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Theorem 7.1

Theorem 7.1

Theorem 7.1. If pe1
1 pe2

2 · · · pek
k is the prime-power decomposition of n,

then d(n) = d(pe1
1 )d(pe2

2 ) · · · d(pek
k ).

Proof. Let D denote the set of numbers {pf1
1 pf2

2 · · · pfk
k | 0 ≤ fi ≤ ei}.

First, notice that every number in set D is a divisor of n, since

n = (pf1
1 pf2

2 · · · pfk
k )(pe1−f1

1 pe2−f2
2 · · · pek−fk

k ).

Second, suppose that d is a divisor of n. If pf d then pf | n, so each
power of a prime in the prime-power decomposition of d must appear in
the prime-power decomposition of n. Thus d = pf1

1 pf2
2 · · · pfk

k where each fi
is nonnegative. Moreover, no exponent fi can be larger than ei , for pfi

i | d
implies pfi

i | n and this is not the case for fi > ei . That is, every divisor of n
is an element of set D and so D is exactly the set of divisors of n. So the
number of divisors of n is the number of elements of D.
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Theorem 7.1

Theorem 7.1 (continued)

Proof (continued). With D = {pf1
1 pf2

2 · · · pfk
k | 0 ≤ fi ≤ ei}, we see that

each fi may take on e1 + 1 different values. Thus, there are
(e1 + 1)(e2 + 1) · · · (ek + 1) numbers in D and, by the Unique
Factorization Theorem (Theorem 2.2, the Fundamental Theorem of
Arithmetic), they are all different. (In this claim, we are using the
Fundamental Principle of Counting also. See my online notes for
Foundations of Probability and Statistics-Calculus Based (MATH 2050) on
Section 2.2. Counting Methods [notice Note 2.2.A], my notes for Applied
Combinatorics and Problem Solving [MATH 3340] on Section 1.1. The
Fundamental Counting Principle, or my notes for Mathematical Reasoning
[MATH 3000] on Section 4.1. Cardinality; Fundamental Counting
Principles).

Since d(pei
i ) = ei + 1 by Exercise 7.2, then

d(n) = (e1 + 1)(e2 + 1) · · · (ek + 1) = d(pe1
1 )d(pe2

2 ) · · · d(pek
k ),

as claimed.
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Theorem 7.2

Theorem 7.2

Theorem 7.2. If pe1
1 pe2

2 · · · pek
k is the prime-power decomposition of n,

then σ(n) = σ(pe1
1 )σ(pe2

2 ) · · ·σ(pek
k ).

Proof. We prove this by induction. The result is trivial for k = 1, giving
us the base case. For the induction hypothesis, suppose the result holds
for k = r . Consider k = r + 1 and n = pe1

1 pe2
2 · · · per

r p
er+1

r+1 = Npe , where we
let N = pe1

1 pe2
2 · · · per

r , p = pr+1, and e = er+1. Let 1, d1, d2, . . . , dt be the
divisors of N. Since (N, p) = 1 (the r + 1 primes are distinct), all of the
divisors of n are of the form of a divisor of N times a divisor of pe (by
Corollaries 1.1 and 1.3).

So the divisors of n are

1 d1 d2 · · · dt

p d1p d2p · · · dtp
p2 d1p

2 d2p
2 · · · dtp

2

...
pe d1p

e d2p
e · · · dtp

e
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Theorem 7.2

Theorem 7.2 (continued)

Theorem 7.2. If pe1
1 pe2

2 · · · pek
k is the prime-power decomposition of n,

then σ(n) = σ(pe1
1 )σ(pe2

2 ) · · ·σ(pek
k ).

Proof (continued). Summing the divisors of n we get

σ(n) = (1 + d1 + d2 + · · · + dt)(1 + p + p2 + · · · + pe) = σ)N)σ(pe).

