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Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If 2k − 1 is prime, then 2k−1(2k − 1) is perfect.

Proof. Let n = 2k−1(2k − 1). Since 2k − 1 is prime by hypothesis, then
σ(2k − 1) = (2k − 1) + 1 = 2k by Note 7.A. Also,
σ(pn) = (pn+1 − 1)/(p − 1) for prime p by Exercise 7.8, so
σ(2k−1) = (2(k−1)+1 − 1)/((2)− 1) = 2k − 1.

Now 2k−1 and 2k − 1 are
relatively prime so, since σ is multiplicative (by Theorem 7.4), we have

σ(n) = σ(2k−1(2k − 1)) = σ(2k−1)σ(2k − 1)

= (2k − 1) · 2k = 2 · 2k−1(2k − 1) = 2n.

Thus n is perfect (by definition), as claimed.
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Theorem 8.2 (Euler)

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If n is an even perfect number, then
n = 2p−1(2p − 1) for some prime p, and 2p − 1 is also prime.

Proof. In n is even then n = 2em where m is odd and e ≥ 1. Since
σ(m) > m (because 1 and m are divisors of m), then we have
σ(m) = m + s for some s > 0. Now σ(2e+1) = 2e+2 − 1 by Exercise 7.8.
Since n is perfect, then σ(n) = 2n and so by Theorem 7.4

2n = 2 · 2em = 2e+1m = σ(n) = σ(2e)σ(m)

= (2e+1 − 1)(m + s) = 2e+1m −m + (2e+1 − 1)s.

Thus m = (2e+1 − 1)s, so that s is a divisor of m, and s < m because
e ≥ 1.

But σ(m) = m + s, so s is the sum of all the divisors of m that are
less than m. That is, s is the sum of a group of (positive) numbers that
includes s. This is possible only if the group consists of one number. Now
1 is a divisor of m and so this one number must be s = 1. That is, the
only divisors of m = (2e+1 − 1)s = 2e+1 − 1 are 1 and m itself. Hence,
m = 2e+1 − 1 is prime.
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Theorem 8.2 (Euler)

Theorem 8.2 (Euler, continued)

Theorem 8.2 (Euler). If n is an even perfect number, then
n = 2p−1(2p − 1) for some prime p, and 2p − 1 is also prime.

Proof (continued). We have that σ(m) = m + s = m + 1, so that
m = 2e+1 − 1 is prime. By Theorem 8.1 (of Euclid), this implies that
p = e + 1 is prime. Hence m = 2p − 1 for some prime p, e = p − 1, and
hence n = 2em = 2p−1(2p − 1), as claimed.
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