Elementary Number Theory

Section 9. Euler's Theorem and Function—Proofs of Theorems

Table of contents

1 Lemma 9.1

- 2 Theorem 9.1. Euler's Theorem
- 3 Lemma 9.2
- 4 Lemma 9.3
- 5 Corollary 9.A
- 6 Theorem 9.2
- 7 Theorem 9.3

8 Theorem 9.4

Lemma 9.1

Lemma 9.1. If (a, m) = 1 and $r_1, r_2, \ldots, r_{\varphi(m)}$ are the positive integers less than *m* and relatively prime to *m*, then the least residues (mod *m*) of $ar_1, ar_2, ar_3, \ldots, ar_{\varphi(m)}$ are a permutation of $r_1, r_2, r_3, \ldots, r_{\varphi(m)}$. **Proof.** There are exactly $\varphi(m)$ numbers in the collection $ar_1, ar_2, \ldots, ar_{\varphi(m)}$. Since there are also $\varphi(m)$ positive integers less than *m* that are relatively prime to *m*, namely $r_1, r_2, \ldots, r_{\varphi(m)}$, we just need to show that the least residues (mod *m*) of $ar_1, ar_2, \ldots, ar_{\varphi(m)}$ are distinct and are relatively prime to *m*.

Lemma 9.1

Lemma 9.1. If (a, m) = 1 and $r_1, r_2, \ldots, r_{\varphi(m)}$ are the positive integers less than *m* and relatively prime to *m*, then the least residues (mod *m*) of $ar_1, ar_2, ar_3, \ldots, ar_{\varphi(m)}$ are a permutation of $r_1, r_2, r_3, \ldots, r_{\varphi(m)}$. **Proof.** There are exactly $\varphi(m)$ numbers in the collection $ar_1, ar_2, \ldots, ar_{\varphi(m)}$. Since there are also $\varphi(m)$ positive integers less than *m* that are relatively prime to *m*, namely $r_1, r_2, \ldots, r_{\varphi(m)}$, we just need to show that the least residues (mod *m*) of $ar_1, ar_2, \ldots, ar_{\varphi(m)}$ are distinct and are relatively prime to *m*.

To show that the least residues (mod *m*) are all different, suppose that some two of them are equal, say $ar_i \equiv ar_j \pmod{m}$ for some $1 \leq i \leq \varphi(m)$ and $1 \leq j \leq \varphi(m)$. Since (a, m) = 1 then $ar_i \equiv ar_j \pmod{m}$ implies that $r_i \equiv r_j \pmod{m}$ by Theorem 4.4. Since r_i and r_j are least residues (mod *m*), we have $r_i = r_j$. We have shown that $ar_i \equiv ar_j \pmod{m}$ implies $r_i \neq r_j$. The contrapositive of this is that $r_i = r_j$ implies $ar_i \not\equiv ar_j$. So the numbers $ar_1, ar_2, \ldots, ar_{\varphi(m)}$ are distinct, as claimed.

Lemma 9.1

Lemma 9.1. If (a, m) = 1 and $r_1, r_2, \ldots, r_{\varphi(m)}$ are the positive integers less than *m* and relatively prime to *m*, then the least residues (mod *m*) of $ar_1, ar_2, ar_3, \ldots, ar_{\varphi(m)}$ are a permutation of $r_1, r_2, r_3, \ldots, r_{\varphi(m)}$. **Proof.** There are exactly $\varphi(m)$ numbers in the collection $ar_1, ar_2, \ldots, ar_{\varphi(m)}$. Since there are also $\varphi(m)$ positive integers less than *m* that are relatively prime to *m*, namely $r_1, r_2, \ldots, r_{\varphi(m)}$, we just need to show that the least residues (mod *m*) of $ar_1, ar_2, \ldots, ar_{\varphi(m)}$ are distinct and are relatively prime to *m*.

