Elementary Number Theory

Section 8. Perfect Numbers—Proofs of Theorems

Table of contents

(1) Theorem 8.1 (Euclid)
(2) Theorem 8.2 (Euler)

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If $2^{k}-1$ is prime, then $2^{k-1}\left(2^{k}-1\right)$ is perfect.
Proof. Let $n=2^{k-1}\left(2^{k}-1\right)$. Since $2^{k}-1$ is prime by hypothesis, then
$\sigma\left(2^{k}-1\right)=\left(2^{k}-1\right)+1=2^{k}$ by Note 7.A. Also,
$\sigma\left(p^{n}\right)=\left(p^{n+1}-1\right) /(p-1)$ for prime p by Exercise 7.8 , so
$\sigma\left(2^{k-1}\right)=\left(2^{(k-1)+1}-1\right) /((2)-1)=2^{k}-1$.

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If $2^{k}-1$ is prime, then $2^{k-1}\left(2^{k}-1\right)$ is perfect.
Proof. Let $n=2^{k-1}\left(2^{k}-1\right)$. Since $2^{k}-1$ is prime by hypothesis, then $\sigma\left(2^{k}-1\right)=\left(2^{k}-1\right)+1=2^{k}$ by Note 7.A. Also, $\sigma\left(p^{n}\right)=\left(p^{n+1}-1\right) /(p-1)$ for prime p by Exercise 7.8, so $\sigma\left(2^{k-1}\right)=\left(2^{(k-1)+1}-1\right) /((2)-1)=2^{k}-1$. Now 2^{k-1} and $2^{k}-1$ are relatively prime so, since σ is multiplicative (by Theorem 7.4), we have

$$
\begin{gathered}
\sigma(n)=\sigma\left(2^{k-1}\left(2^{k}-1\right)\right)=\sigma\left(2^{k-1}\right) \sigma\left(2^{k}-1\right) \\
=\left(2^{k}-1\right) \cdot 2^{k}=2 \cdot 2^{k-1}\left(2^{k}-1\right)=2 n .
\end{gathered}
$$

Thus n is perfect (by definition), as claimed.

Theorem 8.1 (Euclid)

Theorem 8.1 (Euclid). If $2^{k}-1$ is prime, then $2^{k-1}\left(2^{k}-1\right)$ is perfect.
Proof. Let $n=2^{k-1}\left(2^{k}-1\right)$. Since $2^{k}-1$ is prime by hypothesis, then $\sigma\left(2^{k}-1\right)=\left(2^{k}-1\right)+1=2^{k}$ by Note 7.A. Also, $\sigma\left(p^{n}\right)=\left(p^{n+1}-1\right) /(p-1)$ for prime p by Exercise 7.8, so $\sigma\left(2^{k-1}\right)=\left(2^{(k-1)+1}-1\right) /((2)-1)=2^{k}-1$. Now 2^{k-1} and $2^{k}-1$ are relatively prime so, since σ is multiplicative (by Theorem 7.4), we have

$$
\begin{aligned}
& \sigma(n)=\sigma\left(2^{k-1}\left(2^{k}-1\right)\right)=\sigma\left(2^{k-1}\right) \sigma\left(2^{k}-1\right) \\
& \quad=\left(2^{k}-1\right) \cdot 2^{k}=2 \cdot 2^{k-1}\left(2^{k}-1\right)=2 n .
\end{aligned}
$$

Thus n is perfect (by definition), as claimed.

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If n is an even perfect number, then $n=2^{p-1}\left(2^{p}-1\right)$ for some prime p, and $2^{p}-1$ is also prime. Proof. In n is even then $n=2^{e} m$ where m is odd and $e \geq 1$. Since $\sigma(m)>m$ (because 1 and m are divisors of m), then we have $\sigma(m)=m+s$ for some $s>0$. Now $\sigma\left(2^{e+1}\right)=2^{e+2}-1$ by Exercise 7.8. Since n is perfect, then $\sigma(n)=2 n$ and so by Theorem 7.4

$$
\begin{gathered}
2 n=2 \cdot 2^{e} m=2^{e+1} m=\sigma(n)=\sigma\left(2^{e}\right) \sigma(m) \\
=\left(2^{e+1}-1\right)(m+s)=2^{e+1} m-m+\left(2^{e+1}-1\right) s .
\end{gathered}
$$

Thus $m=\left(2^{e+1}-1\right) s$, so that s is a divisor of m, and $s<m$ because $e \geq 1$.

