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Lemma 9.1

Lemma 9.1

Lemma 9.1. If (a,m) = 1 and r1, r2, . . . , rϕ(m) are the positive integers
less than m and relatively prime to m, then the least residues (mod m) of
ar1, ar2, ar3, . . . , arϕ(m) are a permutation of r1, r2, r3, . . . , rϕ(m).

Proof. There are exactly ϕ(m) numbers in the collection
ar1, ar2, . . . , arϕ(m). Since there are also ϕ(m) positive integers less than m
that are relatively prime to m, namely r1, r2, . . . , rϕ(m), we just need to
show that the least residues (mod m) of ar1, ar2, . . . , arϕ(m) are distinct
and are relatively prime to m.

To show that the least residues (mod m) are all different, suppose that
some two of them are equal, say ari ≡ arj (mod m) for some
1 ≤ i ≤ ϕ(m) and 1 ≤ j ≤ ϕ(m). Since (a,m) = 1 then ari ≡ arj (mod
m) implies that ri ≡ rj (mod m) by Theorem 4.4. Since ri and rj are least
residues (mod m), we have ri = rj . We have shown that ari ≡ arj (mod
m) implies ri 6= rj . The contrapositive of this is that ri = rj implies
ari 6≡ arj . So the numbers ar1, ar2, . . . , arϕ(m) are distinct, as claimed.
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Lemma 9.1

Lemma 9.1 (continued)

Lemma 9.1. If (a,m) = 1 and r1, r2, . . . , rϕ(m) are the positive integers
less than m and relatively prime to m, then the least residues (mod m) of
ar1, ar2, ar3, . . . , arϕ(m) are a permutation of r1, r2, r3, . . . , rϕ(m).

Proof (continued). Now we show that each of ar1, ar2, . . . , arϕ(m) is
relatively prime to m. ASSUME that p is a prime common divisor of ari
and m for some i , where 1 ≤ i ≤ ϕ(m). Since p is prime then either p | a
or [ | ri by Euclid’s Lemma (Lemma 2.5). So either p is a common divisor
of a and m, or p is a common divisor of ri and m. But
(a,m) = (ri ,m) = 1 by hypothesis so this is a CONTRADICTION. So
there is no common divisor of ari and m and hence (ari ,m) = 1 for all
i = 1, 2, . . . , ϕ(m), as claimed.
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Theorem 9.1. Euler’s Theorem

Theorem 9.1. Euler’s Theorem

Theorem 9.1. Euler’s Theorem. Suppose that m ≥ 1 and (a,m) = 1.
Then aϕ(m) ≡ 1 (mod m).

Proof. By Lemma 9.1 we have

r1r2 · · · rϕ(m) ≡ (ar1)(ar2) · · · (arϕ(m)) ≡ aϕ(m)(r1r2 · · · rϕ(m)) (mod m).

Since each of r1, r2, . . . , rϕ(m) is relatively prime to m, then the product
r1r2 · · · rϕ(m) is also relatively prime to m (by, for example, the
contrapositive of Corollary 1.1 and induction). So by Theorem 4.4, we can
cancel r1r2 · · · rϕ(m) in the congruence above to get 1 ≡ aϕ(m) (mod m), as
claimed.
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Lemma 9.2

Lemma 9.2

Lemma 9.2. For prime p, ϕ(pn) = pn−1(p − 1) for all positive integers n.

Proof. The positive integers less that or equal to pn which are not
relatively prime to pn are exactly the multiples of p:
p, 2p, 3p, . . . , (pn − 1)p. This includes pn−1 such numbers. There are pn

positive integers less than or equal to pn, we we have
ϕ(pn) = pn − pn−1 = pn−1(p − 1), as claimed.
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Lemma 9.3

Lemma 9.3

Lemma 9.3. If (a,m) = 1 and a ≡ b (mod m), then (b,m) = 1.

Proof. Since a ≡ b (mod m) then b = a + km for some positive integer k.
Then by Lemma 1.3 (with a, b, r of Lemma 1.3 as b,m, a) we have
(b,m) = (a,m) = 1, as claimed.
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Corollary 9.A

Corollary 9.A

Corollary 9.A. If the least residues modulo m of r1, r2, . . . , rm are a
permutation of 0, 1, . . . ,m − 1, then the list r1, r2, . . . , rm contains exactly
ϕ(m) elements relatively prime to m.

Proof. First, the least residue of ri modulo m is some j where
0 ≤ j ≤ m − 1; that is j ≡ ri (mod m). If (j ,m) = 1 then by Lemma 9.3
we have (ri ,m) = 1, so that for j relatively prime to m we have ri
relatively prime to m.

Conversely, if (j ,m) = d > 1 then d | j and d |m, so
that d | (km + j) for every integer k, by Lemma 1.2. Since j ≡ ri (mod m)
then ri = km + j for some integer k and so d | ri . That is, if j and m are
not relatively prime, then ri and m are not relatively prime. So ri is
relatively prime to m if and only if j is relatively prime to m. Therefore,
since the list 0, 1, . . . ,m − 1 contains exactly ϕ(m) elements relatively
prime to m, then the list r1, r2, . . . , rm contains exactly ϕ(m) elements
relatively prime to m, as calimed.
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Theorem 9.2

Theorem 9.2

Theorem 9.2. Euler’s ϕ-function is multiplicative.

