Elementary Number Theory

Section 4. Congruences—Proofs of Theorems

Table of contents

(1) Theorem 4.1
(2) Theorem 4.2
(3) Theorem 4.3.
(4) Lemma 4.1
(5) Theorem 4.4.
(6) Theorem 4.5.
(7) Theorem 4.6.

Theorem 4.1

Theorem 4.1. We have $a \equiv b(\bmod m)$ if and only if there is integer k such that $a=b+k m$.

Proof. Suppose that $a \equiv b(\bmod m)$. Then by definition, $m \mid(a-b)$. By the definition of divisibility, there is some integer k with $k m=a-b$, or $a=b+k m$ as claimed.

Theorem 4.1

Theorem 4.1. We have $a \equiv b(\bmod m)$ if and only if there is integer k such that $a=b+k m$.

Proof. Suppose that $a \equiv b(\bmod m)$. Then by definition, $m \mid(a-b)$. By the definition of divisibility, there is some integer k with $k m=a-b$, or $a=b+k m$ as claimed.

Conversely, suppose $a=b+k m$ (this is Exercise 4.3 in the book). Then $k m=a-b$ and by the definition of divisibility, $m \mid(a-b)$. By the definition of equivalent modulo m, this implies $a \equiv b(\bmod m)$, as claimed.

Theorem 4.1

Theorem 4.1. We have $a \equiv b(\bmod m)$ if and only if there is integer k such that $a=b+k m$.

Proof. Suppose that $a \equiv b(\bmod m)$. Then by definition, $m \mid(a-b)$. By the definition of divisibility, there is some integer k with $k m=a-b$, or $a=b+k m$ as claimed.

Conversely, suppose $a=b+k m$ (this is Exercise 4.3 in the book). Then $k m=a-b$ and by the definition of divisibility, $m \mid(a-b)$. By the definition of equivalent modulo m, this implies $a \equiv b(\bmod m)$, as claimed.

Theorem 4.2

Theorem 4.2. Every integer is congruent modulo m to exactly one of $0,1,2, \ldots, m-1$. This number is called the least residue of the integer modulo m.

Proof. Let a be an integer. Then by Theorem 1.2 (The Division Algorithm), we have $a=q m+r$ where $0 \leq r<m$ for unique integers q and r. Since $a=q m+r$ then by the definition of equivalent modulo m we have $a \equiv r(\bmod m)$. Since r is uniquely determined by a and m, the claim follows.

Theorem 4.2

Theorem 4.2. Every integer is congruent modulo m to exactly one of $0,1,2, \ldots, m-1$. This number is called the least residue of the integer modulo m.

Proof. Let a be an integer. Then by Theorem 1.2 (The Division Algorithm), we have $a=q m+r$ where $0 \leq r<m$ for unique integers q and r. Since $a=q m+r$ then by the definition of equivalent modulo m we have $a \equiv r(\bmod m)$. Since r is uniquely determined by a and m, the claim follows.

Theorem 4.3.

Theorem 4.3. We have $a \equiv b(\bmod m)$ if and only if a and b leave the same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided by m. Then $a=q_{1} m+r$ and $b=q_{2} m+r$ for some integers q_{1} and q_{2}. Then $a-b=\left(q_{1} m+r\right)-\left(q_{2} m+r\right)=m\left(q_{1}-q_{2}\right)$, and by the definition of divisibility we have $m \mid(a-b)$. So by the definition of equivalent modulo m, we have $a \equiv b(\bmod m)$.

Theorem 4.3.

Theorem 4.3. We have $a \equiv b(\bmod m)$ if and only if a and b leave the same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided by m. Then $a=q_{1} m+r$ and $b=q_{2} m+r$ for some integers q_{1} and q_{2}. Then $a-b=\left(q_{1} m+r\right)-\left(q_{2} m+r\right)=m\left(q_{1}-q_{2}\right)$, and by the definition of divisibility we have $m \mid(a-b)$. So by the definition of equivalent modulo m, we have $a \equiv b(\bmod m)$.