To show that the least residues (mod *m*) are all different, suppose that some two of them are equal, say $ar_i \equiv ar_j \pmod{m}$ for some $1 \le i \le \varphi(m)$ and $1 \le j \le \varphi(m)$. Since (a, m) = 1 then $ar_i \equiv ar_j \pmod{m}$ implies that $r_i \equiv r_j \pmod{m}$ by Theorem 4.4. Since r_i and r_j are least residues (mod *m*), we have $r_i = r_j$. We have shown that $ar_i \equiv ar_j \pmod{m}$ implies $r_i \ne r_j$. The contrapositive of this is that $r_i = r_j$ implies $ar_i \ne ar_j$. So the numbers $ar_1, ar_2, \ldots, ar_{\varphi(m)}$ are distinct, as claimed.

Lemma 9.1 (continued)

Lemma 9.1. If (a, m) = 1 and $r_1, r_2, \ldots, r_{\varphi(m)}$ are the positive integers less than *m* and relatively prime to *m*, then the least residues (mod *m*) of $ar_1, ar_2, ar_3, \ldots, ar_{\varphi(m)}$ are a permutation of $r_1, r_2, r_3, \ldots, r_{\varphi(m)}$.

Proof (continued). Now we show that each of $ar_1, ar_2, \ldots, ar_{\varphi(m)}$ is relatively prime to m. ASSUME that p is a prime common divisor of ar_i and m for some i, where $1 \le i \le \varphi(m)$. Since p is prime then either $p \mid a$ or $[\mid r_i$ by Euclid's Lemma (Lemma 2.5). So either p is a common divisor of a and m, or p is a common divisor of r_i and m. But $(a, m) = (r_i, m) = 1$ by hypothesis so this is a CONTRADICTION. So there is no common divisor of ar_i and m and hence $(ar_i, m) = 1$ for all $i = 1, 2, \ldots, \varphi(m)$, as claimed.

Theorem 9.1. Euler's Theorem

Theorem 9.1. Euler's Theorem. Suppose that $m \ge 1$ and (a, m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. By Lemma 9.1 we have

$$r_1r_2\cdots r_{\varphi(m)}\equiv (ar_1)(ar_2)\cdots (ar_{\varphi(m)})\equiv a^{\varphi(m)}(r_1r_2\cdots r_{\varphi(m)}) \pmod{m}.$$

Since each of $r_1, r_2, \ldots, r_{\varphi(m)}$ is relatively prime to m, then the product $r_1r_2 \cdots r_{\varphi(m)}$ is also relatively prime to m (by, for example, the contrapositive of Corollary 1.1 and induction). So by Theorem 4.4, we can cancel $r_1r_2 \cdots r_{\varphi(m)}$ in the congruence above to get $1 \equiv a^{\varphi(m)} \pmod{m}$, as claimed.

Theorem 9.1. Euler's Theorem

Theorem 9.1. Euler's Theorem. Suppose that $m \ge 1$ and (a, m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. By Lemma 9.1 we have

$$r_1r_2\cdots r_{\varphi(m)}\equiv (ar_1)(ar_2)\cdots (ar_{\varphi(m)})\equiv a^{\varphi(m)}(r_1r_2\cdots r_{\varphi(m)}) \pmod{m}.$$

Since each of $r_1, r_2, \ldots, r_{\varphi(m)}$ is relatively prime to m, then the product $r_1r_2 \cdots r_{\varphi(m)}$ is also relatively prime to m (by, for example, the contrapositive of Corollary 1.1 and induction). So by Theorem 4.4, we can cancel $r_1r_2 \cdots r_{\varphi(m)}$ in the congruence above to get $1 \equiv a^{\varphi(m)} \pmod{m}$, as claimed.

Lemma 9.2. For prime p, $\varphi(p^n) = p^{n-1}(p-1)$ for all positive integers n.

Proof. The positive integers less that or equal to p^n which are *not* relatively prime to p^n are exactly the multiples of p: $p, 2p, 3p, \ldots, (p^n - 1)p$. This includes p^{n-1} such numbers. There are p^n positive integers less than or equal to p^n , we we have $\varphi(p^n) = p^n - p^{n-1} = p^{n-1}(p-1)$, as claimed.

