## Elementary Number Theory

## Section 7. The Divisors of an Integer—Proofs of Theorems



## Table of contents

(1) Theorem 7.1
(2) Theorem 7.2
(3) Theorem 7.3
(4) Theorem 7.4
(5) Theorem 7.5

## Theorem 7.1

Theorem 7.1. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $d(n)=d\left(p_{1}^{e_{1}}\right) d\left(p_{2}^{e_{2}}\right) \cdots d\left(p_{k}^{e_{k}}\right)$.

Proof. Let $D$ denote the set of numbers $\left\{p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \mid 0 \leq f_{i} \leq e_{i}\right\}$. First, notice that every number in set $D$ is a divisor of $n$, since

$$
n=\left(p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}\right)\left(p_{1}^{e_{1}-f_{1}} p_{2}^{\varepsilon_{2}-f_{2}} \cdots p_{k}^{\varepsilon_{k}-f_{k}}\right) .
$$

## Theorem 7.1

Theorem 7.1. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $d(n)=d\left(p_{1}^{e_{1}}\right) d\left(p_{2}^{e_{2}}\right) \cdots d\left(p_{k}^{e_{k}}\right)$.

Proof. Let $D$ denote the set of numbers $\left\{p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \mid 0 \leq f_{i} \leq e_{i}\right\}$. First, notice that every number in set $D$ is a divisor of $n$, since

$$
n=\left(p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}\right)\left(p_{1}^{e_{1}-f_{1}} p_{2}^{e_{2}-f_{2}} \cdots p_{k}^{e_{k}-f_{k}}\right)
$$

Second, suppose that $d$ is a divisor of $n$. If $p^{f} d$ then $p^{f} \mid n$, so each power of a prime in the prime-power decomposition of $d$ must appear in the prime-power decomposition of $n$. Thus $d=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}$ where each $f_{i}$ is nonnegative. Moreover, no exponent $f_{i}$ can be larger than $e_{i}$, for $p_{i}^{f_{i}} \mid d$ implies $p_{i}^{f_{i}} \mid n$ and this is not the case for $f_{i}>e_{i}$. That is, every divisor of $n$ is an element of set $D$ and so $D$ is exactly the set of divisors of $n$. So the number of divisors of $n$ is the number of elements of $D$.

## Theorem 7.1

Theorem 7.1. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $d(n)=d\left(p_{1}^{e_{1}}\right) d\left(p_{2}^{e_{2}}\right) \cdots d\left(p_{k}^{e_{k}}\right)$.

Proof. Let $D$ denote the set of numbers $\left\{p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \mid 0 \leq f_{i} \leq e_{i}\right\}$. First, notice that every number in set $D$ is a divisor of $n$, since

$$
n=\left(p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}\right)\left(p_{1}^{e_{1}-f_{1}} p_{2}^{e_{2}-f_{2}} \cdots p_{k}^{e_{k}-f_{k}}\right)
$$

Second, suppose that $d$ is a divisor of $n$. If $p^{f} d$ then $p^{f} \mid n$, so each power of a prime in the prime-power decomposition of $d$ must appear in the prime-power decomposition of $n$. Thus $d=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}$ where each $f_{i}$ is nonnegative. Moreover, no exponent $f_{i}$ can be larger than $e_{i}$, for $p_{i}^{f_{i}} \mid d$ implies $p_{i}^{f_{i}} \mid n$ and this is not the case for $f_{i}>e_{i}$. That is, every divisor of $n$ is an element of set $D$ and so $D$ is exactly the set of divisors of $n$. So the number of divisors of $n$ is the number of elements of $D$.

## Theorem 7.1 (continued)

Proof (continued). With $D=\left\{p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \mid 0 \leq f_{i} \leq e_{i}\right\}$, we see that each $f_{i}$ may take on $e_{1}+1$ different values. Thus, there are $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)$ numbers in $D$ and, by the Unique Factorization Theorem (Theorem 2.2, the Fundamental Theorem of Arithmetic), they are all different. (In this claim, we are using the Fundamental Principle of Counting also. See my online notes for Foundations of Probability and Statistics-Calculus Based (MATH 2050) on Section 2.2. Counting Methods [notice Note 2.2.A], my notes for Applied Combinatorics and Problem Solving [MATH 3340] on Section 1.1. The Fundamental Counting Principle, or my notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles).

