Elementary Number Theory

Section 6. Fermat's and Wilson's Theorems—Proofs of Theorems

Table of contents

(1) Lemma 6.1
(2) Theorem 6.1. Fermat's Theorem
(3) Lemma 6.2
(4) Lemma 6.3
(5) Theorem 6.2. Wilson's Theorem

Lemma 6.1

Lemma 6.1. If the greatest common divisor $(a, m)=1$, then the least residues of
(1) $a, 2 a, 3 a, \ldots,(m-1) a(\bmod m)$ are (in some order) (2) $1,2,3, \ldots, m-1$. In other words, if $(a, m)=1$, then each integer is congruent $(\bmod m)$ to exactly one of $a, 2 a, 3 a, \ldots,(m-1) a$.

Proof. Since m does not divide any of $1,2,3, \ldots,(m-1)$ and $(a, m)=1$ then m does not divide any of $a, 2 a, 3 a, \ldots,(m-1) a$ by the contrapositive of Corollary 1.1. That is, none of $a, 2 a, 3 a, \ldots(m-1) a$ is $0(\bmod m)$. So each of the numbers in (1) is congruent to a number in (2). ASSUME two different numbers of (1) are congruent modulo m, say ra \equiv rs $(\bmod m)$ for $r, s \in\{1,2, \ldots, m-1\}$ and $r \neq s$.

Lemma 6.1

Lemma 6.1. If the greatest common divisor $(a, m)=1$, then the least residues of
(1) $a, 2 a, 3 a, \ldots,(m-1) a(\bmod m)$ are (in some order) $(2) 1,2,3, \ldots, m-1$.

In other words, if $(a, m)=1$, then each integer is congruent $(\bmod m)$ to exactly one of $a, 2 a, 3 a, \ldots,(m-1) a$.

Proof. Since m does not divide any of $1,2,3, \ldots,(m-1)$ and $(a, m)=1$ then m does not divide any of $a, 2 a, 3 a, \ldots,(m-1) a$ by the contrapositive of Corollary 1.1. That is, none of $a, 2 a, 3 a, \ldots(m-1) a$ is $0(\bmod m)$. So each of the numbers in (1) is congruent to a number in (2). ASSUME two different numbers of (1) are congruent modulo m, say $r a \equiv r s(\bmod m)$ for $r, s \in\{1,2, \ldots, m-1\}$ and $r \neq s$.

Lemma 6.1 (continued)

Lemma 6.1. If the greatest common divisor $(a, m)=1$, then the least residues of
(1) $a, 2 a, 3 a, \ldots,(m-1) a(\bmod m)$ are (in some order) $(2) 1,2,3, \ldots, m-1$.

In other words, if $(a, m)=1$, then each integer is congruent $(\bmod m)$ to exactly one of $a, 2 a, 3, \ldots,(m-1) a$.

Proof (continued). Since $(a, n)=1$ then by Theorem 4.4 we have $r \equiv s$ $(\bmod m)$. But r and s are both least residues modulo m and so are equal by Note 5.A. But $r=s$ is a CONTRADICTION and so the assumption that two different numbers of (1) are congruent modulo m is false. Hence no two of the numbers of (1) are congruent modulo m and so each has a different least residue modulo m. Since there are $m-1$ numbers in (1) and $m-1$ least residues in (2), then the least residences of the numbers in (1) must be precisely the numbers in (2), as claimed.

Lemma 6.1 (continued)

Lemma 6.1. If the greatest common divisor $(a, m)=1$, then the least residues of
(1) $a, 2 a, 3 a, \ldots,(m-1) a(\bmod m)$ are (in some order) $(2) 1,2,3, \ldots, m-1$.

In other words, if $(a, m)=1$, then each integer is congruent $(\bmod m)$ to exactly one of $a, 2 a, 3, \ldots,(m-1) a$.

Proof (continued). Since $(a, n)=1$ then by Theorem 4.4 we have $r \equiv s$ $(\bmod m)$. But r and s are both least residues modulo m and so are equal by Note 5.A. But $r=s$ is a CONTRADICTION and so the assumption that two different numbers of (1) are congruent modulo m is false. Hence no two of the numbers of (1) are congruent modulo m and so each has a different least residue modulo m. Since there are $m-1$ numbers in (1) and $m-1$ least residues in (2), then the least residences of the numbers in (1) must be precisely the numbers in (2), as claimed.

Theorem 6.1. Fermat's Theorem

Theorem 6.1. Fermat's Theorem. If p is prime and the greatest common divisor $(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Proof. Given any prime p, Lemma 6.1 says that is $(a, p)=1$, then the least residues of $a, 2 a, 3 a, \ldots,(m-1)$ a modulo p are some permutation of $1,2,3, \ldots, p-1$. So the products are congruent

$$
a \cdot 2 a \cdot 3 a \cdots(p-1) a \equiv 1 \cdot 2 \cdots 3 \cdots(p-1)(\bmod p),
$$

or $a^{-1}(p-1)!\equiv(p-1)!(\bmod p)$. Now p and $(p-1)$! are relatively prime (this is where the primeness of p is used), so by Theorem 4.4 we have $a^{p-1} \equiv 1(\bmod p)$, as claimed.