Lemma 9.2. For prime p, $\varphi(p^n) = p^{n-1}(p-1)$ for all positive integers n.

Proof. The positive integers less that or equal to p^n which are *not* relatively prime to p^n are exactly the multiples of p: $p, 2p, 3p, \ldots, (p^n - 1)p$. This includes p^{n-1} such numbers. There are p^n positive integers less than or equal to p^n , we we have $\varphi(p^n) = p^n - p^{n-1} = p^{n-1}(p-1)$, as claimed.

Lemma 9.3. If (a, m) = 1 and $a \equiv b \pmod{m}$, then (b, m) = 1.

Proof. Since $a \equiv b \pmod{m}$ then b = a + km for some positive integer k. Then by Lemma 1.3 (with a, b, r of Lemma 1.3 as b, m, a) we have (b, m) = (a, m) = 1, as claimed.

Lemma 9.3. If (a, m) = 1 and $a \equiv b \pmod{m}$, then (b, m) = 1.

Proof. Since $a \equiv b \pmod{m}$ then b = a + km for some positive integer k. Then by Lemma 1.3 (with a, b, r of Lemma 1.3 as b, m, a) we have (b, m) = (a, m) = 1, as claimed.

Corollary 9.A

Corollary 9.A. If the least residues modulo m of r_1, r_2, \ldots, r_m are a permutation of $0, 1, \ldots, m-1$, then the list r_1, r_2, \ldots, r_m contains exactly $\varphi(m)$ elements relatively prime to m.

Proof. First, the least residue of r_i modulo m is some j where $0 \le j \le m - 1$; that is $j \equiv r_i \pmod{m}$. If (j, m) = 1 then by Lemma 9.3 we have $(r_i, m) = 1$, so that for j relatively prime to m we have r_i relatively prime to m.

Corollary 9.A

Corollary 9.A. If the least residues modulo m of r_1, r_2, \ldots, r_m are a permutation of $0, 1, \ldots, m-1$, then the list r_1, r_2, \ldots, r_m contains exactly $\varphi(m)$ elements relatively prime to m.

Proof. First, the least residue of r_i modulo *m* is some *j* where 0 < j < m-1; that is $j \equiv r_i \pmod{m}$. If (j, m) = 1 then by Lemma 9.3 we have $(r_i, m) = 1$, so that for *j* relatively prime to *m* we have r_i relatively prime to *m*. Conversely, if (j, m) = d > 1 then $d \mid j$ and $d \mid m$, so that $d \mid (km + j)$ for every integer k, by Lemma 1.2. Since $j \equiv r_i \pmod{m}$ then $r_i = km + i$ for some integer k and so $d | r_i$. That is, if i and m are not relatively prime, then r_i and m are not relatively prime. So r_i is relatively prime to m if and only if j is relatively prime to m. Therefore, since the list $0, 1, \ldots, m-1$ contains exactly $\varphi(m)$ elements relatively prime to m, then the list r_1, r_2, \ldots, r_m contains exactly $\varphi(m)$ elements relatively prime to *m*, as calimed.

Corollary 9.A

Corollary 9.A. If the least residues modulo m of r_1, r_2, \ldots, r_m are a permutation of $0, 1, \ldots, m-1$, then the list r_1, r_2, \ldots, r_m contains exactly $\varphi(m)$ elements relatively prime to m.

Proof. First, the least residue of r_i modulo *m* is some *j* where 0 < j < m-1; that is $j \equiv r_i \pmod{m}$. If (j, m) = 1 then by Lemma 9.3 we have $(r_i, m) = 1$, so that for *j* relatively prime to *m* we have r_i relatively prime to m. Conversely, if (j, m) = d > 1 then $d \mid j$ and $d \mid m$, so that $d \mid (km + j)$ for every integer k, by Lemma 1.2. Since $j \equiv r_i \pmod{m}$ then $r_i = km + j$ for some integer k and so $d \mid r_i$. That is, if j and m are not relatively prime, then r_i and m are not relatively prime. So r_i is relatively prime to m if and only if j is relatively prime to m. Therefore, since the list $0, 1, \ldots, m-1$ contains exactly $\varphi(m)$ elements relatively prime to m, then the list r_1, r_2, \ldots, r_m contains exactly $\varphi(m)$ elements relatively prime to *m*, as calimed.

