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Lemma 5.1

Lemma 5.1

Lemma 5.1. If (a,m) - b then ax ≡ b (mod m) has no solutions.

Proof. The contrapositive of the claim is: “If ax ≡ b (mod m) has a
solution then (a,m) | b. Let r be a solution.” Then ar ≡ b (mod m) so
that (by the definition of “congruence”) m | (ar − b) or (by the definition
of “divides”) ar − b = km for some k ∈ Z.

Since (a,m) | ar (because (a,m) | a) and (a,m) | km (because (a,m) |m)
then Lemma 1.2 (a,m) | (ar − km). That is, (a,m) | b. So the
contrapositive holds, and hence the original claim holds.
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Lemma 5.2

Lemma 5.2

Lemma 5.2. If (a,m) = 1 then ax ≡ b (mod m) has exactly one solution.

Proof. Since (a,m) = 1 by hypothesis, then by Theorem 1.4 there are
integers r and s such that ar + ms = 1 = (a,m). Therefore
n(ar + ms) = b(1) or a(rb) + m(sb) = b. So arb − b = −msb and arb − b
is a multiple of m, or a(rb) ≡ b (mod m). Then the least residue of rb
modulo m is a solution of ax ≡ b (mod m), as claimed.

Next, we need to show that is only one solution. ASSUME that both r
and s are solutions to ax ≡ b (mod m). Then ar ≡ b (mod m) and as ≡ b
(mod m) and hence ar ≡ as (mod m). So by Theorem 4.4 we can cancel
the common factor a to get r ≡ s (mod m). Then, by the definition of
congruence, m | (r − s). But r and s are least residues modulo m (by the
definition of “solution”), so 0 ≤ r < m and 0 ≤ s < m. Thus
−m < r − s < m, along with the fact that m | (r − s), implies that
r − s = 0 or r = s. Therefore, the solution is unique, as claimed.
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Lemma 5.3

Lemma 5.3

Lemma 5.3. Let d = (a,m). If d | b then ax ≡ b (mod m) has exactly d
solutions.

Proof. The linear congruence ax ≡ b (mod m) is equivalent to the
equation ax = b + km for some k ∈ Z. So if we cancel the common factor
d = (a,m) (which divides a and m by definition, and divides b by
hypothesis) then we get (a/d)x = (b/d) + k(m/d) or (a/d)x = (b/d)
(mod m/d). Now a/d and m/d are relatively prime, (a/b,m/d) = 1,
since we have divided out d = (a,m). So by Lemma 5.2, (a/d)x = (b/d)
(mod m/d) has exactly one solution, say x = r where 0 ≤ r < m/d .
Notice that x = r is also a solution to ax ≡ b (mod m).

Let x = s be any
other solution of ax ≡ b (mod m). Then ar ≡ as ≡ b (mod m), and so by
Theorem 4.5 r ≡ s (mod m/d). That is, s − r = k(m/d) or
x = r + k(m/d) for some k ∈ Z. . . .
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Lemma 5.3

Lemma 5.3 (continued 1)

Lemma 5.3. Let d = (a,m). If d | b then ax ≡ b (mod m) has exactly d
solutions.

Proof (continued). That is, s − r = k(m/d) or x = r + k(m/d) for some
k ∈ Z. For k ∈ {0, 1, . . . , d − 1}, we have numbers which are least
residues modulo m since (recall that 0 ≤ r < m/d):

0 ≤ r + k(m/d) < (m/d) + (d − 1)(m/d) = d(m/d) = m.

Also, for each such r + k(m/d) we have

(a/d)(r + k(m/d)) = (a/d)r + k(a/d)(m/d)

≡ (a/d)r (mod m/d) since k(a/d) is an integer

≡ b/d (mod m/d) since ar ≡ b (mod m)

implies that ar/d ≡ b/d (mod m/d).
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Lemma 5.3

Lemma 5.3 (continued 2)

Lemma 5.3. Let d = (a,m). If d | b then ax ≡ b (mod m) has exactly d
solutions.

