Elementary Number Theory

Section 5. Linear Congruences—Proofs of Theorems

Table of contents

(1) Lemma 5.1
(2) Lemma 5.2
(3) Lemma 5.3

4 Theorem 5.2. The Chinese Remainder Theorem

Lemma 5.1

Lemma 5.1. If $(a, m) \nmid b$ then $a x \equiv b(\bmod m)$ has no solutions.

Proof. The contrapositive of the claim is: "If $a x \equiv b(\bmod m)$ has a solution then $(a, m) \mid b$. Let r be a solution." Then $a r \equiv b(\bmod m)$ so that (by the definition of "congruence") $m \mid(a r-b)$ or (by the definition of "divides") ar $-b=k m$ for some $k \in \mathbb{Z}$.

Lemma 5.1

Lemma 5.1. If $(a, m) \nmid b$ then $a x \equiv b(\bmod m)$ has no solutions.

Proof. The contrapositive of the claim is: "If $a x \equiv b(\bmod m)$ has a solution then $(a, m) \mid b$. Let r be a solution." Then $a r \equiv b(\bmod m)$ so that (by the definition of "congruence") $m \mid(a r-b)$ or (by the definition of "divides") ar $-b=k m$ for some $k \in \mathbb{Z}$.

Since $(a, m) \mid \operatorname{ar}$ (because $(a, m) \mid a)$ and $(a, m) \mid k m$ (because $(a, m) \mid m)$
then Lemma $1.2(a, m) \mid(a r-k m)$. That is, $(a, m) \mid b$. So the
contrapositive holds, and hence the original claim holds.

Lemma 5.1

Lemma 5.1. If $(a, m) \nmid b$ then $a x \equiv b(\bmod m)$ has no solutions.

Proof. The contrapositive of the claim is: "If $a x \equiv b(\bmod m)$ has a solution then $(a, m) \mid b$. Let r be a solution." Then $a r \equiv b(\bmod m)$ so that (by the definition of "congruence") $m \mid(a r-b)$ or (by the definition of "divides") ar $-b=k m$ for some $k \in \mathbb{Z}$.

Since $(a, m) \mid \operatorname{ar}$ (because $(a, m) \mid a$) and $(a, m) \mid k m$ (because $(a, m) \mid m$) then Lemma $1.2(a, m) \mid(a r-k m)$. That is, $(a, m) \mid b$. So the contrapositive holds, and hence the original claim holds.

Lemma 5.2

Lemma 5.2. If $(a, m)=1$ then $a x \equiv b(\bmod m)$ has exactly one solution.
Proof. Since $(a, m)=1$ by hypothesis, then by Theorem 1.4 there are integers r and s such that $a r+m s=1=(a, m)$. Therefore $n(a r+m s)=b(1)$ or $a(r b)+m(s b)=b$. So $a r b-b=-m s b$ and $a r b-b$ is a multiple of m, or $a(r b) \equiv b(\bmod m)$. Then the least residue of $r b$ modulo m is a solution of $a x \equiv b(\bmod m)$, as claimed.

Lemma 5.2

Lemma 5.2. If $(a, m)=1$ then $a x \equiv b(\bmod m)$ has exactly one solution.
Proof. Since $(a, m)=1$ by hypothesis, then by Theorem 1.4 there are integers r and s such that $a r+m s=1=(a, m)$. Therefore $n(a r+m s)=b(1)$ or $a(r b)+m(s b)=b$. So $a r b-b=-m s b$ and $a r b-b$ is a multiple of m, or $a(r b) \equiv b(\bmod m)$. Then the least residue of $r b$ modulo m is a solution of $a x \equiv b(\bmod m)$, as claimed.

Next, we need to show that is only one solution. ASSUME that both r and s are solutions to $a x \equiv b(\bmod m)$. Then $a r \equiv b(\bmod m)$ and $a s \equiv b$ $(\bmod m)$ and hence $a r \equiv$ as $(\bmod m)$. So by Theorem 4.4 we can cancel the common factor a to get $r \equiv s(\bmod m)$. Then, by the definition of congruence, $m \mid(r-s)$. But r and s are least residues modulo m (by the definition of "solution"), so $0 \leq r<m$ and $0 \leq s<m$. Thus $-m<r-s<m$, along with the fact that $m \mid(r-s)$, implies that $r-s=0$ or $r=s$. Therefore, the solution is unique, as claimed.

Lemma 5.2

Lemma 5.2. If $(a, m)=1$ then $a x \equiv b(\bmod m)$ has exactly one solution.
Proof. Since $(a, m)=1$ by hypothesis, then by Theorem 1.4 there are integers r and s such that $a r+m s=1=(a, m)$. Therefore $n(a r+m s)=b(1)$ or $a(r b)+m(s b)=b$. So $a r b-b=-m s b$ and $a r b-b$ is a multiple of m, or $a(r b) \equiv b(\bmod m)$. Then the least residue of $r b$ modulo m is a solution of $a x \equiv b(\bmod m)$, as claimed.

