Elementary Number Theory

Section 5. Linear Congruences—Proofs of Theorems

Table of contents

Lemma 5.1. If $(a, m) \nmid b$ then $ax \equiv b \pmod{m}$ has no solutions.

Proof. The contrapositive of the claim is: "If $ax \equiv b \pmod{m}$ has a solution then $(a, m) \mid b$. Let r be a solution." Then $ar \equiv b \pmod{m}$ so that (by the definition of "congruence") $m \mid (ar - b)$ or (by the definition of "divides") ar - b = km for some $k \in \mathbb{Z}$.

Lemma 5.1. If $(a, m) \nmid b$ then $ax \equiv b \pmod{m}$ has no solutions.

Proof. The contrapositive of the claim is: "If $ax \equiv b \pmod{m}$ has a solution then $(a, m) \mid b$. Let r be a solution." Then $ar \equiv b \pmod{m}$ so that (by the definition of "congruence") $m \mid (ar - b)$ or (by the definition of "divides") ar - b = km for some $k \in \mathbb{Z}$.

Since (a, m) | ar (because (a, m) | a) and (a, m) | km (because (a, m) | m) then Lemma 1.2 (a, m) | (ar - km). That is, (a, m) | b. So the contrapositive holds, and hence the original claim holds.

Lemma 5.1. If $(a, m) \nmid b$ then $ax \equiv b \pmod{m}$ has no solutions.

Proof. The contrapositive of the claim is: "If $ax \equiv b \pmod{m}$ has a solution then $(a, m) \mid b$. Let r be a solution." Then $ar \equiv b \pmod{m}$ so that (by the definition of "congruence") $m \mid (ar - b)$ or (by the definition of "divides") ar - b = km for some $k \in \mathbb{Z}$.

Since (a, m) | ar (because (a, m) | a) and (a, m) | km (because (a, m) | m) then Lemma 1.2 (a, m) | (ar - km). That is, (a, m) | b. So the contrapositive holds, and hence the original claim holds.

Lemma 5.2. If (a, m) = 1 then $ax \equiv b \pmod{m}$ has exactly one solution.

Proof. Since (a, m) = 1 by hypothesis, then by Theorem 1.4 there are integers r and s such that ar + ms = 1 = (a, m). Therefore n(ar + ms) = b(1) or a(rb) + m(sb) = b. So arb - b = -msb and arb - b is a multiple of m, or $a(rb) \equiv b \pmod{m}$. Then the least residue of rb modulo m is a solution of $ax \equiv b \pmod{m}$, as claimed.

Lemma 5.2. If (a, m) = 1 then $ax \equiv b \pmod{m}$ has exactly one solution.

Proof. Since (a, m) = 1 by hypothesis, then by Theorem 1.4 there are integers r and s such that ar + ms = 1 = (a, m). Therefore n(ar + ms) = b(1) or a(rb) + m(sb) = b. So arb - b = -msb and arb - b is a multiple of m, or $a(rb) \equiv b \pmod{m}$. Then the least residue of rb modulo m is a solution of $ax \equiv b \pmod{m}$, as claimed.

Next, we need to show that is only one solution. ASSUME that both r and s are solutions to $ax \equiv b \pmod{m}$. Then $ar \equiv b \pmod{m}$ and $as \equiv b \pmod{m}$ and $as \equiv b \pmod{m}$ and hence $ar \equiv as \pmod{m}$. So by Theorem 4.4 we can cancel the common factor a to get $r \equiv s \pmod{m}$. Then, by the definition of congruence, $m \mid (r - s)$. But r and s are least residues modulo m (by the definition of "solution"), so $0 \le r < m$ and $0 \le s < m$. Thus -m < r - s < m, along with the fact that $m \mid (r - s)$, implies that r - s = 0 or r = s. Therefore, the solution is unique, as claimed.

Lemma 5.2. If (a, m) = 1 then $ax \equiv b \pmod{m}$ has exactly one solution.

Proof. Since (a, m) = 1 by hypothesis, then by Theorem 1.4 there are integers r and s such that ar + ms = 1 = (a, m). Therefore n(ar + ms) = b(1) or a(rb) + m(sb) = b. So arb - b = -msb and arb - b is a multiple of m, or $a(rb) \equiv b \pmod{m}$. Then the least residue of rb modulo m is a solution of $ax \equiv b \pmod{m}$, as claimed.

