Elementary Number Theory

Section 9. Euler's Theorem and Function-Proofs of Theorems

Table of contents

(1) Lemma 9.1
(2) Theorem 9.1. Euler's Theorem
(3) Lemma 9.2
(4) Lemma 9.3
(5) Corollary 9.A
(6) Theorem 9.2
(7) Theorem 9.3
(8) Theorem 9.4

Lemma 9.1

Lemma 9.1. If $(a, m)=1$ and $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$ are the positive integers less than m and relatively prime to m, then the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, a r_{3}, \ldots, a r_{\varphi(m)}$ are a permutation of $r_{1}, r_{2}, r_{3}, \ldots, r_{\varphi(m)}$. Proof. There are exactly $\varphi(m)$ numbers in the collection $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$. Since there are also $\varphi(m)$ positive integers less than m that are relatively prime to m, namely $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$, we just need to show that the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$ are distinct and are relatively prime to m.

Lemma 9.1

Lemma 9.1. If $(a, m)=1$ and $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$ are the positive integers less than m and relatively prime to m, then the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, a r_{3}, \ldots, a r_{\varphi(m)}$ are a permutation of $r_{1}, r_{2}, r_{3}, \ldots, r_{\varphi(m)}$.
Proof. There are exactly $\varphi(m)$ numbers in the collection $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$. Since there are also $\varphi(m)$ positive integers less than m that are relatively prime to m, namely $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$, we just need to show that the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$ are distinct and are relatively prime to m.
To show that the least residues ($\bmod m$) are all different, suppose that some two of them are equal, say $a r_{i} \equiv a r_{j}(\bmod m)$ for some $1 \leq i \leq \varphi(m)$ and $1 \leq j \leq \varphi(m)$. Since $(a, m)=1$ then $a r_{i} \equiv a r_{j}(\bmod$ $m)$ implies that $r_{i} \equiv r_{j}(\bmod m)$ by Theorem 4.4. Since r_{i} and r_{j} are least residues $(\bmod m)$, we have $r_{i}=r_{j}$. We have shown that $a r_{i} \equiv a r_{j}(\bmod$ m) implies $r_{i} \neq r_{j}$. The contrapositive of this is that $r_{i}=r_{j}$ implies $a r_{i} \not \equiv a r_{j}$. So the numbers $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$ are distinct, as claimed.

Lemma 9.1

Lemma 9.1. If $(a, m)=1$ and $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$ are the positive integers less than m and relatively prime to m, then the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, a r_{3}, \ldots, a r_{\varphi(m)}$ are a permutation of $r_{1}, r_{2}, r_{3}, \ldots, r_{\varphi(m)}$.
Proof. There are exactly $\varphi(m)$ numbers in the collection $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$. Since there are also $\varphi(m)$ positive integers less than m that are relatively prime to m, namely $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$, we just need to show that the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$ are distinct and are relatively prime to m.
To show that the least residues $(\bmod m)$ are all different, suppose that some two of them are equal, say $a r_{i} \equiv a r_{j}(\bmod m)$ for some $1 \leq i \leq \varphi(m)$ and $1 \leq j \leq \varphi(m)$. Since $(a, m)=1$ then $a r_{i} \equiv a r_{j}(\bmod$ $m)$ implies that $r_{i} \equiv r_{j}(\bmod m)$ by Theorem 4.4. Since r_{i} and r_{j} are least residues $(\bmod m)$, we have $r_{i}=r_{j}$. We have shown that $a r_{i} \equiv a r_{j}(\bmod$ m) implies $r_{i} \neq r_{j}$. The contrapositive of this is that $r_{i}=r_{j}$ implies $a r_{i} \not \equiv a r_{j}$. So the numbers $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$ are distinct, as claimed.

