Elementary Number Theory

Section 8. Perfect Numbers—Proofs of Theorems

Elementary Number Theory

March 4, 2022

1 / 5

Elementary Number Theory

March 4, 2022

2 /

Theorem 8.2 (Euler

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If n is an even perfect number, then $n = 2^{p-1}(2^p - 1)$ for some prime p, and $2^p - 1$ is also prime.

Proof. In n is even then $n=2^em$ where m is odd and $e\geq 1$. Since $\sigma(m)>m$ (because 1 and m are divisors of m), then we have $\sigma(m)=m+s$ for some s>0. Now $\sigma(2^{e+1})=2^{e+2}-1$ by Exercise 7.8. Since n is perfect, then $\sigma(n)=2n$ and so by Theorem 7.4

$$2n = 2 \cdot 2^{e} m = 2^{e+1} m = \sigma(n) = \sigma(2^{e}) \sigma(m)$$
$$= (2^{e+1} - 1)(m+s) = 2^{e+1} m - m + (2^{e+1} - 1)s.$$

Thus $m=(2^{e+1}-1)s$, so that s is a divisor of m, and s< m because $e\geq 1$. But $\sigma(m)=m+s$, so s is the sum of all the divisors of m that are less than m. That is, s is the sum of a group of (positive) numbers that includes s. This is possible only if the group consists of one number. Now 1 is a divisor of m and so this one number must be s=1. That is, the only divisors of $m=(2^{e+1}-1)s=2^{e+1}-1$ are 1 and m itself. Hence, $m=2^{e+1}-1$ is prime.

Theorem 8.1 (Fuclid)

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If $2^k - 1$ is prime, then $2^{k-1}(2^k - 1)$ is perfect.

Proof. Let $n=2^{k-1}(2^k-1)$. Since 2^k-1 is prime by hypothesis, then $\sigma(2^k-1)=(2^k-1)+1=2^k$ by Note 7.A. Also, $\sigma(p^n)=(p^{n+1}-1)/(p-1)$ for prime p by Exercise 7.8, so $\sigma(2^{k-1})=(2^{(k-1)+1}-1)/((2)-1)=2^k-1$. Now 2^{k-1} and 2^k-1 are relatively prime so, since σ is multiplicative (by Theorem 7.4), we have

$$\sigma(n) = \sigma(2^{k-1}(2^k - 1)) = \sigma(2^{k-1})\sigma(2^k - 1)$$
$$= (2^k - 1) \cdot 2^k = 2 \cdot 2^{k-1}(2^k - 1) = 2n.$$

Thus n is perfect (by definition), as claimed.

Theorem 8.2 (Euler

Theorem 8.2 (Euler, continued)

Theorem 8.2 (Euler). If n is an even perfect number, then $n = 2^{p-1}(2^p - 1)$ for some prime p, and $2^p - 1$ is also prime.

Proof (continued). We have that $\sigma(m)=m+s=m+1$, so that $m=2^{e+1}-1$ is prime. By Theorem 8.1 (of Euclid), this implies that p=e+1 is prime. Hence $m=2^p-1$ for some prime $p,\ e=p-1$, and hence $n=2^em=2^{p-1}(2^p-1)$, as claimed.