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Section 10. Primitive Roots

Note. In the previous section, Section 9. Euler’s Theorem and Function we saw:

Theorem 9.1. Euler’s Theorem. Suppose that m ≥ 1 and (a,m) = 1. Then

aϕ(m) ≡ 1 (mod m).

Here ϕ(m) is Euler’s ϕ-function which is, for m is a positive integer, the number

of positive integers less than or equal to m and relatively prime to m.

Note. If (a,m) = 1 then there is positive integer t such that at ≡ 1 (mod m);

namely, t = ϕ(m). Of course there are infinitely many choices for t, since we could

take t = kϕ(m) where k is any positive integer: akϕ(m) ≡ (aϕ(m))k ≡ 1k ≡ 1 (mod

m). We are particularly interested in the smallest value of t such that at ≡ 1 (mod

m).

Definition. If (a,m) = 1 then the order of a modulo m is the smallest positive

integer t such that at ≡ 1 (mod m).

Note. Of course a = 1 is of order 1 for all m. When a = m − 1 we have

a2 ≡ (m − 1)2 ≡ m2 − 2m + 1 ≡ 1 (mod m) so that a = m − 1 has order 2. For

m = 7 we have ϕ(m) = ϕ(7) = 6, and with a = 2 we have a3 ≡ 23 ≡ 1 (mod 7) so

that the order of 2 modulo 7 is 3. So there are ample examples that the order of a

modulo m can be less than ϕ(m). We will see below that if a is of order t modulo

m then t |ϕ(m); see Theorem 10.2. The next result shows that the only exponents

on a that produce a product of 1 modulo m are multiples of the order of a (from

which Theorem 10.2 will easily follow).

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-9.pdf
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Theorem 10.1. Suppose that (a,m) = 1 and a has order t modulo m. Then

an ≡ 1 (mod m) if and only if n is a multiple of t.

Note. From Theorem 10.1, we easily get the following.

Theorem 10.2. If (a,m) = 1 and a has order t (mod m), then t |ϕ(m).

Exercise 10.2. What order can an integer have modulo 9? Find an example of

each.

Solution. Since 1, 2, 4, 5, 7, 8 are relatively prime to 9, then ϕ(9) = 6. Since the

divisors of ϕ(9) = 6 are 1, 2, 3, and 6, the possible orders by Theorem 10.2 are also

1, 2, 3, and 6 . By the definition of “order,” we see that we only consider elements

a that are relatively prime with 9. Element a = 1 is of order 1 modulo 9. Element

a = 2 is of order 6 modulo 9 since 26 = 64 ≡ 1 (mod 9). Element a = 4 is of order

3 modulo 9 since 43 = 64 ≡ 1 (mod 9). Element a = 5 is of order 6 modulo 9 since

56 = 15,625 ≡ 1 (mod 9). Element a = 7 is of order 3 modulo 9 since 73 = 343 ≡ 1

(mod 9). Element a = 8 is of order 2 modulo 9 since 82 = 64 ≡ 1 (mod 9).

So an element of order 1 is a = 1 , an element of order 2 is a = 8 , elements of

order 3 are a = 4 and a = 7 , and elements of order 6 are a = 2 and a = 5 . �

Note. We now explore odd prime divisors of powers of a, minus 1.
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Theorem 10.3. If p and q are odd primes and q | ap − 1, then either q | a − 1 or

q = 2kp+ 1 for some integer k.

Note. With a = 2 (so that a− 1 = 1) in Theorem 10.3, we cannot have q | a− 1.

So if q | 2p − 1 then we must have that q = 2kp+ 1 for some k. This is summarized

in the next corollary.

Corollary 10.A. Any prime divisor of 2p−1 is of the form 2kp+1 for some integer

k.

Note. We now return to a consideration of powers of a.

Theorem 10.4. If the order of a modulo m is t, then ar ≡ as (mod m) if and only

if r ≡ s (mod t).

Definition. For (a,m) = 1, if a is a least residue and the order of a modulo m is

ϕ(m), then a is a primitive root of m.

Note. The next theorem lets us use primitive roots to generate the ϕ(m) positive

integers less than m that are relatively prime to m.
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Theorem 10.5. If g is a primitive root of m, then the least residues modulo m of

g, g2, g3, . . . , gϕ(m) are a permutation of the ϕ(m) positive integers less than m and

relatively prime to it.