## Theorem 7.1 (continued)

Proof (continued). With $D=\left\{p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \mid 0 \leq f_{i} \leq e_{i}\right\}$, we see that each $f_{i}$ may take on $e_{1}+1$ different values. Thus, there are $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)$ numbers in $D$ and, by the Unique Factorization Theorem (Theorem 2.2, the Fundamental Theorem of Arithmetic), they are all different. (In this claim, we are using the Fundamental Principle of Counting also. See my online notes for Foundations of Probability and Statistics-Calculus Based (MATH 2050) on Section 2.2. Counting Methods [notice Note 2.2.A], my notes for Applied Combinatorics and Problem Solving [MATH 3340] on Section 1.1. The Fundamental Counting Principle, or my notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles). Since $d\left(p_{i}^{e_{i}}\right)=e_{i}+1$ by Exercise 7.2, then

$$
d(n)=\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)=d\left(p_{1}^{e_{1}}\right) d\left(p_{2}^{e_{2}}\right) \cdots d\left(p_{k}^{e_{k}}\right),
$$

## Theorem 7.1 (continued)

Proof (continued). With $D=\left\{p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \mid 0 \leq f_{i} \leq e_{i}\right\}$, we see that each $f_{i}$ may take on $e_{1}+1$ different values. Thus, there are $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)$ numbers in $D$ and, by the Unique Factorization Theorem (Theorem 2.2, the Fundamental Theorem of Arithmetic), they are all different. (In this claim, we are using the Fundamental Principle of Counting also. See my online notes for Foundations of Probability and Statistics-Calculus Based (MATH 2050) on Section 2.2. Counting Methods [notice Note 2.2.A], my notes for Applied Combinatorics and Problem Solving [MATH 3340] on Section 1.1. The Fundamental Counting Principle, or my notes for Mathematical Reasoning [MATH 3000] on Section 4.1. Cardinality; Fundamental Counting Principles). Since $d\left(p_{i}^{e_{i}}\right)=e_{i}+1$ by Exercise 7.2, then

$$
d(n)=\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)=d\left(p_{1}^{e_{1}}\right) d\left(p_{2}^{e_{2}}\right) \cdots d\left(p_{k}^{e_{k}}\right)
$$

as claimed.

## Theorem 7.2

Theorem 7.2. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $\sigma(n)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{k}^{e_{k}}\right)$.

Proof. We prove this by induction. The result is trivial for $k=1$, giving us the base case. For the induction hypothesis, suppose the result holds for $k=r$. Consider $k=r+1$ and $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}=N p^{e}$, where we let $N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}, p=p_{r+1}$, and $e=e_{r+1}$. Let $1, d_{1}, d_{2}, \ldots, d_{t}$ be the divisors of $N$. Since ( $N, p$ ) =1 (the $r+1$ primes are distinct), all of the divisors of $n$ are of the form of a divisor of $N$ times a divisor of $p^{e}$ (by Corollaries 1.1 and 1.3).

## Theorem 7.2

Theorem 7.2. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $\sigma(n)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{k}^{e_{k}}\right)$.

Proof. We prove this by induction. The result is trivial for $k=1$, giving us the base case. For the induction hypothesis, suppose the result holds for $k=r$. Consider $k=r+1$ and $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}=N p^{e}$, where we let $N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}, p=p_{r+1}$, and $e=e_{r+1}$. Let $1, d_{1}, d_{2}, \ldots, d_{t}$ be the divisors of $N$. Since ( $N, p$ ) = 1 (the $r+1$ primes are distinct), all of the divisors of $n$ are of the form of a divisor of $N$ times a divisor of $p^{e}$ (by Corollaries 1.1 and 1.3). So the divisors of $n$ are


## Theorem 7.2

Theorem 7.2. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $\sigma(n)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{k}^{e_{k}}\right)$.

Proof. We prove this by induction. The result is trivial for $k=1$, giving us the base case. For the induction hypothesis, suppose the result holds for $k=r$. Consider $k=r+1$ and $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}=N p^{e}$, where we let $N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}, p=p_{r+1}$, and $e=e_{r+1}$. Let $1, d_{1}, d_{2}, \ldots, d_{t}$ be the divisors of $N$. Since ( $N, p$ ) = 1 (the $r+1$ primes are distinct), all of the divisors of $n$ are of the form of a divisor of $N$ times a divisor of $p^{e}$ (by Corollaries 1.1 and 1.3). So the divisors of $n$ are

$$
\begin{array}{ccccc}
1 & d_{1} & d_{2} & \cdots & d_{t} \\
p & d_{1} p & d_{2} p & \cdots & d_{t} p \\
p^{2} & d_{1} p^{2} & d_{2} p^{2} & \cdots & d_{t} p^{2} \\
& & & \vdots & \\
p^{e} & d_{1} p^{e} & d_{2} p^{e} & \cdots & d_{t} p^{e}
\end{array}
$$

## Theorem 7.2 (continued)

Theorem 7.2. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $\sigma(n)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{k}^{e_{k}}\right)$.