Theorem 9.2. Euler's φ -function is multiplicative.

Proof. Suppose (m, n) = 1. Then consider the numbers from 1 to mn written consecutively in columns as:

1	m+1	2m + 1		(n-1)m+1
2	m + 2	2m + 2		(n-1)m+2
3	m + 3	2m + 3		(n-1)m + 3
-		-	÷.,	-
т	2 <i>m</i>	3 <i>m</i>		mn.

Suppose (m, r) = d where d > 1. Since $d \mid m$ and $d \mid r$ then by Lemma 1.2 $d \mid (km + r)$ for any nonnegative integer k. Notice that the rows in the array are of the form $r \mid m + r \mid 2m + r \mid \cdots \mid km + r \mid \cdots \mid (n - 1)m + r$.

Theorem 9.2. Euler's φ -function is multiplicative.

Proof. Suppose (m, n) = 1. Then consider the numbers from 1 to mn written consecutively in columns as:

1	m+1	2m + 1	•••	(n-1)m+1
2	m + 2	2m + 2	•••	(n-1)m+2
3	m + 3	2m + 3	•••	(n-1)m + 3
÷	÷	÷	۰.	:
т	2 <i>m</i>	3 <i>m</i>	• • •	mn.

Suppose (m, r) = d where d > 1. Since $d \mid m$ and $d \mid r$ then by Lemma 1.2 $d \mid (km + r)$ for any nonnegative integer k. Notice that the rows in the array are of the form $r \mid m + r \mid 2m + r \mid \cdots \mid km + r \mid \cdots \mid (n - 1)m + r$. So if d > 1 divides m and r, then d divides every entry in row r. Hence, any positive number relatively prime to mn (and less than mn) must appear in the array above in a row for which the number is relatively prime to the *first entry* in that row.

()

Theorem 9.2. Euler's φ -function is multiplicative.

Proof. Suppose (m, n) = 1. Then consider the numbers from 1 to mn written consecutively in columns as:

1	m+1	2m + 1	•••	(n-1)m+1
2	m + 2	2m + 2	•••	(n-1)m+2
3	m + 3	2m + 3	•••	(n-1)m + 3
÷	÷	÷	·	:
т	2 <i>m</i>	3 <i>m</i>	• • •	mn.

Suppose (m, r) = d where d > 1. Since $d \mid m$ and $d \mid r$ then by Lemma 1.2 $d \mid (km + r)$ for any nonnegative integer k. Notice that the rows in the array are of the form $r \mid m + r \mid 2m + r \mid \cdots \mid km + r \mid \cdots \mid (n-1)m + r$. So if d > 1 divides m and r, then d divides every entry in row r. Hence, any positive number relatively prime to mn (and less than mn) must appear in the array above in a row for which the number is relatively prime to the *first entry* in that row.

Theorem 9.2 (continued 1)

Proof (continued). Now the numbers in the *r*th row of the array are $r m + r 2m + r \cdots km + r \cdots (n-1)m + r$. We first claim that when r and m are relatively prime, these numbers have least residues modulo nof some permutation of $0, 1, 2, \dots, (n-1)$. To verify this, it is sufficient to show that no two of the numbers in the *r*th row are congruent modulo *n*. Suppose $km + r \equiv im + r \pmod{n}$ with $0 \le k < n$ and $0 \le i < n$. Then $km \equiv im \pmod{n}$, and since (m, n) = 1 (by our initial hypothesis in the proof) then we have $k \equiv i \pmod{n}$ by Theorem 4.4. Since both k and i are between 0 and n-1, then we must have k = j. That is, with $0 \le k \le n$ and $0 \le j \le n$, if $km + r \equiv jm + r \pmod{n}$ then k = j. The contrapositive of this result is that (with $0 \le k \le n$ and $0 \le j \le n$) if $k \neq i$ then $km + r \not\equiv im + r \pmod{n}$. Therefore no two elements of the rth row are congruent modulo n and hence the least residues modulo n of the numbers in the *r*th row are some permutation of $0, 1, 2, \ldots, (n-1)$, as claimed.

