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Lemma 6.1

Lemma 6.1

Lemma 6.1. If the greatest common divisor (a,m) = 1, then the least
residues of

(1) a, 2a, 3a, . . . , (m−1)a (mod m) are (in some order) (2) 1, 2, 3, . . . ,m−1.

In other words, if (a,m) = 1, then each integer is congruent (mod m) to
exactly one of a, 2a, 3a, . . . , (m − 1)a.

Proof. Since m does not divide any of 1, 2, 3, . . . , (m − 1) and (a,m) = 1
then m does not divide any of a, 2a, 3a, . . . , (m− 1)a by the contrapositive
of Corollary 1.1. That is, none of a, 2a, 3a, . . . (m − 1)a is 0 (mod m). So
each of the numbers in (1) is congruent to a number in (2). ASSUME two
different numbers of (1) are congruent modulo m, say ra ≡ rs (mod m) for
r , s ∈ {1, 2, . . . ,m − 1} and r 6= s.
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Lemma 6.1

Lemma 6.1 (continued)

Lemma 6.1. If the greatest common divisor (a,m) = 1, then the least
residues of

(1) a, 2a, 3a, . . . , (m−1)a (mod m) are (in some order) (2) 1, 2, 3, . . . ,m−1.

In other words, if (a,m) = 1, then each integer is congruent (mod m) to
exactly one of a, 2a, 3, . . . , (m − 1)a.

Proof (continued). Since (a, n) = 1 then by Theorem 4.4 we have r ≡ s
(mod m). But r and s are both least residues modulo m and so are equal
by Note 5.A. But r = s is a CONTRADICTION and so the assumption
that two different numbers of (1) are congruent modulo m is false. Hence
no two of the numbers of (1) are congruent modulo m and so each has a
different least residue modulo m. Since there are m − 1 numbers in (1)
and m− 1 least residues in (2), then the least residences of the numbers in
(1) must be precisely the numbers in (2), as claimed.
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Lemma 6.1

Lemma 6.1 (continued)
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Theorem 6.1. Fermat’s Theorem

Theorem 6.1. Fermat’s Theorem

Theorem 6.1. Fermat’s Theorem. If p is prime and the greatest
common divisor (a, p) = 1, then ap−1 ≡ 1 (mod p).

Proof. Given any prime p, Lemma 6.1 says that is (a, p) = 1, then the
least residues of a, 2a, 3a, . . . , (m − 1)a modulo p are some permutation of
1, 2, 3, . . . , p − 1. So the products are congruent

a · 2a · 3a · · · (p − 1)a ≡ 1 · 2 · · · 3 · · · (p − 1) (mod p),

or a−1(p − 1)! ≡ (p − 1)! (mod p). Now p and (p − 1)! are relatively
prime (this is where the primeness of p is used), so by Theorem 4.4 we
have ap−1 ≡ 1 (mod p), as claimed.
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Lemma 6.2

Lemma 6.2

Lemma 6.2. The congruence x2 ≡ 1 (mod p), where p is an odd prime,
has two solutions: 1 and p − 1.

Proof. Let r be a solution of x2 ≡ 1 (mod p). Then we have
r2 − 1 = (r + 1)(r − 1) ≡ 0 (mod p). That is, p | (r + 1)(r − 1). Since p is
prime, by Euclid’s Lemma (Lemma 2.5), either p | r + 1 or p | r − 1. That
is, either r + 1 ≡ 0 (mod p) or r − 1 ≡ 0 (mod p). Hence either r ≡ p − 1
(mod p) or r ≡ 1 (mod p), respectively. Since r is a least residue then
either r = 1 or r = p − 1 (both of which are clearly solutions), as
claimed.
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Lemma 6.3

Lemma 6.3

Lemma 6.3. Let p be an odd prime and let a′ by the solution of ax ≡ 1
(mod p) where a ∈ {1, 2, . . . , p − 1}. Then a′ ≡ b′ (mod p) if and only if
a ≡ b (mod p). Furthermore, a ≡ a′ (mod p) if and only if a = 1 or
a = p − 1.

Proof. Suppose that a′ ≡ b′ (mod p). Then

b ≡ aa′b( mod p) since aa′ ≡ 1 (mod p)

≡ ab′b (mod p) since a′ ≡ b′ (mod p)

≡ a (mod p) since b′b ≡ 1 (mod p),

as claimed.
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Lemma 6.3

Lemma 6.3 (continued)

Lemma 6.3. Let p be an odd prime and let a′ by the solution of ax ≡ 1
(mod p) where a ∈ {1, 2, . . . , p − 1}. Then a′ ≡ b′ (mod p) if and only if
a ≡ b (mod p). Furthermore, a ≡ a′ (mod p) if and only if a = 1 or
a = p − 1.

Proof (continued). Next, suppose that a ≡ b (mod p). Then

b′ ≡ b′aa′( mod p) since aa′ ≡ 1 (mod p)

≡ b′ba′ (mod p) since a ≡ b (mod p)

≡ a′ (mod p) since b′b ≡ 1 (mod p),

as claimed.

Now for the furthermore part, if either a = 1 or a = p − 1, then either
1 · 1 ≡ 1 (mod p) or (p − 1)(p − 1) ≡ 1 (mod p) as needed. Finally, if
a ≡ a′ (mod p), then 1 ≡ aa′a2 (mod p), and from Lemma 6.2 this holds
if and only if a = 1 or a = p − 1, as claimed.
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Lemma 6.3 (continued)
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Theorem 6.2. Wilson’s Theorem

Theorem 6.2 Wilson’s Theorem

Theorem 6.2. Wilson’s Theorem. Positive integer p is prime if and only
if (p − 1)! ≡ −1 (mod p).

Proof. By Note 6.A, the numbers 2, 3, . . . , p − 2 can be separated into
(p − 3)/2 pairs such that each pair consists of an integer a and its
associated multiplicative inverse a′. The product of the two integers in
each pair is congruent to 1 (mod p), so the product satisfies
2 · 3 · · · (p − 3) · (p − 2) ≡ 1 (mod p). Hence

(p−1)! ≡ 1 ·2 ·3 · · · (p−3) · (p−2) · (p−1) ≡ 1 ·1 · (p−1) ≡ −1 (mod p),

as claimed.
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Theorem 6.2. Wilson’s Theorem

Theorem 6.2 Wilson’s Theorem (continued)

Theorem 6.2. Wilson’s Theorem. Positive integer p is prime if and only
if (p − 1)! ≡ −1 (mod p).

Proof (continued). For the converse, suppose (n − 1)! ≡ −1 (mod n).
ASSUME n is not prime and that n = ab for integers a and b with b 6= n.
Since (n − 1)! ≡ −1 (mod n), then n | (n − 1)! + 1, and since a | n then
a | (n − 1)! + 1. Since a 6= n then 0 < a ≤ n − 1 and so a must be one of
the factors of (n − 1)!. But then a | (n − 1)!. But the only way we can
have a | (n − 1)! + 1 and a | (n − 1)!, is for a = 1 (by Lemma 1.2) which
implies b = n, a CONTRADICTION. This contradiction shows that the
assumption that n is not prime is false, and hence n is prime as
claimed.
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