Next, we need to show that is only one solution. ASSUME that both r and s are solutions to $a x \equiv b(\bmod m)$. Then $a r \equiv b(\bmod m)$ and $a s \equiv b$ $(\bmod m)$ and hence $a r \equiv a s(\bmod m)$. So by Theorem 4.4 we can cancel the common factor a to get $r \equiv s(\bmod m)$. Then, by the definition of congruence, $m \mid(r-s)$. But r and s are least residues modulo m (by the definition of "solution"), so $0 \leq r<m$ and $0 \leq s<m$. Thus $-m<r-s<m$, along with the fact that $m \mid(r-s)$, implies that $r-s=0$ or $r=s$. Therefore, the solution is unique, as claimed.

Lemma 5.3

Lemma 5.3. Let $d=(a, m)$. If $d \mid b$ then $a x \equiv b(\bmod m)$ has exactly d solutions.

Proof. The linear congruence $a x \equiv b(\bmod m)$ is equivalent to the equation $a x=b+k m$ for some $k \in \mathbb{Z}$. So if we cancel the common factor $d=(a, m)$ (which divides a and m by definition, and divides b by hypothesis) then we get $(a / d) x=(b / d)+k(m / d)$ or $(a / d) x=(b / d)$ $(\bmod m / d)$. Now a / d and m / d are relatively prime, $(a / b, m / d)=1$, since we have divided out $d=(a, m)$. So by Lemma 5.2, $(a / d) x=(b / d)$ $(\bmod m / d)$ has exactly one solution, say $x=r$ where $0 \leq r<m / d$. Notice that $x=r$ is also a solution to $a x \equiv b(\bmod m)$.

Lemma 5.3

Lemma 5.3. Let $d=(a, m)$. If $d \mid b$ then $a x \equiv b(\bmod m)$ has exactly d solutions.

Proof. The linear congruence $a x \equiv b(\bmod m)$ is equivalent to the equation $a x=b+k m$ for some $k \in \mathbb{Z}$. So if we cancel the common factor $d=(a, m)$ (which divides a and m by definition, and divides b by hypothesis) then we get $(a / d) x=(b / d)+k(m / d)$ or $(a / d) x=(b / d)$ $(\bmod m / d)$. Now a / d and m / d are relatively prime, $(a / b, m / d)=1$, since we have divided out $d=(a, m)$. So by Lemma 5.2, $(a / d) x=(b / d)$ $(\bmod m / d)$ has exactly one solution, say $x=r$ where $0 \leq r<m / d$. Notice that $x=r$ is also a solution to $a x \equiv b(\bmod m)$. Let $x=s$ be any other solution of $a x \equiv b(\bmod m)$. Then ar $\equiv a s \equiv b(\bmod m)$, and so by Theorem $4.5 r \equiv s(\bmod m / d)$. That is, $s-r=k(m / d)$ or $x=r+k(m / d)$ for some $k \in \mathbb{Z}$.

Lemma 5.3

Lemma 5.3. Let $d=(a, m)$. If $d \mid b$ then $a x \equiv b(\bmod m)$ has exactly d solutions.

Proof. The linear congruence $a x \equiv b(\bmod m)$ is equivalent to the equation $a x=b+k m$ for some $k \in \mathbb{Z}$. So if we cancel the common factor $d=(a, m)$ (which divides a and m by definition, and divides b by hypothesis) then we get $(a / d) x=(b / d)+k(m / d)$ or $(a / d) x=(b / d)$ $(\bmod m / d)$. Now a / d and m / d are relatively prime, $(a / b, m / d)=1$, since we have divided out $d=(a, m)$. So by Lemma 5.2, $(a / d) x=(b / d)$ $(\bmod m / d)$ has exactly one solution, say $x=r$ where $0 \leq r<m / d$. Notice that $x=r$ is also a solution to $a x \equiv b(\bmod m)$. Let $x=s$ be any other solution of $a x \equiv b(\bmod m)$. Then $a r \equiv a s \equiv b(\bmod m)$, and so by Theorem $4.5 r \equiv s(\bmod m / d)$. That is, $s-r=k(m / d)$ or $x=r+k(m / d)$ for some $k \in \mathbb{Z} . \ldots$

Lemma 5.3 (continued 1)

Lemma 5.3. Let $d=(a, m)$. If $d \mid b$ then $a x \equiv b(\bmod m)$ has exactly d solutions.