Lemma 9.1 (continued)

Lemma 9.1. If $(a, m)=1$ and $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$ are the positive integers less than m and relatively prime to m, then the least residues $(\bmod m)$ of $a r_{1}, a r_{2}, a r_{3}, \ldots, a r_{\varphi(m)}$ are a permutation of $r_{1}, r_{2}, r_{3}, \ldots, r_{\varphi(m)}$.
Proof (continued). Now we show that each of $a r_{1}, a r_{2}, \ldots, a r_{\varphi(m)}$ is relatively prime to m. ASSUME that p is a prime common divisor of $a r_{i}$ and m for some i, where $1 \leq i \leq \varphi(m)$. Since p is prime then either $p \mid a$ or [| r_{i} by Euclid's Lemma (Lemma 2.5). So either p is a common divisor of a and m, or p is a common divisor of r_{i} and m. But $(a, m)=\left(r_{i}, m\right)=1$ by hypothesis so this is a CONTRADICTION. So there is no common divisor of $a r_{i}$ and m and hence $\left(a r_{i}, m\right)=1$ for all $i=1,2, \ldots, \varphi(m)$, as claimed.

Theorem 9.1. Euler's Theorem

Theorem 9.1. Euler's Theorem. Suppose that $m \geq 1$ and $(a, m)=1$. Then $a^{\varphi(m)} \equiv 1(\bmod m)$.

Proof. By Lemma 9.1 we have

$$
r_{1} r_{2} \cdots r_{\varphi(m)} \equiv\left(a r_{1}\right)\left(a r_{2}\right) \cdots\left(a r_{\varphi(m)}\right) \equiv a^{\varphi(m)}\left(r_{1} r_{2} \cdots r_{\varphi(m)}\right)(\bmod m) .
$$

Since each of $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$ is relatively prime to m, then the product $r_{1} r_{2} \cdots r_{\varphi(m)}$ is also relatively prime to m (by, for example, the contrapositive of Corollary 1.1 and induction). So by Theorem 4.4, we can cancel $r_{1} r_{2} \cdots r_{\varphi(m)}$ in the congruence above to get $1 \equiv a^{\varphi(m)}(\bmod m)$, as claimed.

Theorem 9.1. Euler's Theorem

Theorem 9.1. Euler's Theorem. Suppose that $m \geq 1$ and $(a, m)=1$. Then $a^{\varphi(m)} \equiv 1(\bmod m)$.

Proof. By Lemma 9.1 we have

$$
r_{1} r_{2} \cdots r_{\varphi(m)} \equiv\left(a r_{1}\right)\left(a r_{2}\right) \cdots\left(a r_{\varphi(m)}\right) \equiv a^{\varphi(m)}\left(r_{1} r_{2} \cdots r_{\varphi(m)}\right)(\bmod m) .
$$

Since each of $r_{1}, r_{2}, \ldots, r_{\varphi(m)}$ is relatively prime to m, then the product $r_{1} r_{2} \cdots r_{\varphi(m)}$ is also relatively prime to m (by, for example, the contrapositive of Corollary 1.1 and induction). So by Theorem 4.4, we can cancel $r_{1} r_{2} \cdots r_{\varphi(m)}$ in the congruence above to get $1 \equiv a^{\varphi(m)}(\bmod m)$, as claimed.

Lemma 9.2

Lemma 9.2. For prime $p, \varphi\left(p^{n}\right)=p^{n-1}(p-1)$ for all positive integers n.
Proof. The positive integers less that or equal to p^{n} which are not relatively prime to p^{n} are exactly the multiples of p : $p, 2 p, 3 p, \ldots,\left(p^{n}-1\right) p$. This includes p^{n-1} such numbers. There are p^{n} positive integers less than or equal to p^{n}, we we have $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1)$, as claimed.

Lemma 9.2

Lemma 9.2. For prime $p, \varphi\left(p^{n}\right)=p^{n-1}(p-1)$ for all positive integers n.

Proof. The positive integers less that or equal to p^{n} which are not relatively prime to p^{n} are exactly the multiples of p : $p, 2 p, 3 p, \ldots,\left(p^{n}-1\right) p$. This includes p^{n-1} such numbers. There are p^{n} positive integers less than or equal to p^{n}, we we have $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1)$, as claimed.

Lemma 9.3

Lemma 9.3. If $(a, m)=1$ and $a \equiv b(\bmod m)$, then $(b, m)=1$.