Next, we need to show that is only one solution. ASSUME that both r and s are solutions to $ax \equiv b \pmod{m}$. Then $ar \equiv b \pmod{m}$ and $as \equiv b \pmod{m}$ and $as \equiv b \pmod{m}$ and hence $ar \equiv as \pmod{m}$. So by Theorem 4.4 we can cancel the common factor a to get $r \equiv s \pmod{m}$. Then, by the definition of congruence, $m \mid (r - s)$. But r and s are least residues modulo m (by the definition of "solution"), so $0 \le r < m$ and $0 \le s < m$. Thus -m < r - s < m, along with the fact that $m \mid (r - s)$, implies that r - s = 0 or r = s. Therefore, the solution is unique, as claimed.

Lemma 5.3. Let d = (a, m). If $d \mid b$ then $ax \equiv b \pmod{m}$ has exactly d solutions.

Proof. The linear congruence $ax \equiv b \pmod{m}$ is equivalent to the equation ax = b + km for some $k \in \mathbb{Z}$. So if we cancel the common factor d = (a, m) (which divides a and m by definition, and divides b by hypothesis) then we get (a/d)x = (b/d) + k(m/d) or (a/d)x = (b/d) (mod m/d). Now a/d and m/d are relatively prime, (a/b, m/d) = 1, since we have divided out d = (a, m). So by Lemma 5.2, (a/d)x = (b/d) (mod m/d) has exactly one solution, say x = r where $0 \le r < m/d$. Notice that x = r is also a solution to $ax \equiv b \pmod{m}$.

Lemma 5.3. Let d = (a, m). If $d \mid b$ then $ax \equiv b \pmod{m}$ has exactly d solutions.

Proof. The linear congruence $ax \equiv b \pmod{m}$ is equivalent to the equation ax = b + km for some $k \in \mathbb{Z}$. So if we cancel the common factor d = (a, m) (which divides a and m by definition, and divides b by hypothesis) then we get (a/d)x = (b/d) + k(m/d) or (a/d)x = (b/d)(mod m/d). Now a/d and m/d are relatively prime, (a/b, m/d) = 1, since we have divided out d = (a, m). So by Lemma 5.2, (a/d)x = (b/d)(mod m/d) has exactly one solution, say x = r where $0 \le r < m/d$. Notice that x = r is also a solution to $ax \equiv b \pmod{m}$. Let x = s be any other solution of $ax \equiv b \pmod{m}$. Then $ar \equiv as \equiv b \pmod{m}$, and so by Theorem 4.5 $r \equiv s \pmod{m/d}$. That is, s - r = k(m/d) or x = r + k(m/d) for some $k \in \mathbb{Z}$

Lemma 5.3. Let d = (a, m). If $d \mid b$ then $ax \equiv b \pmod{m}$ has exactly d solutions.

Proof. The linear congruence $ax \equiv b \pmod{m}$ is equivalent to the equation ax = b + km for some $k \in \mathbb{Z}$. So if we cancel the common factor d = (a, m) (which divides a and m by definition, and divides b by hypothesis) then we get (a/d)x = (b/d) + k(m/d) or (a/d)x = (b/d)(mod m/d). Now a/d and m/d are relatively prime, (a/b, m/d) = 1, since we have divided out d = (a, m). So by Lemma 5.2, (a/d)x = (b/d)(mod m/d) has exactly one solution, say x = r where $0 \le r \le m/d$. Notice that x = r is also a solution to $ax \equiv b \pmod{m}$. Let x = s be any other solution of $ax \equiv b \pmod{m}$. Then $ar \equiv as \equiv b \pmod{m}$, and so by Theorem 4.5 $r \equiv s \pmod{m/d}$. That is, s - r = k(m/d) or x = r + k(m/d) for some $k \in \mathbb{Z}$

Lemma 5.3 (continued 1)

Lemma 5.3. Let d = (a, m). If $d \mid b$ then $ax \equiv b \pmod{m}$ has exactly d solutions.

Proof (continued). That is, s - r = k(m/d) or x = r + k(m/d) for some $k \in \mathbb{Z}$. For $k \in \{0, 1, ..., d - 1\}$, we have numbers which are least residues modulo *m* since (recall that $0 \le r < m/d$):

 $0 \le r + k(m/d) < (m/d) + (d-1)(m/d) = d(m/d) = m.$

Lemma 5.3 (continued 1)

Lemma 5.3. Let d = (a, m). If $d \mid b$ then $ax \equiv b \pmod{m}$ has exactly d solutions.