Proof (continued). That is, $s-r=k(m / d)$ or $x=r+k(m / d)$ for some $k \in \mathbb{Z}$. For $k \in\{0,1, \ldots, d-1\}$, we have numbers which are least residues modulo m since (recall that $0 \leq r<m / d$):

$$
0 \leq r+k(m / d)<(m / d)+(d-1)(m / d)=d(m / d)=m .
$$

Lemma 5.3 (continued 1)

Lemma 5.3. Let $d=(a, m)$. If $d \mid b$ then $a x \equiv b(\bmod m)$ has exactly d solutions.

Proof (continued). That is, $s-r=k(m / d)$ or $x=r+k(m / d)$ for some $k \in \mathbb{Z}$. For $k \in\{0,1, \ldots, d-1\}$, we have numbers which are least residues modulo m since (recall that $0 \leq r<m / d$):

$$
0 \leq r+k(m / d)<(m / d)+(d-1)(m / d)=d(m / d)=m .
$$

Also, for each such $r+k(m / d)$ we have

$$
\begin{aligned}
(a / d)(r+k(m / d)) \equiv & (a / d) r+k(a / d)(m / d) \\
\equiv & (a / d) r(\bmod m / d) \text { since } k(a / d) \text { is an integer } \\
\equiv & b / d(\bmod m / d) \text { since ar } \equiv b(\bmod m) \\
& \quad \text { implies that } a r / d \equiv b / d(\bmod m / d) .
\end{aligned}
$$

Lemma 5.3 (continued 1)

Lemma 5.3. Let $d=(a, m)$. If $d \mid b$ then $a x \equiv b(\bmod m)$ has exactly d solutions.

Proof (continued). That is, $s-r=k(m / d)$ or $x=r+k(m / d)$ for some $k \in \mathbb{Z}$. For $k \in\{0,1, \ldots, d-1\}$, we have numbers which are least residues modulo m since (recall that $0 \leq r<m / d$):

$$
0 \leq r+k(m / d)<(m / d)+(d-1)(m / d)=d(m / d)=m .
$$

Also, for each such $r+k(m / d)$ we have

$$
\begin{aligned}
(a / d)(r+k(m / d)) \equiv & (a / d) r+k(a / d)(m / d) \\
\equiv & (a / d) r(\bmod m / d) \text { since } k(a / d) \text { is an integer } \\
\equiv & b / d(\bmod m / d) \text { since ar } \equiv b(\bmod m) \\
& \quad \text { implies that } a r / d \equiv b / d(\bmod m / d) .
\end{aligned}
$$

Lemma 5.3 (continued 2)

Lemma 5.3. Let $d=(a, m)$. If $d \mid b$ then $a x \equiv b(\bmod m)$ has exactly d solutions.

Proof (continued). Therefore $x=r+k(m / d)$ we have $(a / d)(r+k(m / d)=(a / d) x \equiv(b / d)(\bmod m / d)$. This then implies that $a x \equiv b(\bmod m)$. Now s is an arbitrary solution of $a x \equiv b(\bmod m)$, so every solution $a x \equiv b(\bmod m)$ is of the form $r+k(m / d)$ where $k \in\{0,1, \ldots, d-1\}$. These solutions are different and hence $a x \equiv b$ $(\bmod m)$ has exactly d solutions, as claimed.

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ if $i \neq j$, has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

Proof. We prove by induction. With $k=1, x=a_{1}\left(\bmod m_{1}\right)$ has a unique solution and the base case is established.

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ if $i \neq j$, has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

Proof. We prove by induction. With $k=1, x=a_{1}\left(\bmod m_{1}\right)$ has a unique solution and the base case is established.

With $k=2$, we have $x \equiv a_{1}\left(\bmod m_{1}\right.$, which implies $x=a_{1}+k_{1} m_{1}$ for some $k_{1} \in \mathbb{Z}$. In this case we also need $x=a_{1}+k_{1} \equiv a_{2}\left(\bmod m_{2}\right)$, or $k_{1} m_{1} \equiv a_{2}-1_{a}\left(\bmod m_{2}\right)$. Since $\left(m_{1}, m_{2}\right)=1$ then by Lemma 5.2 (treating k_{1} as the unknown) there is a solution k_{1} modulo m_{2}, say $k_{1}=t$ where $0 \leq t<m_{2}$, and so k_{1} is of the form $k_{1}=t+k_{2} m_{2}$. Therefore $x=a_{1}+\left(t+k_{2} m_{2}\right) m_{1} \equiv a_{1}+t m_{1}\left(\bmod m_{1} m_{2}\right)$ satisfies both congruences and the claim holds for $k=2$ (we address uniqueness below).

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ if $i \neq j$, has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

Proof. We prove by induction. With $k=1, x=a_{1}\left(\bmod m_{1}\right)$ has a unique solution and the base case is established.