Proof. Suppose (m, n) = 1. Then consider the numbers from 1 to mn
written consecutively in columns as:

1 m + 1 2m + 1 · · · (n − 1)m + 1
2 m + 2 2m + 2 · · · (n − 1)m + 2
3 m + 3 2m + 3 · · · (n − 1)m + 3
...

...
...

. . .
...

m 2m 3m · · · mn.

Suppose (m, r) = d where d > 1. Since d |m and d | r then by Lemma 1.2
d | (km + r) for any nonnegative integer k. Notice that the rows in the
array are of the form r m + r 2m + r · · · km + r · · · (n − 1)m + r .

So
if d > 1 divides m and r , then d divides every entry in row r . Hence, any
positive number relatively prime to mn (and less than mn) must appear in
the array above in a row for which the number is relatively prime to the
first entry in that row.
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Theorem 9.2

Theorem 9.2 (continued 1)

Proof (continued). Now the numbers in the rth row of the array are
r m + r 2m + r · · · km + r · · · (n− 1)m + r . We first claim that when
r and m are relatively prime, these numbers have least residues modulo n
of some permutation of 0, 1, 2, . . . , (n− 1). To verify this, it is sufficient to
show that no two of the numbers in the rth row are congruent modulo n.
Suppose km + r ≡ jm + r (mod n) with 0 ≤ k < n and 0 ≤ j < n. Then
km ≡ jm (mod n), and since (m, n) = 1 (by our initial hypothesis in the
proof) then we have k ≡ j (mod n) by Theorem 4.4. Since both k and j
are between 0 and n − 1, then we must have k = j . That is, with
0 ≤ k < n and 0 ≤ j < n, if km + r ≡ jm + r (mod n) then k = j . The
contrapositive of this result is that (with 0 ≤ k < n and 0 ≤ j < n) if
k 6= j then km + r 6≡ jm + r (mod n). Therefore no two elements of the
rth row are congruent modulo n and hence the least residues modulo n of
the numbers in the rth row are some permutation of 0, 1, 2, . . . , (n− 1), as
claimed.
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Theorem 9.2

Theorem 9.2 (continued 2)

Proof (continued). Since the least residues modulo n of the numbers in
the rth row are some permutation of 0, 1, 2, . . . , (n − 1), then by Corollary
9.A we have that the rth row of the array (when r and m are relatively
prime) contains exactly ϕ(n) elements relatively prime to n. By Lemma
9.3 (where r and m are relatively prime), every element in the rth row of
the array, r m + r 2m + r · · · km + r · · · (n − 1)m + r , is relatively
prime to m. Such an rth row contains exactly ϕ(n) elements that are
relatively prime to both m and n, and hence are relatively prime to mn
(this follows, say, from Euclid’s Lemma [Lemma 2.5] which states that if
prime p divides ab then either p | a or p | b). We have seen that a positive
number relatively prime to mn (and less than mn) appears in the rth row
only when r and m are relatively prime (there are ϕ(m) such rows), and
each such row contains ϕ(n) entries relatively prime to mn. So the array
contains ϕ(m)ϕ(n) elements relatively prime to mn. That is,
ϕ(mn) = ϕ(m)ϕ(n) and ϕ is multiplicative, as claimed.
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Theorem 9.3

Theorem 9.3

Theorem 9.3. If n has a prime-power decomposition given by
n = pe1

1 pe2
2 · · · pek

k , then

ϕ(n) = pe1−1
1 (p1 − 1)pe2−1

2 (p2 − 1) · · · pek−1
k (pk − 1).

Proof. Since ϕ is multiplicative, then Theorem 7.5 implies that

ϕ(n) = ϕ(pe1
1 pe2

2 · · · pek
k ) = ϕ(pe1

1 )ϕ(pe2
2 ) · · ·ϕ(pek

k ).

By Lemma 9.2, ϕ(pei
i ) = pei−1

i (pi − 1) for each 1 ≤ i ≤ k, and the claim
follows.
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Theorem 9.4

Theorem 9.4

Theorem 9.4. If n ≥ 1, then
∑
d | n

ϕ(d) = n.

Proof. Let positive integer n be given. For the set of integers
S = {1, 2, . . . , n}, define the set Cd (where 1 ≤ d ≤ n) to consist of those
numbers in S that have greatest common divisor with n or d . That is, for
given n we have m ∈ Cd if and only if (m, n) = d . But (m, n) = d if and
only if (m/d , n/d) = 1 by Theorem 1.1. So m ∈ Cd if and only if m/d is
relatively prime to n/d .

The number of positive integers less than or equal
to n/d and relatively prime to n/d is, by definition, ϕ(n/d). So the
number of elements in Cd is ϕ(n/d). Since each element of
S = {1, 2, . . . , n} is in exactly one Cd , then n =

∑
d | n ϕ(n/d). Now if

d | n, then n = dc for some c where c | n (and c = n/d). So summing
ϕ(n/d) over all d | n, is equivalent to summing ϕ(c) over all c | n. That is,∑

d | n ϕ(n/d) =
∑

c | n ϕ(c). So n =
∑

d | n ϕ(n/d) =
∑

d | n ϕ(d), as
claimed.
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