()

Theorem 9.2 (continued 1)

Proof (continued). Now the numbers in the *r*th row of the array are $r m + r 2m + r \cdots km + r \cdots (n-1)m + r$. We first claim that when r and m are relatively prime, these numbers have least residues modulo nof some permutation of $0, 1, 2, \dots, (n-1)$. To verify this, it is sufficient to show that no two of the numbers in the *r*th row are congruent modulo *n*. Suppose $km + r \equiv im + r \pmod{n}$ with $0 \le k < n$ and $0 \le i < n$. Then $km \equiv im \pmod{n}$, and since (m, n) = 1 (by our initial hypothesis in the proof) then we have $k \equiv i \pmod{n}$ by Theorem 4.4. Since both k and j are between 0 and n-1, then we must have k = i. That is, with $0 \le k \le n$ and $0 \le i \le n$, if $km + r \equiv im + r \pmod{n}$ then k = i. The contrapositive of this result is that (with $0 \le k < n$ and $0 \le i < n$) if $k \neq j$ then $km + r \not\equiv jm + r \pmod{n}$. Therefore no two elements of the rth row are congruent modulo n and hence the least residues modulo n of the numbers in the *r*th row are some permutation of $0, 1, 2, \ldots, (n-1)$, as claimed.

Theorem 9.2 (continued 2)

Proof (continued). Since the least residues modulo *n* of the numbers in the *r*th row are some permutation of $0, 1, 2, \ldots, (n-1)$, then by Corollary 9.A we have that the rth row of the array (when r and m are relatively prime) contains exactly $\varphi(n)$ elements relatively prime to n. By Lemma 9.3 (where r and m are relatively prime), every element in the rth row of the array, $r m + r 2m + r \cdots km + r \cdots (n-1)m + r$, is relatively prime to *m*. Such an *r*th row contains exactly $\varphi(n)$ elements that are relatively prime to both *m* and *n*, and hence are relatively prime to *mn* (this follows, say, from Euclid's Lemma [Lemma 2.5] which states that if prime p divides ab then either $p \mid a$ or $p \mid b$). We have seen that a positive number relatively prime to *mn* (and less than *mn*) appears in the *r*th row only when r and m are relatively prime (there are $\varphi(m)$ such rows), and each such row contains $\varphi(n)$ entries relatively prime to mn. So the array contains $\varphi(m)\varphi(n)$ elements relatively prime to mn. That is, $\varphi(mn) = \varphi(m)\varphi(n)$ and φ is multiplicative, as claimed.

Theorem 9.2 (continued 2)

Proof (continued). Since the least residues modulo *n* of the numbers in the *r*th row are some permutation of $0, 1, 2, \ldots, (n-1)$, then by Corollary 9.A we have that the rth row of the array (when r and m are relatively prime) contains exactly $\varphi(n)$ elements relatively prime to n. By Lemma 9.3 (where r and m are relatively prime), every element in the rth row of the array, $r m + r 2m + r \cdots km + r \cdots (n-1)m + r$, is relatively prime to m. Such an rth row contains exactly $\varphi(n)$ elements that are relatively prime to both m and n, and hence are relatively prime to mn (this follows, say, from Euclid's Lemma [Lemma 2.5] which states that if prime p divides ab then either $p \mid a$ or $p \mid b$). We have seen that a positive number relatively prime to mn (and less than mn) appears in the rth row only when r and m are relatively prime (there are $\varphi(m)$ such rows), and each such row contains $\varphi(n)$ entries relatively prime to *mn*. So the array contains $\varphi(m)\varphi(n)$ elements relatively prime to mn. That is, $\varphi(mn) = \varphi(m)\varphi(n)$ and φ is multiplicative, as claimed.