Note. To illustrate Theorem 10.5, with m = 9 and a = 2 we have that a is a

primitive root of m since ϕ(9) = 6 and 21 ≡ 2 (mod 9), 22 ≡ 4 (mod 9), 23 ≡ 8

(mod 9), 24 ≡ 7 (mod 9), 25 ≡ 5 (mod 9), and 26 ≡ 1 (mod 9). Now 21 ≡ 2 (mod

9), 22 ≡ 4 (mod 9), 23 ≡ 8 (mod 9), 24 ≡ 7 (mod 9), 25 ≡ 5, and 26 ≡ 1 and these

are the positive integers less than m = 9 that are relatively prime to m = 9.

Note. Not every integer has a primitive root. For example, with m = 8 we have

ϕ(8) = 4, but the order of a = 1 is 1, a = 3 has order 2 since 32 ≡ 1 (mod 8), a = 5

has order 2 since 52 ≡ 1 (mod 8), and a = 7 has order 2 since 72 ≡ 1 (mod 8);

remember, we only consider those numbers less than m = 8 and relatively prime to

m = 8. Our next goal is to show that each prime number has a primitive root (see

Theorem 10.6). The proof requires three lemmas and the existence of a primitive

root of a prime is given, though a technique of finding the primitive root is not

part of the proof. Dudley comments (see page 77): “For these reasons, you do not

lose too much if you take the result on faith.”

Lemma 10.1. Suppose that a has order t modulo m. Then ak has order t modulo

m if and only if (k, t) = 1.
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Corollary 10.B. Suppose that g is a primitive root of prime p. Then the least

residue of gk is a primitive root of p if and only if (k, p− 1) = 1.

Note. The next result is reminiscent of the Fundamental Theorem of Algebra (that

is, an n degree polynomial with complex coefficients has exactly n zeros, counting

multiplicity). However, in considering a polynomial equivalence with an n-degree

polynomial, we do not get exactly n zeros but instead at most n zeros.

Lemma 10.2. If f is a polynomial of degree n, then f(x) ≡ 0 (mod p) has at most

n solutions.

Note. Lemma 10.2 does not hold if the modulus is not prime. For example, the

equation x2 + x ≡ 0 (mod 6) has more than n = 2 solutions, namely 0, 2, 3, and

5. This is because there are “zero divisors” modulo 6. Namely, 2 · 3 ≡ 0 (mod 6),

yet neither 2 nor 3 is 0 (mod 6). For more on zero divisors, see my online notes

for Introduction to Modern Algebra (MATH 4127/5127) on Section IV.19. Integral

Domains; notice Definition 19.2.

Lemma 10.3. If d | p− 1, then xd ≡ 1 (mod p) has exactly d solutions.

Note. With Lemmas 10.1 to 10.3, we now have the equipment to prove that every

prime number has a primitive root. In fact, we can also quantify the number of

primitive roots.

https://faculty.etsu.edu/gardnerr/4127/notes/IV-19.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IV-19.pdf
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Theorem 10.6. Every prime p has ϕ(p− 1) primitive roots.

Note. In the proof of Theorem 10.6, we introduced function ψ(t) as the number

of integers 1, 2, . . . , p− 1 that have order t mod p. We showed that ψ(t) = ϕ(t) for

each t a divisor of p− 1. Therefore, we have also proved the following.

Corollary 10.C. If p is a prime and t | (p− 1), then the number of least residues

modulo p with order t is ϕ(t).

Note. We know by Theorem 10.6 that every prime has a primitive root. It is

reasonable to consider other values of m for which a primitive root mod m exist.

Such m are classified in the Primitive Root Theorem. A (lengthy) proof of it can be

found in Amin Witno’s Theory of Numbers online book; see his Chapter 5 Primitive

Roots.

Theorem 10.A. The Primitive Root Theorem.

Suppose m ≥ 2. Then primitive roots mod m exist if and only if m is 2 or 4 or of

the form pα or 2pα for some odd prime p and some α ≥ 1. In particular, primitive

roots mod p exist for every prime number p.

http://www.witno.com/numbers/
http://witno.com/philadelphia/notes/won5.pdf
http://witno.com/philadelphia/notes/won5.pdf
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Note. Even though the Primitive Root Theorem lets us classify which numbers

have primitive roots, it does not tell us how to find the primitive roots. Dudley

comments (page 80): “No method is known for predicting what will be the smallest

positive primitive root of a given prime p, nor is there much known about the

distribution of the ϕ(p− 1) primitive roots among the least residues modulo p.”

Note. Recall that Wilson’s Theorem (Theorem 6.2) states: Positive integer p is

prime if and only if (p − 1)! ≡ −1 (mod p). We can use primitive roots to easily

prove one of the implications of Wilson’s Theorem

Theorem 10.B. If p is an odd prime then (p− 1)! ≡ −1 (mod p).
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