By the induction hypothesis (since N = pe1
1 pe2

2 · · · per
r consists of the

product of k = r powers of primes) we have
σ(N) = σ(pe1

1 )σ(pe2
2 ) · · ·σ(per

r ). Therefore

σ(n) = σ(pe1
1 )σ(pe2

2 ) · · ·σ(per
r )σ(pe) = σ(pe1

1 )σ(pe2
2 ) · · ·σ(per

r )σ(p
er+1

r+1 ),

giving the induction step. So, by the Principle of Mathematical Induction,
the result holds for all k ∈ N, as claimed.
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Theorem 7.3

Theorem 7.3

Theorem 7.3. d is multiplicative.

Proof. Let m and n be relatively prime (as is required by the definition of
“multiplicative”). Then no prime that divides m can divide n and vice
versa. So m and n have the prime-power decompositions
m = pe1

1 pe2
2 · · · pek

k and n = qf1
1 qf2

2 · · · qfr
r where the pi ’s are the qj ’s are all

distinct. So the prime-power decomposition of mn is
mn = pe1

1 pe2
2 · · · pek

k qf1
1 qf2

2 · · · qfr
r . Then by Theorem 7.1,

d(mn) = d(pe1
1 pe2

2 · · · pek
k qf1

1 qf2
2 · · · qfr

r )

= d(pe1
1 )d(pe2

2 ) · · · d(pek
k )d(qf1

1 )d(qf2
2 ) · · · d(qfr

r )

= d(pe1
1 pe2

2 · · · pek
k )d(qf1

1 qf2
2 · · · qfr

r ) = d(m)d(n),

as claimed.
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Theorem 7.4

Theorem 7.4

Theorem 7.4. σ is multiplicative.

Proof. This is virtually identical to the proof of Theorem 7.3. Let m and
n be relatively prime. Then no prime that divides m can divide n and vice
versa. So m and n have the prime-power decompositions
m = pe1

1 pe2
2 · · · pek

k and n = qf1
1 qf2

2 · · · qfr
r where the pi ’s are the qj ’s are all

distinct. So the prime-power decomposition of mn is
mn = pe1

1 pe2
2 · · · pek

k qf1
1 qf2

2 · · · qfr
r . Then by Theorem 7.2,

σ(mn) = σ(pe1
1 pe2

2 · · · pek
k qf1

1 qf2
2 · · · qfr

r )

= σ(pe1
1 )σ(pe2

2 ) · · ·σ(pek
k )σ(qf1

1 )σ(qf2
2 ) · · ·σ(qfr

r )

= σ(pe1
1 pe2

2 · · · pek
k )σ(qf1

1 qf2
2 · · · qfr

r ) = σ(m)σ(n),

as claimed.

() Elementary Number Theory March 4, 2022 8 / 9



Theorem 7.4

Theorem 7.4

Theorem 7.4. σ is multiplicative.

Proof. This is virtually identical to the proof of Theorem 7.3. Let m and
n be relatively prime. Then no prime that divides m can divide n and vice
versa. So m and n have the prime-power decompositions
m = pe1

1 pe2
2 · · · pek

k and n = qf1
1 qf2

2 · · · qfr
r where the pi ’s are the qj ’s are all

distinct. So the prime-power decomposition of mn is
mn = pe1

1 pe2
2 · · · pek

k qf1
1 qf2

2 · · · qfr
r . Then by Theorem 7.2,

σ(mn) = σ(pe1
1 pe2

2 · · · pek
k qf1

1 qf2
2 · · · qfr

r )

= σ(pe1
1 )σ(pe2

2 ) · · ·σ(pek
k )σ(qf1

1 )σ(qf2
2 ) · · ·σ(qfr

r )

= σ(pe1
1 pe2

2 · · · pek
k )σ(qf1

1 qf2
2 · · · qfr

r ) = σ(m)σ(n),

as claimed.

() Elementary Number Theory March 4, 2022 8 / 9



Theorem 7.5

Theorem 7.5

Theorem 7.5. If f is a multiplicative function and the prime-power
decomposition of n is pe1

1 pe2
2 · · · pek

k , then f (pe1
1 )f (pe2

2 ) · · · f (pek
k ).