Proof. Since $a \equiv b(\bmod m)$ then $b=a+k m$ for some positive integer k. Then by Lemma 1.3 (with a, b, r of Lemma 1.3 as b, m, a) we have $(b, m)=(a, m)=1$, as claimed.

Lemma 9.3

Lemma 9.3. If $(a, m)=1$ and $a \equiv b(\bmod m)$, then $(b, m)=1$.

Proof. Since $a \equiv b(\bmod m)$ then $b=a+k m$ for some positive integer k. Then by Lemma 1.3 (with a, b, r of Lemma 1.3 as b, m, a) we have $(b, m)=(a, m)=1$, as claimed.

Corollary 9.A

Corollary 9.A. If the least residues modulo m of $r_{1}, r_{2}, \ldots, r_{m}$ are a permutation of $0,1, \ldots, m-1$, then the list $r_{1}, r_{2}, \ldots, r_{m}$ contains exactly $\varphi(m)$ elements relatively prime to m.

Proof. First, the least residue of r_{i} modulo m is some j where $0 \leq j \leq m-1$; that is $j \equiv r_{i}(\bmod m)$. If $(j, m)=1$ then by Lemma 9.3 we have $\left(r_{i}, m\right)=1$, so that for j relatively prime to m we have r_{i} relatively prime to m.

Corollary 9.A

Corollary 9.A. If the least residues modulo m of $r_{1}, r_{2}, \ldots, r_{m}$ are a permutation of $0,1, \ldots, m-1$, then the list $r_{1}, r_{2}, \ldots, r_{m}$ contains exactly $\varphi(m)$ elements relatively prime to m.

Proof. First, the least residue of r_{i} modulo m is some j where $0 \leq j \leq m-1$; that is $j \equiv r_{i}(\bmod m)$. If $(j, m)=1$ then by Lemma 9.3 we have $\left(r_{i}, m\right)=1$, so that for j relatively prime to m we have r_{i} relatively prime to m. Conversely, if $(j, m)=d>1$ then $d \mid j$ and $d \mid m$, so that $d \mid(k m+j)$ for every integer k, by Lemma 1.2. Since $j \equiv r_{i}(\bmod m)$ then $r_{i}=k m+j$ for some integer k and so $d \mid r_{i}$. That is, if j and m are not relatively prime, then r_{i} and m are not relatively prime. So r_{i} is relatively prime to m if and only if j is relatively prime to m. Therefore, since the list $0,1, \ldots, m-1$ contains exactly $\varphi(m)$ elements relatively prime to m, then the list $r_{1}, r_{2}, \ldots, r_{m}$ contains exactly $\varphi(m)$ elements relatively prime to m, as calimed.

Corollary 9.A

Corollary 9.A. If the least residues modulo m of $r_{1}, r_{2}, \ldots, r_{m}$ are a permutation of $0,1, \ldots, m-1$, then the list $r_{1}, r_{2}, \ldots, r_{m}$ contains exactly $\varphi(m)$ elements relatively prime to m.

Proof. First, the least residue of r_{i} modulo m is some j where $0 \leq j \leq m-1$; that is $j \equiv r_{i}(\bmod m)$. If $(j, m)=1$ then by Lemma 9.3 we have $\left(r_{i}, m\right)=1$, so that for j relatively prime to m we have r_{i} relatively prime to m. Conversely, if $(j, m)=d>1$ then $d \mid j$ and $d \mid m$, so that $d \mid(k m+j)$ for every integer k, by Lemma 1.2. Since $j \equiv r_{i}(\bmod m)$ then $r_{i}=k m+j$ for some integer k and so $d \mid r_{i}$. That is, if j and m are not relatively prime, then r_{i} and m are not relatively prime. So r_{i} is relatively prime to m if and only if j is relatively prime to m. Therefore, since the list $0,1, \ldots, m-1$ contains exactly $\varphi(m)$ elements relatively prime to m, then the list $r_{1}, r_{2}, \ldots, r_{m}$ contains exactly $\varphi(m)$ elements relatively prime to m, as calimed.