Theorem 6.1. Fermat's Theorem

Theorem 6.1. Fermat's Theorem. If p is prime and the greatest common divisor $(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Proof. Given any prime p, Lemma 6.1 says that is $(a, p)=1$, then the least residues of $a, 2 a, 3 a, \ldots,(m-1) a$ modulo p are some permutation of $1,2,3, \ldots, p-1$. So the products are congruent

$$
a \cdot 2 a \cdot 3 a \cdots(p-1) a \equiv 1 \cdot 2 \cdots 3 \cdots(p-1)(\bmod p),
$$

or $a^{-1}(p-1)!\equiv(p-1)!(\bmod p)$. Now p and $(p-1)!$ are relatively prime (this is where the primeness of p is used), so by Theorem 4.4 we have $a^{p-1} \equiv 1(\bmod p)$, as claimed.

Lemma 6.2

Lemma 6.2. The congruence $x^{2} \equiv 1(\bmod p)$, where p is an odd prime, has two solutions: 1 and $p-1$.

Proof. Let r be a solution of $x^{2} \equiv 1(\bmod p)$. Then we have $r^{2}-1=(r+1)(r-1) \equiv 0(\bmod p)$. That is, $p \mid(r+1)(r-1)$. Since p is prime, by Euclid's Lemma (Lemma 2.5), either $p \mid r+1$ or $p \mid r-1$. That is, either $r+1 \equiv 0(\bmod p)$ or $r-1 \equiv 0(\bmod p)$. Hence either $r \equiv p-1$ $(\bmod p)$ or $r \equiv 1(\bmod p)$, respectively. Since r is a least residue then either $r=1$ or $r=p-1$ (both of which are clearly solutions), as claimed.

Lemma 6.2

Lemma 6.2. The congruence $x^{2} \equiv 1(\bmod p)$, where p is an odd prime, has two solutions: 1 and $p-1$.

Proof. Let r be a solution of $x^{2} \equiv 1(\bmod p)$. Then we have $r^{2}-1=(r+1)(r-1) \equiv 0(\bmod p)$. That is, $p \mid(r+1)(r-1)$. Since p is prime, by Euclid's Lemma (Lemma 2.5), either $p \mid r+1$ or $p \mid r-1$. That is, either $r+1 \equiv 0(\bmod p)$ or $r-1 \equiv 0(\bmod p)$. Hence either $r \equiv p-1$ $(\bmod p)$ or $r \equiv 1(\bmod p)$, respectively. Since r is a least residue then either $r=1$ or $r=p-1$ (both of which are clearly solutions), as claimed.

Lemma 6.3

Lemma 6.3. Let p be an odd prime and let a^{\prime} by the solution of $a x \equiv 1$ $(\bmod p)$ where $a \in\{1,2, \ldots, p-1\}$. Then $a^{\prime} \equiv b^{\prime}(\bmod p)$ if and only if $a \equiv b(\bmod p)$. Furthermore, $a \equiv a^{\prime}(\bmod p)$ if and only if $a=1$ or $a=p-1$.

Proof. Suppose that $a^{\prime} \equiv b^{\prime}(\bmod p)$. Then

$$
\begin{aligned}
b & \equiv a a^{\prime} b(\bmod p) \text { since } a a^{\prime} \equiv 1(\bmod p) \\
& \equiv a b^{\prime} b(\bmod p) \text { since } a^{\prime} \equiv b^{\prime}(\bmod p) \\
& \equiv a(\bmod p) \text { since } b^{\prime} b \equiv 1(\bmod p)
\end{aligned}
$$

as claimed.

Lemma 6.3

Lemma 6.3. Let p be an odd prime and let a^{\prime} by the solution of $a x \equiv 1$ $(\bmod p)$ where $a \in\{1,2, \ldots, p-1\}$. Then $a^{\prime} \equiv b^{\prime}(\bmod p)$ if and only if $a \equiv b(\bmod p)$. Furthermore, $a \equiv a^{\prime}(\bmod p)$ if and only if $a=1$ or $a=p-1$.

Proof. Suppose that $a^{\prime} \equiv b^{\prime}(\bmod p)$. Then

$$
\begin{aligned}
b & \equiv a a^{\prime} b(\bmod p) \text { since } a a^{\prime} \equiv 1(\bmod p) \\
& \equiv a b^{\prime} b(\bmod p) \text { since } a^{\prime} \equiv b^{\prime}(\bmod p) \\
& \equiv a(\bmod p) \text { since } b^{\prime} b \equiv 1(\bmod p),
\end{aligned}
$$

as claimed.