Conversely, suppose $a \equiv b(\bmod m)$. Then $a \equiv b \equiv r(\bmod m)$, where r is the least residue given by Theorem 4.2. Then, as in the proof of Theorem 4.3, by Theorem 1.2 (The Division Algorithm) we have $a=q_{1} m+r$ and $b=q_{2} m+r$ for some integers q_{1} and q_{2}. Since $0 \leq r<m-1$, then we have that r is the remainder both when a is divided by m and when b is divided by m, as claimed.

Theorem 4.3.

Theorem 4.3. We have $a \equiv b(\bmod m)$ if and only if a and b leave the same remainder when divided by m.

Solution. Suppose a and b leave the same remainder, say r, when divided by m. Then $a=q_{1} m+r$ and $b=q_{2} m+r$ for some integers q_{1} and q_{2}. Then $a-b=\left(q_{1} m+r\right)-\left(q_{2} m+r\right)=m\left(q_{1}-q_{2}\right)$, and by the definition of divisibility we have $m \mid(a-b)$. So by the definition of equivalent modulo m, we have $a \equiv b(\bmod m)$.

Conversely, suppose $a \equiv b(\bmod m)$. Then $a \equiv b \equiv r(\bmod m)$, where r is the least residue given by Theorem 4.2. Then, as in the proof of Theorem 4.3, by Theorem 1.2 (The Division Algorithm) we have $a=q_{1} m+r$ and $b=q_{2} m+r$ for some integers q_{1} and q_{2}. Since $0 \leq r<m-1$, then we have that r is the remainder both when a is divided by m and when b is divided by m, as claimed.

Lemma 4.1

Lemma 4.1. For integers a, b, c, and d we have
(a) $a \equiv a(\bmod m)$.
(b) If $a \equiv b(\bmod m)$ then $b \equiv a(\bmod m)$.
(c) If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$ then $a \equiv c(\bmod m)$.
(d) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d$ $(\bmod m)$.
(e) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod$ $m)$.

Proof. (a) (This is Exercise 4.6.) Notice that $m \mid 0$, or $m \mid(a-a)$, so by the definition of equivalent modulo $m, a \equiv a(\bmod m)$, as claimed.

Lemma 4.1

Lemma 4.1. For integers a, b, c, and d we have
(a) $a \equiv a(\bmod m)$.
(b) If $a \equiv b(\bmod m)$ then $b \equiv a(\bmod m)$.
(c) If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$ then $a \equiv c(\bmod m)$.
(d) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d$ $(\bmod m)$.
(e) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod$ $m)$.

Proof. (a) (This is Exercise 4.6.) Notice that $m \mid 0$, or $m \mid(a-a)$, so by the definition of equivalent modulo $m, a \equiv a(\bmod m)$, as claimed.
(b) (This is Exercise 4.7.) $a \equiv b(\bmod m)$ then by the definition of equivalent modulo m, we have $m \mid(a-b)$. By the definition of divisibility, $a-b=k m$ for some integer k. Hence $b-a=(-k) m$ for integer $-k$ and so by the definition of equivalent modulo $m, b \equiv a(\bmod m)$, as claimed.

Lemma 4.1

Lemma 4.1. For integers a, b, c, and d we have
(a) $a \equiv a(\bmod m)$.
(b) If $a \equiv b(\bmod m)$ then $b \equiv a(\bmod m)$.
(c) If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$ then $a \equiv c(\bmod m)$.
(d) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d$ $(\bmod m)$.
(e) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod$ $m)$.

Proof. (a) (This is Exercise 4.6.) Notice that $m \mid 0$, or $m \mid(a-a)$, so by the definition of equivalent modulo $m, a \equiv a(\bmod m)$, as claimed.
(b) (This is Exercise 4.7.) $a \equiv b(\bmod m)$ then by the definition of equivalent modulo m, we have $m \mid(a-b)$. By the definition of divisibility, $a-b=k m$ for some integer k. Hence $b-a=(-k) m$ for integer $-k$ and so by the definition of equivalent modulo $m, b \equiv a(\bmod m)$, as claimed.