Theorem 9.2

Theorem 9.2. Euler's φ-function is multiplicative. Proof. Suppose $(m, n)=1$. Then consider the numbers from 1 to $m n$ written consecutively in columns as:

1	$m+1$	$2 m+1$	\cdots	$(n-1) m+1$
2	$m+2$	$2 m+2$	\cdots	$(n-1) m+2$
3	$m+3$	$2 m+3$	\cdots	$(n-1) m+3$

$m \quad 2 m \quad 3 m$ $m n$.

Suppose $(m, r)=d$ where $d>1$. Since $d \mid m$ and $d \mid r$ then by Lemma 1.2 $d \mid(k m+r)$ for any nonnegative integer k. Notice that the rows in the array are of the form $r m+r 2 m+r \cdots k m+r \cdots(n-1) m+r$.

Theorem 9.2

Theorem 9.2. Euler's φ-function is multiplicative.
Proof. Suppose $(m, n)=1$. Then consider the numbers from 1 to $m n$ written consecutively in columns as:

1	$m+1$	$2 m+1$	\cdots	$(n-1) m+1$
2	$m+2$	$2 m+2$	\cdots	$(n-1) m+2$
3	$m+3$	$2 m+3$	\cdots	$(n-1) m+3$
\vdots	\vdots	\vdots	\ddots	\vdots
m	$2 m$	$3 m$	\cdots	$m n$.

Suppose $(m, r)=d$ where $d>1$. Since $d \mid m$ and $d \mid r$ then by Lemma 1.2 $d \mid(k m+r)$ for any nonnegative integer k. Notice that the rows in the array are of the form $r m+r 2 m+r \cdots k m+r \cdots(n-1) m+r$. So if $d>1$ divides m and r, then d divides every entry in row r. Hence, any positive number relatively prime to $m n$ (and less than $m n$) must appear in the array above in a row for which the number is relatively prime to the first entry in that row.

Theorem 9.2

Theorem 9.2. Euler's φ-function is multiplicative.
Proof. Suppose $(m, n)=1$. Then consider the numbers from 1 to $m n$ written consecutively in columns as:

1	$m+1$	$2 m+1$	\cdots	$(n-1) m+1$
2	$m+2$	$2 m+2$	\cdots	$(n-1) m+2$
3	$m+3$	$2 m+3$	\cdots	$(n-1) m+3$
\vdots	\vdots	\vdots	\ddots	\vdots
m	$2 m$	$3 m$	\cdots	$m n$.

Suppose $(m, r)=d$ where $d>1$. Since $d \mid m$ and $d \mid r$ then by Lemma 1.2 $d \mid(k m+r)$ for any nonnegative integer k. Notice that the rows in the array are of the form $r m+r 2 m+r \cdots k m+r \cdots(n-1) m+r$. So if $d>1$ divides m and r, then d divides every entry in row r. Hence, any positive number relatively prime to $m n$ (and less than $m n$) must appear in the array above in a row for which the number is relatively prime to the first entry in that row.

Theorem 9.2 (continued 1)

Proof (continued). Now the numbers in the r th row of the array are $r m+r 2 m+r \cdots k m+r \cdots(n-1) m+r$. We first claim that when r and m are relatively prime, these numbers have least residues modulo n of some permutation of $0,1,2, \ldots,(n-1)$. To verify this, it is sufficient to show that no two of the numbers in the r th row are congruent modulo n. Suppose $k m+r \equiv j m+r(\bmod n)$ with $0 \leq k<n$ and $0 \leq j<n$. Then $k m \equiv j m(\bmod n)$, and since $(m, n)=1$ (by our initial hypothesis in the proof) then we have $k \equiv j(\bmod n)$ by Theorem 4.4. Since both k and j are between 0 and $n-1$, then we must have $k=j$. That is, with $0 \leq k<n$ and $0 \leq j<n$, if $k m+r \equiv j m+r(\bmod n)$ then $k=j$. The contrapositive of this result is that (with $0 \leq k<n$ and $0 \leq j<n$) if $k \neq j$ then $k m+r \not \equiv j m+r(\bmod n)$. Therefore no two elements of the r th row are congruent modulo n and hence the least residues modulo n of the numbers in the r th row are some permutation of $0,1,2, \ldots,(n-1)$, as claimed.