Theorem 9.3. If *n* has a prime-power decomposition given by $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, then $\varphi(n) = p_1^{e_1-1}(p_1-1)p_2^{e_2-1}(p_2-1)\cdots p_k^{e_k-1}(p_k-1).$

Proof. Since φ is multiplicative, then Theorem 7.5 implies that

$$\varphi(n) = \varphi(p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}) = \varphi(p_1^{e_1})\varphi(p_2^{e_2}) \cdots \varphi(p_k^{e_k}).$$

By Lemma 9.2, $\varphi(p_i^{e_i}) = p_i^{e_i-1}(p_i-1)$ for each $1 \le i \le k$, and the claim follows.

Theorem 9.3. If *n* has a prime-power decomposition given by $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, then $\varphi(n) = p_1^{e_1-1}(p_1-1)p_2^{e_2-1}(p_2-1)\cdots p_k^{e_k-1}(p_k-1).$

Proof. Since φ is multiplicative, then Theorem 7.5 implies that

$$\varphi(n) = \varphi(p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}) = \varphi(p_1^{e_1}) \varphi(p_2^{e_2}) \cdots \varphi(p_k^{e_k}).$$

By Lemma 9.2, $\varphi(p_i^{e_i}) = p_i^{e_i-1}(p_i-1)$ for each $1 \le i \le k$, and the claim follows.

Theorem 9.4

Theorem 9.4. If $n \ge 1$, then $\sum_{d \mid n} \varphi(d) = n$.

Proof. Let positive integer *n* be given. For the set of integers $S = \{1, 2, ..., n\}$, define the set C_d (where $1 \le d \le n$) to consist of those numbers in *S* that have greatest common divisor with *n* or *d*. That is, for given *n* we have $m \in C_d$ if and only if (m, n) = d. But (m, n) = d if and only if (m/d, n/d) = 1 by Theorem 1.1. So $m \in C_d$ if and only if m/d is relatively prime to n/d.

Theorem 9.4

Theorem 9.4. If
$$n \ge 1$$
, then $\sum_{d \mid n} \varphi(d) = n$.

Proof. Let positive integer *n* be given. For the set of integers $S = \{1, 2, \dots, n\}$, define the set C_d (where $1 \le d \le n$) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_d$ if and only if (m, n) = d. But (m, n) = d if and only if (m/d, n/d) = 1 by Theorem 1.1. So $m \in C_d$ if and only if m/d is relatively prime to n/d. The number of positive integers less than or equal to n/d and relatively prime to n/d is, by definition, $\varphi(n/d)$. So the number of elements in C_d is $\varphi(n/d)$. Since each element of $S = \{1, 2, ..., n\}$ is in exactly one C_d , then $n = \sum_{d \mid n} \varphi(n/d)$. Now if $d \mid n$, then n = dc for some c where $c \mid n$ (and c = n/d). So summing $\varphi(n/d)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n/d) = \sum_{c \mid n} \varphi(c)$. So $n = \sum_{d \mid n} \varphi(n/d) = \sum_{d \mid n} \varphi(d)$, as claimed.

()

Theorem 9.4

Theorem 9.4. If
$$n \ge 1$$
, then $\sum_{d \mid n} \varphi(d) = n$.

Proof. Let positive integer *n* be given. For the set of integers $S = \{1, 2, \dots, n\}$, define the set C_d (where $1 \le d \le n$) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_d$ if and only if (m, n) = d. But (m, n) = d if and only if (m/d, n/d) = 1 by Theorem 1.1. So $m \in C_d$ if and only if m/d is relatively prime to n/d. The number of positive integers less than or equal to n/d and relatively prime to n/d is, by definition, $\varphi(n/d)$. So the number of elements in C_d is $\varphi(n/d)$. Since each element of $S = \{1, 2, ..., n\}$ is in exactly one C_d , then $n = \sum_{d \mid n} \varphi(n/d)$. Now if $d \mid n$, then n = dc for some c where $c \mid n$ (and c = n/d). So summing $\varphi(n/d)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n/d) = \sum_{c \mid n} \varphi(c)$. So $n = \sum_{d \mid n} \varphi(n/d) = \sum_{d \mid n} \varphi(d)$, as claimed.

()