Elementary Number Theory

Section 8. Perfect Numbers—Proofs of Theorems

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If $2^k - 1$ is prime, then $2^{k-1}(2^k - 1)$ is perfect.

Proof. Let $n = 2^{k-1}(2^k - 1)$. Since $2^k - 1$ is prime by hypothesis, then $\sigma(2^k - 1) = (2^k - 1) + 1 = 2^k$ by Note 7.A. Also, $\sigma(p^n) = (p^{n+1} - 1)/(p-1)$ for prime *p* by Exercise 7.8, so $\sigma(2^{k-1}) = (2^{(k-1)+1} - 1)/((2) - 1) = 2^k - 1$.

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If $2^k - 1$ is prime, then $2^{k-1}(2^k - 1)$ is perfect.

Proof. Let $n = 2^{k-1}(2^k - 1)$. Since $2^k - 1$ is prime by hypothesis, then $\sigma(2^k - 1) = (2^k - 1) + 1 = 2^k$ by Note 7.A. Also, $\sigma(p^n) = (p^{n+1} - 1)/(p-1)$ for prime p by Exercise 7.8, so $\sigma(2^{k-1}) = (2^{(k-1)+1} - 1)/((2) - 1) = 2^k - 1$. Now 2^{k-1} and $2^k - 1$ are relatively prime so, since σ is multiplicative (by Theorem 7.4), we have

$$\sigma(n) = \sigma(2^{k-1}(2^k - 1)) = \sigma(2^{k-1})\sigma(2^k - 1)$$

$$= (2^{k} - 1) \cdot 2^{k} = 2 \cdot 2^{k-1}(2^{k} - 1) = 2n.$$

Thus *n* is perfect (by definition), as claimed.

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If $2^k - 1$ is prime, then $2^{k-1}(2^k - 1)$ is perfect.

Proof. Let $n = 2^{k-1}(2^k - 1)$. Since $2^k - 1$ is prime by hypothesis, then $\sigma(2^k - 1) = (2^k - 1) + 1 = 2^k$ by Note 7.A. Also, $\sigma(p^n) = (p^{n+1} - 1)/(p-1)$ for prime p by Exercise 7.8, so $\sigma(2^{k-1}) = (2^{(k-1)+1} - 1)/((2) - 1) = 2^k - 1$. Now 2^{k-1} and $2^k - 1$ are relatively prime so, since σ is multiplicative (by Theorem 7.4), we have

$$\sigma(n) = \sigma(2^{k-1}(2^k - 1)) = \sigma(2^{k-1})\sigma(2^k - 1)$$
$$= (2^k - 1) \cdot 2^k = 2 \cdot 2^{k-1}(2^k - 1) = 2n.$$

Thus *n* is perfect (by definition), as claimed.

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If *n* is an even perfect number, then $n = 2^{p-1}(2^p - 1)$ for some prime *p*, and $2^p - 1$ is also prime. **Proof.** In *n* is even then $n = 2^e m$ where *m* is odd and $e \ge 1$. Since

 $\sigma(m) > m$ (because 1 and *m* are divisors of *m*), then we have $\sigma(m) = m + s$ for some s > 0. Now $\sigma(2^{e+1}) = 2^{e+2} - 1$ by Exercise 7.8. Since *n* is perfect, then $\sigma(n) = 2n$ and so by Theorem 7.4

$$2n = 2 \cdot 2^{e}m = 2^{e+1}m = \sigma(n) = \sigma(2^{e})\sigma(m)$$
$$= (2^{e+1} - 1)(m+s) = 2^{e+1}m - m + (2^{e+1} - 1)s.$$

Thus $m = (2^{e+1} - 1)s$, so that s is a divisor of m, and s < m because $e \ge 1$.

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If *n* is an even perfect number, then $n = 2^{p-1}(2^p - 1)$ for some prime *p*, and $2^p - 1$ is also prime. **Proof.** In *n* is even then $n = 2^e m$ where *m* is odd and $e \ge 1$. Since $\sigma(m) > m$ (because 1 and *m* are divisors of *m*), then we have $\sigma(m) = m + s$ for some s > 0. Now $\sigma(2^{e+1}) = 2^{e+2} - 1$ by Exercise 7.8. Since *n* is perfect, then $\sigma(n) = 2n$ and so by Theorem 7.4

$$2n = 2 \cdot 2^{e}m = 2^{e+1}m = \sigma(n) = \sigma(2^{e})\sigma(m)$$
$$= (2^{e+1} - 1)(m+s) = 2^{e+1}m - m + (2^{e+1} - 1)s.$$

Thus $m = (2^{e+1} - 1)s$, so that s is a divisor of m, and s < m because $e \ge 1$. But $\sigma(m) = m + s$, so s is the sum of all the divisors of m that are less than m. That is, s is the sum of a group of (positive) numbers that includes s. This is possible only if the group consists of one number. Now 1 is a divisor of m and so this one number must be s = 1. That is, the only divisors of $m = (2^{e+1} - 1)s = 2^{e+1} - 1$ are 1 and m itself. Hence, $m = 2^{e+1} - 1$ is prime.

()

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If *n* is an even perfect number, then $n = 2^{p-1}(2^p - 1)$ for some prime *p*, and $2^p - 1$ is also prime. **Proof.** In *n* is even then $n = 2^e m$ where *m* is odd and $e \ge 1$. Since $\sigma(m) > m$ (because 1 and *m* are divisors of *m*), then we have $\sigma(m) = m + s$ for some s > 0. Now $\sigma(2^{e+1}) = 2^{e+2} - 1$ by Exercise 7.8. Since *n* is perfect, then $\sigma(n) = 2n$ and so by Theorem 7.4

$$2n = 2 \cdot 2^{e}m = 2^{e+1}m = \sigma(n) = \sigma(2^{e})\sigma(m)$$
$$= (2^{e+1} - 1)(m+s) = 2^{e+1}m - m + (2^{e+1} - 1)s.$$

Thus $m = (2^{e+1} - 1)s$, so that s is a divisor of m, and s < m because $e \ge 1$. But $\sigma(m) = m + s$, so s is the sum of all the divisors of m that are less than m. That is, s is the sum of a group of (positive) numbers that includes s. This is possible only if the group consists of one number. Now 1 is a divisor of m and so this one number must be s = 1. That is, the only divisors of $m = (2^{e+1} - 1)s = 2^{e+1} - 1$ are 1 and m itself. Hence, $m = 2^{e+1} - 1$ is prime.

()

Theorem 8.2 (Euler, continued)

Theorem 8.2 (Euler). If *n* is an even perfect number, then $n = 2^{p-1}(2^p - 1)$ for some prime *p*, and $2^p - 1$ is also prime.

Proof (continued). We have that $\sigma(m) = m + s = m + 1$, so that $m = 2^{e+1} - 1$ is prime. By Theorem 8.1 (of Euclid), this implies that p = e + 1 is prime. Hence $m = 2^p - 1$ for some prime p, e = p - 1, and hence $n = 2^e m = 2^{p-1}(2^p - 1)$, as claimed.