Theorem 9.2 (continued 1)

Proof (continued). Now the numbers in the r th row of the array are $r m+r 2 m+r \cdots k m+r \cdots(n-1) m+r$. We first claim that when r and m are relatively prime, these numbers have least residues modulo n of some permutation of $0,1,2, \ldots,(n-1)$. To verify this, it is sufficient to show that no two of the numbers in the r th row are congruent modulo n. Suppose $k m+r \equiv j m+r(\bmod n)$ with $0 \leq k<n$ and $0 \leq j<n$. Then $k m \equiv j m(\bmod n)$, and since $(m, n)=1$ (by our initial hypothesis in the proof) then we have $k \equiv j(\bmod n)$ by Theorem 4.4. Since both k and j are between 0 and $n-1$, then we must have $k=j$. That is, with $0 \leq k<n$ and $0 \leq j<n$, if $k m+r \equiv j m+r(\bmod n)$ then $k=j$. The contrapositive of this result is that (with $0 \leq k<n$ and $0 \leq j<n$) if $k \neq j$ then $k m+r \not \equiv j m+r(\bmod n)$. Therefore no two elements of the r th row are congruent modulo n and hence the least residues modulo n of the numbers in the r th row are some permutation of $0,1,2, \ldots,(n-1)$, as claimed.

Theorem 9.2 (continued 2)

Proof (continued). Since the least residues modulo n of the numbers in the r th row are some permutation of $0,1,2, \ldots,(n-1)$, then by Corollary 9.A we have that the r th row of the array (when r and m are relatively prime) contains exactly $\varphi(n)$ elements relatively prime to n. By Lemma 9.3 (where r and m are relatively prime), every element in the r th row of the array, $r m+r 2 m+r \cdots k m+r \cdots(n-1) m+r$, is relatively prime to m. Such an r th row contains exactly $\varphi(n)$ elements that are relatively prime to both m and n, and hence are relatively prime to $m n$ (this follows, say, from Euclid's Lemma [Lemma 2.5] which states that if prime p divides $a b$ then either $p \mid a$ or $p \mid b)$. We have seen that a positive number relatively prime to $m n$ (and less than $m n$) appears in the r th row only when r and m are relatively prime (there are $\varphi(m)$ such rows), and each such row contains $\varphi(n)$ entries relatively prime to $m n$. So the array contains $\varphi(m) \varphi(n)$ elements relatively prime to $m n$. That is, $\varphi(m n)=\varphi(m) \varphi(n)$ and φ is multiplicative, as claimed.

Theorem 9.2 (continued 2)

Proof (continued). Since the least residues modulo n of the numbers in the r th row are some permutation of $0,1,2, \ldots,(n-1)$, then by Corollary 9.A we have that the r th row of the array (when r and m are relatively prime) contains exactly $\varphi(n)$ elements relatively prime to n. By Lemma 9.3 (where r and m are relatively prime), every element in the r th row of the array, $r m+r 2 m+r \cdots k m+r \cdots(n-1) m+r$, is relatively prime to m. Such an r th row contains exactly $\varphi(n)$ elements that are relatively prime to both m and n, and hence are relatively prime to $m n$ (this follows, say, from Euclid's Lemma [Lemma 2.5] which states that if prime p divides $a b$ then either $p \mid a$ or $p \mid b)$. We have seen that a positive number relatively prime to $m n$ (and less than $m n$) appears in the r th row only when r and m are relatively prime (there are $\varphi(m)$ such rows), and each such row contains $\varphi(n)$ entries relatively prime to $m n$. So the array contains $\varphi(m) \varphi(n)$ elements relatively prime to $m n$. That is, $\varphi(m n)=\varphi(m) \varphi(n)$ and φ is multiplicative, as claimed.

