_1 + d_0) \pmod{9},$$

as claimed.