Proof. We prove this by induction. The result is trivial for k = 1, giving
us the base case. For the induction hypothesis, suppose the result holds
for k = r and that f (pe1

1 pe2
2 · · · per

r ) = f (pe1
1 )f (pe2

2 ) · · · f (per
r ). Consider the

case k = r + 1 and the natural number pe1
1 pe2

2 · · · per
r p

er+1

r+1 .

We have
(pe1

1 pe2
2 · · · per

r , p
er+1

r+1 ) = 1, so from the definition of a multiplicative
function we have

f ((pe1
1 pe2

2 · · · per
r )p

er+1

r+1 ) = f (pe1
1 pe2

2 · · · per
r )f (p

er+1

r+1 ).

By the induction hypothesis we then have

f (pe1
1 pe2

2 · · · per
r p

er+1

r+1 ) = f (pe1
1 )f (pe2

2 ) · · · f (per
r )f (p

er+1

r+1 ),

giving the induction step. So, by the Principle of Mathematical Induction,
the result holds for all k ∈ N, as claimed.

() Elementary Number Theory March 4, 2022 9 / 9



Theorem 7.5

Theorem 7.5

Theorem 7.5. If f is a multiplicative function and the prime-power
decomposition of n is pe1

1 pe2
2 · · · pek

k , then f (pe1
1 )f (pe2

2 ) · · · f (pek
k ).

Proof. We prove this by induction. The result is trivial for k = 1, giving
us the base case. For the induction hypothesis, suppose the result holds
for k = r and that f (pe1

1 pe2
2 · · · per

r ) = f (pe1
1 )f (pe2

2 ) · · · f (per
r ). Consider the

case k = r + 1 and the natural number pe1
1 pe2

2 · · · per
r p

er+1

r+1 . We have
(pe1

1 pe2
2 · · · per

r , p
er+1

r+1 ) = 1, so from the definition of a multiplicative
function we have

f ((pe1
1 pe2

2 · · · per
r )p

er+1

r+1 ) = f (pe1
1 pe2

2 · · · per
r )f (p

er+1

r+1 ).

By the induction hypothesis we then have

f (pe1
1 pe2

2 · · · per
r p

er+1

r+1 ) = f (pe1
1 )f (pe2

2 ) · · · f (per
r )f (p

er+1

r+1 ),

giving the induction step. So, by the Principle of Mathematical Induction,
the result holds for all k ∈ N, as claimed.

() Elementary Number Theory March 4, 2022 9 / 9



Theorem 7.5

Theorem 7.5

Theorem 7.5. If f is a multiplicative function and the prime-power
decomposition of n is pe1

1 pe2
2 · · · pek

k , then f (pe1
1 )f (pe2

2 ) · · · f (pek
k ).

Proof. We prove this by induction. The result is trivial for k = 1, giving
us the base case. For the induction hypothesis, suppose the result holds
for k = r and that f (pe1

1 pe2
2 · · · per

r ) = f (pe1
1 )f (pe2

2 ) · · · f (per
r ). Consider the

case k = r + 1 and the natural number pe1
1 pe2

2 · · · per
r p

er+1

r+1 . We have
(pe1

1 pe2
2 · · · per

r , p
er+1

r+1 ) = 1, so from the definition of a multiplicative
function we have

f ((pe1
1 pe2

2 · · · per
r )p

er+1

r+1 ) = f (pe1
1 pe2

2 · · · per
r )f (p

er+1

r+1 ).

By the induction hypothesis we then have

f (pe1
1 pe2

2 · · · per
r p

er+1

r+1 ) = f (pe1
1 )f (pe2

2 ) · · · f (per
r )f (p

er+1

r+1 ),

giving the induction step. So, by the Principle of Mathematical Induction,
the result holds for all k ∈ N, as claimed.

() Elementary Number Theory March 4, 2022 9 / 9


	Theorem 7.1
	Theorem 7.2
	Theorem 7.3
	Theorem 7.4
	Theorem 7.5

