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Lemma 6.1 Theorem 6.1. Fermat's Theorem

Lemma 6.1 (continued)

Lemma 6.1. If the greatest common divisor (a, m) = 1, then the least
residues of

(1) a,2a,3a,...,(m—1)a (mod m) are (in some order) (2)1,2,3,..., m—1.

In other words, if (a, m) = 1, then each integer is congruent (mod m) to
exactly one of a,2a,3,...,(m—1)a.

Proof (continued). Since (a,n) = 1 then by Theorem 4.4 we have r = s
(mod m). But r and s are both least residues modulo m and so are equal
by Note 5.A. But r = s is a CONTRADICTION and so the assumption
that two different numbers of (1) are congruent modulo m is false. Hence
no two of the numbers of (1) are congruent modulo m and so each has a
different least residue modulo m. Since there are m — 1 numbers in (1)
and m — 1 least residues in (2), then the least residences of the numbers in
(1) must be precisely the numbers in (2), as claimed. O
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Theorem 6.1. Fermat's Theorem

Theorem 6.1. Fermat’s Theorem. If p is prime and the greatest
common divisor (a,p) = 1, then =1 =1 (mod p).

Proof. Given any prime p, Lemma 6.1 says that is (a, p) = 1, then the
least residues of a,2a,3a,...,(m — 1)a modulo p are some permutation of
1,2,3,...,p— 1. So the products are congruent

a-2a-3a---(p—1)a=1-2---3---(p—1) (mod p),
ora~}(p—1)'=(p—1)! (mod p). Now p and (p — 1)! are relatively

prime (this is where the primeness of p is used), so by Theorem 4.4 we
have a?~! =1 (mod p), as claimed. O
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Lemma 6.2

Lemma 6.2. The congruence x> =

has two solutions: 1 and p — 1.

(mod p), where p is an odd prime,

Proof. Let r be a solution of x> = 1 (mod p). Then we have
r?—1=(r+1)(r—1)=0 (mod p). Thatis, p|(r+1)(r—1). Since p is
prime, by Euclid's Lemma (Lemma 2.5), either p|r+ 1 or p|r — 1. That
is, either r+1 =0 (mod p) or r —1 =0 (mod p). Hence either r = p—1
(mod p) or r =1 (mod p), respectively. Since r is a least residue then
either r =1 or r = p — 1 (both of which are clearly solutions), as

claimed. ]
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Lemma 6.3 (continued)

Lemma 6.3. Let p be an odd prime and let &’ by the solution of ax = 1
(mod p) where a € {1,2,...,p—1}. Then a = b’ (mod p) if and only if
a= b (mod p). Furthermore, a = &' (mod p) if and only if a=1 or
a=p-—1.

Proof (continued). Next, suppose that a = b (mod p). Then

b = b'ad'( mod p) since aa’ =1 (mod p)
= b'ba’ (mod p) since a = b (mod p)
= a' (mod p) since b’b=1 (mod p),

as claimed.

Now for the furthermore part, if either a=1 or a = p — 1, then either
1-1=1(mod p) or (p —1)(p—1) =1 (mod p) as needed. Finally, if
a=a (mod p), then 1 = aa’a® (mod p), and from Lemma 6.2 this holds
if and only if a=1or a= p—1, as claimed. O
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Lemma 6.3

Lemma 6.3. Let p be an odd prime and let &’ by the solution of ax = 1
(mod p) where a € {1,2,...,p—1}. Then a = b’ (mod p) if and only if
a= b (mod p). Furthermore, a = a4’ (mod p) if and only if a=1 or
a=p-—1

Proof. Suppose that & = b’ (mod p). Then

b = ad'b( mod p) since aa’ =1 (mod p)
= ab'b (mod p) since & = b’ (mod p)
= a (mod p) since b'b=1 (mod p),

as claimed.
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Theorem 6.2. Wilson's Theorem

Theorem 6.2 Wilson's Theorem

Theorem 6.2. Wilson’s Theorem. Positive integer p is prime if and only
if (p—1)!=—-1 (mod p).

Proof. By Note 6.A, the numbers 2,3,..., p — 2 can be separated into
(p — 3)/2 pairs such that each pair consists of an integer a and its
associated multiplicative inverse a’. The product of the two integers in
each pair is congruent to 1 (mod p), so the product satisfies
2-3---(p—3)-(p—2) =1 (mod p). Hence

(p—1)1=1-2-3---(p=3)-(p—2)-(p—1) =1-1-(p—1) = =1 (mod p),

as claimed.
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Theorem 6.2 Wilson's Theorem (continued)

Theorem 6.2. Wilson’s Theorem. Positive integer p is prime if and only
if (p—1)!= -1 (mod p).

Proof (continued). For the converse, suppose (n —1)! = —1 (mod n).
ASSUME n is not prime and that n = ab for integers a and b with b # n.
Since (n—1)! = —1 (mod n), then n|(n—1)! + 1, and since a| n then
al(n—1)!+1. Since a# nthen 0 <a<n—1 and so a must be one of
the factors of (n — 1)!. But then a|(n — 1)!. But the only way we can
have a|(n—1)!+1 and a|(n—1)!, is for a=1 (by Lemma 1.2) which
implies b = n, a CONTRADICTION. This contradiction shows that the
assumption that n is not prime is false, and hence n is prime as

claimed. O
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