Proof (continued). Therefore x = r + k(m/d) we have
(a/d)(r + k(m/d) = (a/d)x ≡ (b/d)(mod m/d). This then implies that
ax ≡ b (mod m). Now s is an arbitrary solution of ax ≡ b (mod m), so
every solution ax ≡ b (mod m) is of the form r + k(m/d) where
k ∈ {0, 1, . . . , d − 1}. These solutions are different and hence ax ≡ b
(mod m) has exactly d solutions, as claimed.
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Theorem 5.2. The Chinese Remainder Theorem

Theorem 5.2

Theorem 5.2. The Chinese Remainder Theorem.
The system of congruences x ≡ ai (mod mi ) for i = 1, 2, . . . , k, where
(mi ,mj) = 1 if i 6= j , has a unique solution modulo m1m2 · · ·mk .

Proof. We prove by induction. With k = 1, x = a1 (mod m1) has a
unique solution and the base case is established.

With k = 2, we have x ≡ a1 (mod m1, which implies x = a1 + k1m1 for
some k1 ∈ Z. In this case we also need x = a1 + k1 ≡ a2 (mod m2), or
k1m1 ≡ a2 − 1a (mod m2). Since (m1,m2) = 1 then by Lemma 5.2
(treating k1 as the unknown) there is a solution k1 modulo m2, say k1 = t
where 0 ≤ t < m2, and so k1 is of the form k1 = t + k2m2. Therefore
x = a1 + (t + k2m2)m1 ≡ a1 + tm1 (mod m1m2) satisfies both
congruences and the claim holds for k = 2 (we address uniqueness below).
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Theorem 5.2. The Chinese Remainder Theorem

Theorem 5.2 (continued 1)

Theorem 5.2. The Chinese Remainder Theorem.
The system of congruences x ≡ ai (mod mi ) for i = 1, 2, . . . , k, where
(mi ,mj) = 1 if i 6= j , has a unique solution modulo m1m2 · · ·mk .

Proof (continued). Now suppose the claim holds for k = r − 1. Then
the system x = ai (mod mi ) for i = 1, 2, . . . , r − 1 has a solution x = s.
Now we consider the system:

x = ai (mod mi ) for i = 1, 2, . . . , r − 1, and x ≡ ar (mod mr ).

But this is just 2 congruences, and show has a solution based on the case
k = 2 and the fact that the greatest common divisor
(m1m2 · · ·mr−1,mr ) = 1. So by induction, the system of congruences
x ≡ ai (mod mi ) for i = 1, 2, . . . , k, where (mi ,mj) = 1 for i 6= j , has a
solution.
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Theorem 5.2. The Chinese Remainder Theorem

Theorem 5.2 (continued 2)

Theorem 5.2. The Chinese Remainder Theorem.
The system of congruences x ≡ ai (mod mi ) for i = 1, 2, . . . , k, where
(mi ,mj) = 1 if i 6= j , has a unique solution modulo m1m2 · · ·mk .

Proof (continued). For uniqueness, suppose r and s are both solutions of
the system. Then r ≡ s ≡ a1 (mod mi ) for i = 1, 2, . . . , k. So r − s ≡ 0
(mod mi ) and hence mi | (r − s) for i = 1, 2, . . . , k; that is r − s is a
common multiple of m1,m2, . . . ,mk . Applying the Fundamental Theorem
of Arithmetic (Theorem 2.2) to each mi , observing that the mi are
relatively prime, and using Lemma 2.6 we have that
(m1m2 · · ·mk) | (r − s). But r and s are least residues modulo
m1m2 · · ·mk (by the definition of “solution”), so
−m1m2 · · ·mk < r − s < m1m2 · · ·mk and therefore r − s = 0 (see Note
5.A), or r = s. So solutions are unique, and the claim holds.
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