Lemma 4.1 (continued 1)

Lemma 4.1. For integers a, b, c, and d we have
(c) If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$ then $a \equiv c(\bmod m)$.
(d) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d$ $(\bmod m)$.
(e) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod$ $m)$.

Proof. (c) (This is Exercise 4.8.) Since $a \equiv b(\bmod m)$ then by the definition of equivalent modulo m, we have $m \mid(a-b)$. Since $b \equiv c(\bmod$ m) then by the definition of equivalent modulo m, we have $m \mid(b-c)$. By the definition of divisibility, $a-b=k_{1} m$ and $b-c=k_{2} m$ for some integers k_{1} and k_{2}. Hence $a-c=(a-b)+(b-c)=k_{1} m+k_{2} m$ $=\left(k_{1}+k_{2}\right) m$ and by the definition of divisibility $m \mid(a-c)$. Then by the definition of equivalent modulo $m, a \equiv c(\bmod m)$, as claimed.

Lemma 4.1 (continued 2)

Lemma 4.1. For integers a, b, c, and d we have
(d) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d$ $(\bmod m)$.
(e) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod$ $m)$.

Proof. (d) (This is Exercise 4.9.) As in part (c), $a-b=k_{1} m$ and $c-d=k_{2} m$ for some integers k_{1} and k_{2}. Hence,
$(a+c)-(b+d)=(a-b)+(c-d)=k_{1},+k_{2} m=\left(k_{1}+k_{2}\right) m$. Then by the definition of equivalent modulo $m, a+c \equiv b+d(\bmod m)$, as claimed.
(e) Since $a \equiv b(\bmod m)$ then $b-a=k m$ for some integer k by Theorem 4.1. Similarly, $c \equiv d(\bmod m)$ implies $d-c=j m$ for some integer j. So $a c-b d=a c-(a+k m)(c+j m)=a c-a c-a j m-c k m-k j m^{2}=$ $m(-a j-c k-k j m)$, and by the definition of equivalent modulo m, $a c \equiv b d(\bmod m)$, as claimed.

Lemma 4.1 (continued 2)

Lemma 4.1. For integers a, b, c, and d we have
(d) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d$ $(\bmod m)$.
(e) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod$ $m)$.

Proof. (d) (This is Exercise 4.9.) As in part (c), $a-b=k_{1} m$ and $c-d=k_{2} m$ for some integers k_{1} and k_{2}. Hence,
$(a+c)-(b+d)=(a-b)+(c-d)=k_{1},+k_{2} m=\left(k_{1}+k_{2}\right) m$. Then by the definition of equivalent modulo $m, a+c \equiv b+d(\bmod m)$, as claimed.
(e) Since $a \equiv b(\bmod m)$ then $b-a=k m$ for some integer k by Theorem 4.1. Similarly, $c \equiv d(\bmod m)$ implies $d-c=j m$ for some integer j. So $a c-b d=a c-(a+k m)(c+j m)=a c-a c-a j m-c k m-k j m^{2}=$ $m(-a j-c k-k j m)$, and by the definition of equivalent modulo m, $a c \equiv b d(\bmod m)$, as claimed.

Theorem 4.4.

Theorem 4.4. If $a c \equiv b c(\bmod m)$ and $(c, m)=1$, then $a \equiv b(\bmod m)$. That is, we can cancel a factor on both sides of a congruence if the factor is relatively prime to the modulus.

Proof. Since $a c \equiv b c(\bmod m)$ then by the definition of congruence modulo $m, m \mid(a c-b c)$ or $m \mid c(a-b)$. Since $(m, c)=1$ then by Theorem 1.5 we have $m \mid(a-b)$. So by the definition of congruence modulo $m, a \equiv b(\bmod m)$, as claimed.

Theorem 4.4.