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If n is an even perfect number, then $n=2^{p-1}\left(2^{p}-1\right)$ for some prime p, and $2^{p}-1$ is also prime. Proof. In n is even then $n=2^{e} m$ where m is odd and $e \geq 1$. Since $\sigma(m)>m$ (because 1 and m are divisors of m), then we have $\sigma(m)=m+s$ for some $s>0$. Now $\sigma\left(2^{e+1}\right)=2^{e+2}-1$ by Exercise 7.8. Since n is perfect, then $\sigma(n)=2 n$ and so by Theorem 7.4

$$
\begin{gathered}
2 n=2 \cdot 2^{e} m=2^{e+1} m=\sigma(n)=\sigma\left(2^{e}\right) \sigma(m) \\
=\left(2^{e+1}-1\right)(m+s)=2^{e+1} m-m+\left(2^{e+1}-1\right) s .
\end{gathered}
$$

Thus $m=\left(2^{e+1}-1\right) s$, so that s is a divisor of m, and $s<m$ because $e \geq 1$. But $\sigma(m)=m+s$, so s is the sum of all the divisors of m that are less than m. That is, s is the sum of a group of (positive) numbers that includes s. This is possible only if the group consists of one number. Now 1 is a divisor of m and so this one number must be $s=1$. That is, the only divisors of $m=\left(2^{e+1}-1\right) s=2^{e+1}-1$ are 1 and m itself. Hence, $m=2^{e+1}-1$ is prime.

Theorem 8.2 (Euler)

Theorem 8.2 (Euler). If n is an even perfect number, then $n=2^{p-1}\left(2^{p}-1\right)$ for some prime p, and $2^{p}-1$ is also prime. Proof. In n is even then $n=2^{e} m$ where m is odd and $e \geq 1$. Since $\sigma(m)>m$ (because 1 and m are divisors of m), then we have $\sigma(m)=m+s$ for some $s>0$. Now $\sigma\left(2^{e+1}\right)=2^{e+2}-1$ by Exercise 7.8. Since n is perfect, then $\sigma(n)=2 n$ and so by Theorem 7.4

$$
\begin{gathered}
2 n=2 \cdot 2^{e} m=2^{e+1} m=\sigma(n)=\sigma\left(2^{e}\right) \sigma(m) \\
=\left(2^{e+1}-1\right)(m+s)=2^{e+1} m-m+\left(2^{e+1}-1\right) s .
\end{gathered}
$$

Thus $m=\left(2^{e+1}-1\right) s$, so that s is a divisor of m, and $s<m$ because $e \geq 1$. But $\sigma(m)=m+s$, so s is the sum of all the divisors of m that are less than m. That is, s is the sum of a group of (positive) numbers that includes s. This is possible only if the group consists of one number. Now 1 is a divisor of m and so this one number must be $s=1$. That is, the only divisors of $m=\left(2^{e+1}-1\right) s=2^{e+1}-1$ are 1 and m itself. Hence, $m=2^{e+1}-1$ is prime.

Theorem 8.2 (Euler, continued)

Theorem 8.2 (Euler). If n is an even perfect number, then $n=2^{p-1}\left(2^{p}-1\right)$ for some prime p, and $2^{p}-1$ is also prime.

Proof (continued). We have that $\sigma(m)=m+s=m+1$, so that $m=2^{e+1}-1$ is prime. By Theorem 8.1 (of Euclid), this implies that $p=e+1$ is prime. Hence $m=2^{p}-1$ for some prime $p, e=p-1$, and hence $n=2^{e} m=2^{p-1}\left(2^{p}-1\right)$, as claimed.