Proof (continued). Summing the divisors of $n$ we get

$$
\left.\left.\sigma(n)=\left(1+d_{1}+d_{2}+\cdots+d_{t}\right)\left(1+p+p^{2}+\cdots+p^{e}\right)=\sigma\right) N\right) \sigma\left(p^{e}\right)
$$

By the induction hypothesis (since $N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ consists of the product of $k=r$ powers of primes) we have $\sigma(N)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{r}^{e_{r}}\right)$. Therefore
$\sigma(n)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{r}^{e_{r}}\right) \sigma\left(p^{e}\right)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{r}^{e_{r}}\right) \sigma\left(p_{r+1}^{e_{r+1}}\right)$,
giving the induction step. So, by the Principle of Mathematical Induction, the result holds for all $k \in \mathbb{N}$, as claimed.

## Theorem 7.2 (continued)

Theorem 7.2. If $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is the prime-power decomposition of $n$, then $\sigma(n)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{k}^{e_{k}}\right)$.

Proof (continued). Summing the divisors of $n$ we get

$$
\left.\left.\sigma(n)=\left(1+d_{1}+d_{2}+\cdots+d_{t}\right)\left(1+p+p^{2}+\cdots+p^{e}\right)=\sigma\right) N\right) \sigma\left(p^{e}\right)
$$

By the induction hypothesis (since $N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ consists of the product of $k=r$ powers of primes) we have $\sigma(N)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{r}^{e_{r}}\right)$. Therefore

$$
\sigma(n)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{r}^{e_{r}}\right) \sigma\left(p^{e}\right)=\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{r}^{e_{r}}\right) \sigma\left(p_{r+1}^{e_{r+1}}\right),
$$

giving the induction step. So, by the Principle of Mathematical Induction, the result holds for all $k \in \mathbb{N}$, as claimed.

## Theorem 7.3

## Theorem 7.3. $d$ is multiplicative.

Proof. Let $m$ and $n$ be relatively prime (as is required by the definition of "multiplicative"). Then no prime that divides $m$ can divide $n$ and vice versa. So $m$ and $n$ have the prime-power decompositions $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$ where the $p_{i}$ 's are the $q_{j}$ 's are all distinct. So the prime-power decomposition of $m n$ is $m n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$. Then by Theorem 7.1,

$$
\begin{aligned}
d(m n) & =d\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right) \\
& =d\left(p_{1}^{e_{1}}\right) d\left(p_{2}^{e_{2}}\right) \cdots d\left(p_{k}^{e_{k}}\right) d\left(q_{1}^{f_{1}}\right) d\left(q_{2}^{f_{2}}\right) \cdots d\left(q_{r}^{f_{r}}\right) \\
& =d\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right) d\left(q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right)=d(m) d(n),
\end{aligned}
$$

as claimed.

## Theorem 7.3

Theorem 7.3. $d$ is multiplicative.
Proof. Let $m$ and $n$ be relatively prime (as is required by the definition of "multiplicative"). Then no prime that divides $m$ can divide $n$ and vice versa. So $m$ and $n$ have the prime-power decompositions $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$ where the $p_{i}$ 's are the $q_{j}$ 's are all distinct. So the prime-power decomposition of $m n$ is $m n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$. Then by Theorem 7.1,

$$
\begin{aligned}
d(m n) & =d\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right) \\
& =d\left(p_{1}^{e_{1}}\right) d\left(p_{2}^{e_{2}}\right) \cdots d\left(p_{k}^{e_{k}}\right) d\left(q_{1}^{f_{1}}\right) d\left(q_{2}^{f_{2}}\right) \cdots d\left(q_{r}^{f_{r}}\right) \\
& =d\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right) d\left(q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right)=d(m) d(n),
\end{aligned}
$$

as claimed.

