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Section 5. Linear Congruences—Proofs of Theorems i
Lemma 5.1. If (a, m) { b then ax = b (mod m) has no solutions.

Elementary Number Theory Proof. The contrapositive of the claim is: “If ax = b (mod m) has a

S solution then (a, m) | b. Let r be a solution.” Then ar = b (mod m) so
nOoE B BED that (by the definition of “congruence”) m|(ar — b) or (by the definition
o e of “divides") ar — b = km for some k € Z.
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i B DOEDEEC _ then Lemma 1.2 (a, m) | (ar — km). That is, (a, m) | b. So the
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Lemma 5.2 Lemma 5.3

Lemma 5.2

Lemma 5.2. If (a, m) = 1 then ax = b (mod m) has exactly one solution.

Proof. Since (a, m) = 1 by hypothesis, then by Theorem 1.4 there are
integers r and s such that ar + ms =1 = (a, m). Therefore

n(ar + ms) = b(1) or a(rb) + m(sb) = b. So arb — b = —msb and arb — b
is a multiple of m, or a(rb) = b (mod m). Then the least residue of rb
modulo m is a solution of ax = b (mod m), as claimed.

Next, we need to show that is only one solution. ASSUME that both r
and s are solutions to ax = b (mod m). Then ar = b (mod m) and as = b
(mod m) and hence ar = as (mod m). So by Theorem 4.4 we can cancel
the common factor a to get r = s (mod m). Then, by the definition of
congruence, m|(r —s). But r and s are least residues modulo m (by the
definition of “solution”), so 0 < r < mand 0 < s < m. Thus

—m < r — s < m, along with the fact that m|(r — s), implies that

r—s =20 or r =s. Therefore, the solution is unique, as claimed. ]
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Lemma 5.3

Lemma 5.3. Let d = (a, m). If d| b then ax = b (mod m) has exactly d
solutions.

Proof. The linear congruence ax = b (mod m) is equivalent to the
equation ax = b+ km for some k € Z. So if we cancel the common factor
d = (a, m) (which divides a and m by definition, and divides b by
hypothesis) then we get (a/d)x = (b/d) + k(m/d) or (a/d)x = (b/d)
(mod m/d). Now a/d and m/d are relatively prime, (a/b,m/d) =1,
since we have divided out d = (a, m). So by Lemma 5.2, (a/d)x = (b/d)
(mod m/d) has exactly one solution, say x = r where 0 < r < m/d.
Notice that x = r is also a solution to ax = b (mod m). Let x = s be any
other solution of ax = b (mod m). Then ar = as = b (mod m), and so by
Theorem 4.5 r = s (mod m/d). Thatis, s — r = k(m/d) or

x =r+ k(m/d) for some k € Z. ...
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Lemma 5.3 (continued 1)

Lemma 5.3 (continued 2)

Lemma 5.3. Let d = (a, m). If d| b then ax = b (mod m) has exactly d
solutions.

Proof (continued). Thatis, s —r = k(m/d) or x = r + k(m/d) for some
k € Z. For k € {0,1,...,d — 1}, we have numbers which are least
residues modulo m since (recall that 0 < r < m/d):

Lemma 5.3. Let d = (a, m). If d|b then ax = b (mod m) has exactly d
solutions.

Proof (continued). Therefore x = r + k(m/d) we have

(a/d)(r+ k(m/d) = (a/d)x = (b/d)(mod m/d). This then implies that
ax = b (mod m). Now s is an arbitrary solution of ax = b (mod m), so
every solution ax = b (mod m) is of the form r + k(m/d) where

0<r+k(m/d) <(m/d)+ (d —1)(m/d) =d(m/d) = m.

Also, for each such r + k(m/d) we have

k € {0,1,...,d — 1}. These solutions are different and hence ax = b
(a/d)(r+k(m/d)) = (a/d)r+ k(a/d)(m/d) (mod m) has exactly d solutions, as claimed. O
= (a/d)r (mod m/d) since k(a/d) is an integer
b/d (mod m/d) since ar = b (mod m)
implies that ar/d = b/d (mod m/d).
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Theorem 5.2. The Chinese Remainder Theorem Theorem 5.2. The Chinese Remainder Theorem

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.
The system of congruences x = a; (mod m;) for i = 1,2,..., k, where
(mi,m;j) = 1if i # j, has a unique solution modulo mymy - - - my.

Proof. We prove by induction. With k =1, x = a; (mod m;) has a
unique solution and the base case is established.

With k =2, we have x = a; (mod my, which implies x = a; + kymy for
some ki € Z. In this case we also need x = a1 + k1 = ap (mod my), or
kimy = a — 1, (mod my). Since (my, my) =1 then by Lemma 5.2
(treating ky as the unknown) there is a solution k; modulo my, say k; =t
where 0 < t < m», and so ki is of the form ki = t + komo. Therefore

x = a1+ (t+ kamp)my = a1 + tmy (mod mymy) satisfies both
congruences and the claim holds for k = 2 (we address uniqueness below).
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Theorem 5.2 (continued 1)

Theorem 5.2. The Chinese Remainder Theorem.
The system of congruences x = a; (mod m;) for i = 1,2,..., k, where
(mj, mj) =1if i # j, has a unique solution modulo mymy - - - my.

Proof (continued). Now suppose the claim holds for k = r — 1. Then
the system x = a; (mod m;) for i =1,2,...,r — 1 has a solution x = s.
Now we consider the system:

x = a; (mod m;) for i=1,2,...,r—1, and x = a, (mod m,).

But this is just 2 congruences, and show has a solution based on the case
k = 2 and the fact that the greatest common divisor
(myimy---m,_1,m,) = 1. So by induction, the system of congruences

x = a;j (mod m;) for i =1,2,..., k, where (m;, m;) =1 for i # j, has a
solution.
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Theorem 5.2 (continued 2)

Theorem 5.2. The Chinese Remainder Theorem.
The system of congruences x = a; (mod m;) for i = 1,2,..., k, where
(mj, mj) = 1if i # j, has a unique solution modulo mymy - - - my.

Proof (continued). For uniqueness, suppose r and s are both solutions of
the system. Then r =s=a; (mod m;) for i =1,2,...,k. Sor—s=0
(mod m;) and hence m; |(r —s) for i=1,2,... k; thatisr—sis a
common multiple of my, my, ..., my. Applying the Fundamental Theorem
of Arithmetic (Theorem 2.2) to each m;, observing that the m; are
relatively prime, and using Lemma 2.6 we have that
(myimy---my)|(r—s). But r and s are least residues modulo

mymy - - - my (by the definition of “solution”), so

—mymy---myg < r—s < mymy---mg and therefore r —s = 0 (see Note
5.A), or r = s. So solutions are unique, and the claim holds. Ol
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