Proof (continued). That is, s - r = k(m/d) or x = r + k(m/d) for some $k \in \mathbb{Z}$. For $k \in \{0, 1, ..., d - 1\}$, we have numbers which are least residues modulo *m* since (recall that $0 \le r < m/d$):

$$0 \le r + k(m/d) < (m/d) + (d-1)(m/d) = d(m/d) = m.$$

Also, for each such r + k(m/d) we have

$$(a/d)(r + k(m/d)) = (a/d)r + k(a/d)(m/d)$$

$$\equiv (a/d)r \pmod{m/d} \text{ since } k(a/d) \text{ is an integer}$$

$$\equiv b/d \pmod{m/d} \text{ since } ar \equiv b \pmod{m}$$

implies that $ar/d \equiv b/d \pmod{m/d}$.

Lemma 5.3 (continued 1)

Lemma 5.3. Let d = (a, m). If $d \mid b$ then $ax \equiv b \pmod{m}$ has exactly d solutions.

Proof (continued). That is, s - r = k(m/d) or x = r + k(m/d) for some $k \in \mathbb{Z}$. For $k \in \{0, 1, ..., d - 1\}$, we have numbers which are least residues modulo *m* since (recall that $0 \le r < m/d$):

$$0 \le r + k(m/d) < (m/d) + (d-1)(m/d) = d(m/d) = m.$$

Also, for each such r + k(m/d) we have

$$(a/d)(r + k(m/d)) = (a/d)r + k(a/d)(m/d)$$

$$\equiv (a/d)r \pmod{m/d} \text{ since } k(a/d) \text{ is an integer}$$

$$\equiv b/d \pmod{m/d} \text{ since } ar \equiv b \pmod{m}$$

implies that $ar/d \equiv b/d \pmod{m/d}$.

Lemma 5.3 (continued 2)

Lemma 5.3. Let d = (a, m). If $d \mid b$ then $ax \equiv b \pmod{m}$ has exactly d solutions.

Proof (continued). Therefore x = r + k(m/d) we have $(a/d)(r + k(m/d) = (a/d)x \equiv (b/d)(\mod m/d)$. This then implies that $ax \equiv b \pmod{m}$. Now *s* is an arbitrary solution of $ax \equiv b \pmod{m}$, so every solution $ax \equiv b \pmod{m}$ is of the form r + k(m/d) where $k \in \{0, 1, \ldots, d-1\}$. These solutions are different and hence $ax \equiv b \pmod{m}$ has exactly *d* solutions, as claimed.

7 / 10

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ if $i \neq j$, has a unique solution modulo $m_1 m_2 \cdots m_k$.

Proof. We prove by induction. With k = 1, $x = a_1 \pmod{m_1}$ has a unique solution and the base case is established.

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ if $i \neq j$, has a unique solution modulo $m_1 m_2 \cdots m_k$.

Proof. We prove by induction. With k = 1, $x = a_1 \pmod{m_1}$ has a unique solution and the base case is established.

With k = 2, we have $x \equiv a_1 \pmod{m_1}$, which implies $x = a_1 + k_1m_1$ for some $k_1 \in \mathbb{Z}$. In this case we also need $x = a_1 + k_1 \equiv a_2 \pmod{m_2}$, or $k_1m_1 \equiv a_2 - 1_a \pmod{m_2}$. Since $(m_1, m_2) = 1$ then by Lemma 5.2 (treating k_1 as the unknown) there is a solution k_1 modulo m_2 , say $k_1 = t$ where $0 \le t < m_2$, and so k_1 is of the form $k_1 = t + k_2m_2$. Therefore $x = a_1 + (t + k_2m_2)m_1 \equiv a_1 + tm_1 \pmod{m_1m_2}$ satisfies both congruences and the claim holds for k = 2 (we address uniqueness below).

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ if $i \neq j$, has a unique solution modulo $m_1 m_2 \cdots m_k$.

Proof. We prove by induction. With k = 1, $x = a_1 \pmod{m_1}$ has a unique solution and the base case is established.