Theorem 9.3

Theorem 9.3. If n has a prime-power decomposition given by $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, then
$\varphi(n)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)$.
Proof. Since φ is multiplicative, then Theorem 7.5 implies that

$$
\varphi(n)=\varphi\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)=\varphi\left(p_{1}^{e_{1}}\right) \varphi\left(p_{2}^{e_{2}}\right) \cdots \varphi\left(p_{k}^{e_{k}}\right) .
$$

By Lemma 9.2, $\varphi\left(p_{i}^{e_{i}}\right)=p_{i}^{e_{i}-1}\left(p_{i}-1\right)$ for each $1 \leq i \leq k$, and the claim follows.

Theorem 9.3

Theorem 9.3. If n has a prime-power decomposition given by $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, then
$\varphi(n)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)$.
Proof. Since φ is multiplicative, then Theorem 7.5 implies that

$$
\varphi(n)=\varphi\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)=\varphi\left(p_{1}^{e_{1}}\right) \varphi\left(p_{2}^{e_{2}}\right) \cdots \varphi\left(p_{k}^{e_{k}}\right)
$$

By Lemma 9.2, $\varphi\left(p_{i}^{e_{i}}\right)=p_{i}^{e_{i}-1}\left(p_{i}-1\right)$ for each $1 \leq i \leq k$, and the claim follows.

Theorem 9.4

Theorem 9.4. If $n \geq 1$, then $\sum_{d \mid n} \varphi(d)=n$.
Proof. Let positive integer n be given. For the set of integers $S=\{1,2, \ldots, n\}$, define the set C_{d} (where $1 \leq d \leq n$) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_{d}$ if and only if $(m, n)=d$. But $(m, n)=d$ if and only if $(m / d, n / d)=1$ by Theorem 1.1. So $m \in C_{d}$ if and only if m / d is relatively prime to n / d.

Theorem 9.4

Theorem 9.4. If $n \geq 1$, then $\sum_{d \mid n} \varphi(d)=n$.
Proof. Let positive integer n be given. For the set of integers $S=\{1,2, \ldots, n\}$, define the set C_{d} (where $1 \leq d \leq n$) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_{d}$ if and only if $(m, n)=d$. But $(m, n)=d$ if and only if $(m / d, n / d)=1$ by Theorem 1.1. So $m \in C_{d}$ if and only if m / d is relatively prime to n / d. The number of positive integers less than or equal to n / d and relatively prime to n / d is, by definition, $\varphi(n / d)$. So the number of elements in C_{d} is $\varphi(n / d)$. Since each element of $S=\{1,2, \ldots, n\}$ is in exactly one C_{d}, then $n=\sum_{d \mid n} \varphi(n / d)$. Now if $d \mid n$, then $n=d c$ for some c where $c \mid n$ (and $c=n / d$). So summing $\varphi\left(n / d^{\prime}\right)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n / d)=\sum_{c \mid n} \varphi(c)$. So $n=\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d)$, as claimed.

Theorem 9.4

Theorem 9.4. If $n \geq 1$, then $\sum_{d \mid n} \varphi(d)=n$.
Proof. Let positive integer n be given. For the set of integers $S=\{1,2, \ldots, n\}$, define the set C_{d} (where $1 \leq d \leq n$) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_{d}$ if and only if $(m, n)=d$. But $(m, n)=d$ if and only if $(m / d, n / d)=1$ by Theorem 1.1. So $m \in C_{d}$ if and only if m / d is relatively prime to n / d. The number of positive integers less than or equal to n / d and relatively prime to n / d is, by definition, $\varphi(n / d)$. So the number of elements in C_{d} is $\varphi(n / d)$. Since each element of $S=\{1,2, \ldots, n\}$ is in exactly one C_{d}, then $n=\sum_{d \mid n} \varphi(n / d)$. Now if $d \mid n$, then $n=d c$ for some c where $c \mid n$ (and $c=n / d$). So summing $\varphi(n / d)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n / d)=\sum_{c \mid n} \varphi(c)$. So $n=\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d)$, as claimed.