Lemma 6.3 (continued)

Lemma 6.3. Let p be an odd prime and let a^{\prime} by the solution of $a x \equiv 1$ $(\bmod p)$ where $a \in\{1,2, \ldots, p-1\}$. Then $a^{\prime} \equiv b^{\prime}(\bmod p)$ if and only if $a \equiv b(\bmod p)$. Furthermore, $a \equiv a^{\prime}(\bmod p)$ if and only if $a=1$ or $a=p-1$.
Proof (continued). Next, suppose that $a \equiv b(\bmod p)$. Then

$$
\begin{aligned}
b^{\prime} & \equiv b^{\prime} a a^{\prime}(\bmod p) \text { since } a a^{\prime} \equiv 1(\bmod p) \\
& \equiv b^{\prime} b a^{\prime}(\bmod p) \text { since } a \equiv b(\bmod p) \\
& \equiv a^{\prime}(\bmod p) \text { since } b^{\prime} b \equiv 1(\bmod p),
\end{aligned}
$$

as claimed.
Now for the furthermore part, if either $a=1$ or $a=p-1$, then either $1 \cdot 1 \equiv 1(\bmod p)$ or $(p-1)(p-1) \equiv 1(\bmod p)$ as needed. Finally, if $a \equiv a^{\prime}(\bmod p)$, then $1 \equiv a a^{\prime} a^{2}(\bmod p)$, and from Lemma 6.2 this holds if and only if $a=1$ or $a=p-1$, as claimed.

Lemma 6.3 (continued)

Lemma 6.3. Let p be an odd prime and let a^{\prime} by the solution of $a x \equiv 1$ $(\bmod p)$ where $a \in\{1,2, \ldots, p-1\}$. Then $a^{\prime} \equiv b^{\prime}(\bmod p)$ if and only if $a \equiv b(\bmod p)$. Furthermore, $a \equiv a^{\prime}(\bmod p)$ if and only if $a=1$ or $a=p-1$.
Proof (continued). Next, suppose that $a \equiv b(\bmod p)$. Then

$$
\begin{aligned}
b^{\prime} & \equiv b^{\prime} a a^{\prime}(\bmod p) \text { since } a a^{\prime} \equiv 1(\bmod p) \\
& \equiv b^{\prime} b a^{\prime}(\bmod p) \text { since } a \equiv b(\bmod p) \\
& \equiv a^{\prime}(\bmod p) \text { since } b^{\prime} b \equiv 1(\bmod p),
\end{aligned}
$$

as claimed.
Now for the furthermore part, if either $a=1$ or $a=p-1$, then either $1 \cdot 1 \equiv 1(\bmod p)$ or $(p-1)(p-1) \equiv 1(\bmod p)$ as needed. Finally, if $a \equiv a^{\prime}(\bmod p)$, then $1 \equiv a a^{\prime} a^{2}(\bmod p)$, and from Lemma 6.2 this holds if and only if $a=1$ or $a=p-1$, as claimed.

Theorem 6.2 Wilson's Theorem

Theorem 6.2. Wilson's Theorem. Positive integer p is prime if and only if $(p-1)!\equiv-1(\bmod p)$.

Proof. By Note 6.A, the numbers $2,3, \ldots, p-2$ can be separated into $(p-3) / 2$ pairs such that each pair consists of an integer a and its associated multiplicative inverse a^{\prime}. The product of the two integers in each pair is congruent to $1(\bmod p)$, so the product satisfies $2 \cdot 3 \cdots(p-3) \cdot(p-2) \equiv 1(\bmod p)$. Hence
$(p-1)!\equiv 1 \cdot 2 \cdot 3 \cdots(p-3) \cdot(p-2) \cdot(p-1) \equiv 1 \cdot 1 \cdot(p-1) \equiv-1(\bmod p)$,
as claimed.

Theorem 6.2 Wilson's Theorem

Theorem 6.2. Wilson's Theorem. Positive integer p is prime if and only if $(p-1)!\equiv-1(\bmod p)$.

Proof. By Note 6.A, the numbers $2,3, \ldots, p-2$ can be separated into $(p-3) / 2$ pairs such that each pair consists of an integer a and its associated multiplicative inverse a^{\prime}. The product of the two integers in each pair is congruent to $1(\bmod p)$, so the product satisfies $2 \cdot 3 \cdots(p-3) \cdot(p-2) \equiv 1(\bmod p)$. Hence
$(p-1)!\equiv 1 \cdot 2 \cdot 3 \cdots(p-3) \cdot(p-2) \cdot(p-1) \equiv 1 \cdot 1 \cdot(p-1) \equiv-1(\bmod p)$,
as claimed.

Theorem 6.2 Wilson's Theorem (continued)

Theorem 6.2. Wilson's Theorem. Positive integer p is prime if and only if $(p-1)!\equiv-1(\bmod p)$.

Proof (continued). For the converse, suppose $(n-1)!\equiv-1(\bmod n)$. ASSUME n is not prime and that $n=a b$ for integers a and b with $b \neq n$. Since $(n-1)!\equiv-1(\bmod n)$, then $n \mid(n-1)!+1$, and since $a \mid n$ then $a \mid(n-1)!+1$. Since $a \neq n$ then $0<a \leq n-1$ and so a must be one of the factors of $(n-1)$!. But then $a \mid(n-1)$!. But the only way we can have $a \mid(n-1)!+1$ and $a \mid(n-1)!$, is for $a=1$ (by Lemma 1.2) which implies $b=n$, a CONTRADICTION. This contradiction shows that the assumption that n is not prime is false, and hence n is prime as claimed.