With k = 2, we have $x \equiv a_1 \pmod{m_1}$, which implies $x = a_1 + k_1m_1$ for some $k_1 \in \mathbb{Z}$. In this case we also need $x = a_1 + k_1 \equiv a_2 \pmod{m_2}$, or $k_1m_1 \equiv a_2 - 1_a \pmod{m_2}$. Since $(m_1, m_2) = 1$ then by Lemma 5.2 (treating k_1 as the unknown) there is a solution k_1 modulo m_2 , say $k_1 = t$ where $0 \le t < m_2$, and so k_1 is of the form $k_1 = t + k_2m_2$. Therefore $x = a_1 + (t + k_2m_2)m_1 \equiv a_1 + tm_1 \pmod{m_1m_2}$ satisfies both congruences and the claim holds for k = 2 (we address uniqueness below).

Theorem 5.2 (continued 1)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ if $i \neq j$, has a unique solution modulo $m_1 m_2 \cdots m_k$.

Proof (continued). Now suppose the claim holds for k = r - 1. Then the system $x = a_i \pmod{m_i}$ for i = 1, 2, ..., r - 1 has a solution x = s. Now we consider the system:

$$x = a_i \pmod{m_i}$$
 for $i = 1, 2, \dots, r-1$, and $x \equiv a_r \pmod{m_r}$.

But this is just 2 congruences, and show has a solution based on the case k = 2 and the fact that the greatest common divisor $(m_1m_2\cdots m_{r-1}, m_r) = 1$. So by induction, the system of congruences $x \equiv a_i \pmod{m_i}$ for $i = 1, 2, \ldots, k$, where $(m_i, m_j) = 1$ for $i \neq j$, has a solution.

Theorem 5.2 (continued 1)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ if $i \neq j$, has a unique solution modulo $m_1 m_2 \cdots m_k$.

Proof (continued). Now suppose the claim holds for k = r - 1. Then the system $x = a_i \pmod{m_i}$ for i = 1, 2, ..., r - 1 has a solution x = s. Now we consider the system:

$$x = a_i \pmod{m_i}$$
 for $i = 1, 2, \dots, r-1$, and $x \equiv a_r \pmod{m_r}$.

But this is just 2 congruences, and show has a solution based on the case k = 2 and the fact that the greatest common divisor $(m_1m_2\cdots m_{r-1}, m_r) = 1$. So by induction, the system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ for $i \neq j$, has a solution.

Theorem 5.2 (continued 2)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ if $i \neq j$, has a unique solution modulo $m_1 m_2 \cdots m_k$.

Proof (continued). For uniqueness, suppose *r* and *s* are both solutions of the system. Then $r \equiv s \equiv a_1 \pmod{m_i}$ for i = 1, 2, ..., k. So $r - s \equiv 0 \pmod{m_i}$ and hence $m_i | (r - s)$ for i = 1, 2, ..., k; that is r - s is a common multiple of $m_1, m_2, ..., m_k$. Applying the Fundamental Theorem of Arithmetic (Theorem 2.2) to each m_i , observing that the m_i are relatively prime, and using Lemma 2.6 we have that $(m_1m_2\cdots m_k)|(r-s)$. But *r* and *s* are least residues modulo $m_1m_2\cdots m_k$ (by the definition of "solution"), so $-m_1m_2\cdots m_k < r - s < m_1m_2\cdots m_k$ and therefore r - s = 0 (see Note 5.A), or r = s. So solutions are unique, and the claim holds.

Theorem 5.2 (continued 2)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_i \pmod{m_i}$ for i = 1, 2, ..., k, where $(m_i, m_j) = 1$ if $i \neq j$, has a unique solution modulo $m_1 m_2 \cdots m_k$.

Proof (continued). For uniqueness, suppose *r* and *s* are both solutions of the system. Then $r \equiv s \equiv a_1 \pmod{m_i}$ for i = 1, 2, ..., k. So $r - s \equiv 0 \pmod{m_i}$ and hence $m_i | (r - s)$ for i = 1, 2, ..., k; that is r - s is a common multiple of $m_1, m_2, ..., m_k$. Applying the Fundamental Theorem of Arithmetic (Theorem 2.2) to each m_i , observing that the m_i are relatively prime, and using Lemma 2.6 we have that $(m_1m_2\cdots m_k)|(r-s)$. But *r* and *s* are least residues modulo $m_1m_2\cdots m_k$ (by the definition of "solution"), so $-m_1m_2\cdots m_k < r - s < m_1m_2\cdots m_k$ and therefore r - s = 0 (see Note 5.A), or r = s. So solutions are unique, and the claim holds.