With $k=2$, we have $x \equiv a_{1}\left(\bmod m_{1}\right.$, which implies $x=a_{1}+k_{1} m_{1}$ for some $k_{1} \in \mathbb{Z}$. In this case we also need $x=a_{1}+k_{1} \equiv a_{2}\left(\bmod m_{2}\right)$, or $k_{1} m_{1} \equiv a_{2}-1_{a}\left(\bmod m_{2}\right)$. Since $\left(m_{1}, m_{2}\right)=1$ then by Lemma 5.2 (treating k_{1} as the unknown) there is a solution k_{1} modulo m_{2}, say $k_{1}=t$ where $0 \leq t<m_{2}$, and so k_{1} is of the form $k_{1}=t+k_{2} m_{2}$. Therefore $x=a_{1}+\left(t+k_{2} m_{2}\right) m_{1} \equiv a_{1}+t m_{1}\left(\bmod m_{1} m_{2}\right)$ satisfies both congruences and the claim holds for $k=2$ (we address uniqueness below).

Theorem 5.2 (continued 1)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ if $i \neq j$, has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

Proof (continued). Now suppose the claim holds for $k=r-1$. Then the system $x=a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, r-1$ has a solution $x=s$. Now we consider the system:

$$
x=a_{i}\left(\bmod m_{i}\right) \text { for } i=1,2, \ldots, r-1, \quad \text { and } x \equiv a_{r}\left(\bmod m_{r}\right) .
$$

But this is just 2 congruences, and show has a solution based on the case $k=2$ and the fact that the greatest common divisor $\left(m_{1} m_{2} \cdots m_{r-1}, m_{r}\right)=1$. So by induction, the system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$, has a solution.

Theorem 5.2 (continued 1)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ if $i \neq j$, has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

Proof (continued). Now suppose the claim holds for $k=r-1$. Then the system $x=a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, r-1$ has a solution $x=s$. Now we consider the system:

$$
x=a_{i}\left(\bmod m_{i}\right) \text { for } i=1,2, \ldots, r-1, \quad \text { and } x \equiv a_{r}\left(\bmod m_{r}\right) .
$$

But this is just 2 congruences, and show has a solution based on the case $k=2$ and the fact that the greatest common divisor $\left(m_{1} m_{2} \cdots m_{r-1}, m_{r}\right)=1$. So by induction, the system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$, has a solution.

Theorem 5.2 (continued 2)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ if $i \neq j$, has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

Proof (continued). For uniqueness, suppose r and s are both solutions of the system. Then $r \equiv s \equiv a_{1}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$. So $r-s \equiv 0$ $\left(\bmod m_{i}\right)$ and hence $m_{i} \mid(r-s)$ for $i=1,2, \ldots, k$; that is $r-s$ is a common multiple of $m_{1}, m_{2}, \ldots, m_{k}$. Applying the Fundamental Theorem of Arithmetic (Theorem 2.2) to each m_{i}, observing that the m_{i} are relatively prime, and using Lemma 2.6 we have that $\left(m_{1} m_{2} \cdots m_{k}\right) \mid(r-s)$. But r and s are least residues modulo $m_{1} m_{2} \cdots m_{k}$ (by the definition of "solution"), so
$-m_{1} m_{2} \cdots m_{k}<r-s<m_{1} m_{2} \cdots m_{k}$ and therefore $r-s=0$ (see Note 5.A), or $r=s$. So solutions are unique, and the claim holds.

Theorem 5.2 (continued 2)

Theorem 5.2. The Chinese Remainder Theorem.

The system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$, where $\left(m_{i}, m_{j}\right)=1$ if $i \neq j$, has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

Proof (continued). For uniqueness, suppose r and s are both solutions of the system. Then $r \equiv s \equiv a_{1}\left(\bmod m_{i}\right)$ for $i=1,2, \ldots, k$. So $r-s \equiv 0$ $\left(\bmod m_{i}\right)$ and hence $m_{i} \mid(r-s)$ for $i=1,2, \ldots, k$; that is $r-s$ is a common multiple of $m_{1}, m_{2}, \ldots, m_{k}$. Applying the Fundamental Theorem of Arithmetic (Theorem 2.2) to each m_{i}, observing that the m_{i} are relatively prime, and using Lemma 2.6 we have that $\left(m_{1} m_{2} \cdots m_{k}\right) \mid(r-s)$. But r and s are least residues modulo $m_{1} m_{2} \cdots m_{k}$ (by the definition of "solution"), so
$-m_{1} m_{2} \cdots m_{k}<r-s<m_{1} m_{2} \cdots m_{k}$ and therefore $r-s=0$ (see Note 5.A), or $r=s$. So solutions are unique, and the claim holds.