## Theorem 7.4

Theorem 7.4. $\sigma$ is multiplicative.
Proof. This is virtually identical to the proof of Theorem 7.3. Let $m$ and $n$ be relatively prime. Then no prime that divides $m$ can divide $n$ and vice versa. So $m$ and $n$ have the prime-power decompositions $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$ where the $p_{i}^{\prime}$ 's are the $q_{j}$ 's are all distinct. So the prime-power decomposition of $m n$ is
$m n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$. Then by Theorem 7.2,

$$
\begin{aligned}
\sigma(m n) & =\sigma\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right) \\
& =\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{k}^{e_{k}}\right) \sigma\left(q_{1}^{f_{1}}\right) \sigma\left(q_{2}^{f_{2}}\right) \cdots \sigma\left(q_{r}^{f_{r}}\right) \\
& =\sigma\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right) \sigma\left(q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right)=\sigma(m) \sigma(n),
\end{aligned}
$$

as claimed.

## Theorem 7.4

Theorem 7.4. $\sigma$ is multiplicative.
Proof. This is virtually identical to the proof of Theorem 7.3. Let $m$ and $n$ be relatively prime. Then no prime that divides $m$ can divide $n$ and vice versa. So $m$ and $n$ have the prime-power decompositions $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$ where the $p_{i}$ 's are the $q_{j}$ 's are all distinct. So the prime-power decomposition of $m n$ is $m n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}$. Then by Theorem 7.2,

$$
\begin{aligned}
\sigma(m n) & =\sigma\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right) \\
& =\sigma\left(p_{1}^{e_{1}}\right) \sigma\left(p_{2}^{e_{2}}\right) \cdots \sigma\left(p_{k}^{e_{k}}\right) \sigma\left(q_{1}^{f_{1}}\right) \sigma\left(q_{2}^{f_{2}}\right) \cdots \sigma\left(q_{r}^{f_{r}}\right) \\
& =\sigma\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right) \sigma\left(q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{r}^{f_{r}}\right)=\sigma(m) \sigma(n),
\end{aligned}
$$

as claimed.

## Theorem 7.5

Theorem 7.5. If $f$ is a multiplicative function and the prime-power decomposition of $n$ is $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, then $f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \cdots f\left(p_{k}^{e_{k}}\right)$.

Proof. We prove this by induction. The result is trivial for $k=1$, giving us the base case. For the induction hypothesis, suppose the result holds for $k=r$ and that $f\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}\right)=f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \cdots f\left(p_{r}^{e_{r}}\right)$. Consider the case $k=r+1$ and the natural number $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}$.

## Theorem 7.5

Theorem 7.5. If $f$ is a multiplicative function and the prime-power decomposition of $n$ is $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, then $f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \cdots f\left(p_{k}^{e_{k}}\right)$.

Proof. We prove this by induction. The result is trivial for $k=1$, giving us the base case. For the induction hypothesis, suppose the result holds for $k=r$ and that $f\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}\right)=f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \cdots f\left(p_{r}^{e_{r}}\right)$. Consider the case $k=r+1$ and the natural number $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}$. We have $\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}, p_{r+1}^{e_{r+1}}\right)=1$, so from the definition of a multiplicative function we have

$$
f\left(\left(p_{1}^{e_{1}} p_{2}^{e_{2}^{2}} \cdots p_{r}^{e_{r}}\right) p_{r+1}^{e_{r+1}}\right)=f\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}\right) f\left(p_{r+1}^{e_{r+1}}\right) .
$$

By the induction hypothesis we then have

$$
f\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}\right)=f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{\epsilon_{2}}\right) \cdots f\left(p_{r}^{e_{r}}\right) f\left(p_{r+1}^{e_{r+1}}\right),
$$

giving the induction step. So, by the Principle of Mathematical Induction, the result holds for all $k \in \mathbb{N}$, as claimed.

## Theorem 7.5

Theorem 7.5. If $f$ is a multiplicative function and the prime-power decomposition of $n$ is $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, then $f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \cdots f\left(p_{k}^{e_{k}}\right)$.

Proof. We prove this by induction. The result is trivial for $k=1$, giving us the base case. For the induction hypothesis, suppose the result holds for $k=r$ and that $f\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}\right)=f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \cdots f\left(p_{r}^{e_{r}}\right)$. Consider the case $k=r+1$ and the natural number $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}$. We have $\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}, p_{r+1}^{e_{r+1}}\right)=1$, so from the definition of a multiplicative function we have

$$
f\left(\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}\right) p_{r+1}^{e_{r+1}}\right)=f\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}\right) f\left(p_{r+1}^{e_{r+1}}\right)
$$

By the induction hypothesis we then have

$$
f\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} p_{r+1}^{e_{r+1}}\right)=f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \cdots f\left(p_{r}^{e_{r}}\right) f\left(p_{r+1}^{e_{r+1}}\right),
$$

giving the induction step. So, by the Principle of Mathematical Induction, the result holds for all $k \in \mathbb{N}$, as claimed.