Theorem 4.4. If $a c \equiv b c(\bmod m)$ and $(c, m)=1$, then $a \equiv b(\bmod m)$. That is, we can cancel a factor on both sides of a congruence if the factor is relatively prime to the modulus.

Proof. Since $a c \equiv b c(\bmod m)$ then by the definition of congruence modulo $m, m \mid(a c-b c)$ or $m \mid c(a-b)$. Since $(m, c)=1$ then by Theorem 1.5 we have $m \mid(a-b)$. So by the definition of congruence modulo $m, a \equiv b(\bmod m)$, as claimed.

Theorem 4.5.

Theorem 4.5. If $a c \equiv b c(\bmod m)$ and $(c, m)=d$, then $a \equiv b(\bmod$ $m / d)$.

Proof. Since $a c \equiv b c(\bmod m)$ then by the definition of congruence modulo $m, m \mid(a c-b c)$ or $m \mid c(a-b)$. By the definition of divisibility, $c(a-b)=k m$ for some integer k. Since $d=(c, m)$ then c / d and m / d are integers. So $c(a-b) / d=k m / d$ of $(c / d)(a-b)=k(m / d)$; that is, $(m / d) \mid(c / d)(a-b)$. By Theorem 1.1 we have $(m / d, c / d)=1$, and so by Corollary 1.1 we have $(m / d) \mid(a-b)$. By the definition of congruence modulo m / d we have $a \equiv b(\bmod m / d)$, as claimed.

Theorem 4.5.

Theorem 4.5. If $a c \equiv b c(\bmod m)$ and $(c, m)=d$, then $a \equiv b(\bmod$ m / d).

Proof. Since $a c \equiv b c(\bmod m)$ then by the definition of congruence modulo $m, m \mid(a c-b c)$ or $m \mid c(a-b)$. By the definition of divisibility, $c(a-b)=k m$ for some integer k. Since $d=(c, m)$ then c / d and m / d are integers. So $c(a-b) / d=k m / d$ of $(c / d)(a-b)=k(m / d)$; that is, $(m / d) \mid(c / d)(a-b)$. By Theorem 1.1 we have $(m / d, c / d)=1$, and so by Corollary 1.1 we have $(m / d) \mid(a-b)$. By the definition of congruence modulo m / d we have $a \equiv b(\bmod m / d)$, as claimed.

Theorem 4.6.

Theorem 4.6. Every integer is congruent modulo 9 to the sum of its digits.

Proof. Let n be an integer with decimal representation $\pm d_{k} d_{k-1} d_{k-2} \cdots d_{1} d_{0}$. That is,

$$
n= \pm\left(d_{k} 10^{k}+d_{k-2} 10^{k-1}+d_{k-2} 10^{k-2}+\cdots d_{1} 10^{1}+d_{0} 10^{0}\right)
$$

Now $10 \equiv 1(\bmod 9)$ and, more generally, for any $i \in \mathbb{N}$ we have $10^{i} \equiv 1$ (mod 9). So

$$
n \equiv \pm\left(d_{k}+d_{k-1}+d_{k-2}+\cdots+d_{1}+d_{0}\right)(\bmod 9)
$$

as claimed.

Theorem 4.6.

Theorem 4.6. Every integer is congruent modulo 9 to the sum of its digits.

Proof. Let n be an integer with decimal representation $\pm d_{k} d_{k-1} d_{k-2} \cdots d_{1} d_{0}$. That is,

$$
n= \pm\left(d_{k} 10^{k}+d_{k-2} 10^{k-1}+d_{k-2} 10^{k-2}+\cdots d_{1} 10^{1}+d_{0} 10^{0}\right)
$$

Now $10 \equiv 1(\bmod 9)$ and, more generally, for any $i \in \mathbb{N}$ we have $10^{i} \equiv 1$ $(\bmod 9)$. So

$$
n \equiv \pm\left(d_{k}+d_{k-1}+d_{k-2}+\cdots+d_{1}+d_{0}\right)(\bmod 9)
$$

as claimed.

