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Section 11. Quadratic Congruences

Note. In this section we consider congruences of the form Ax2 +Bx+C ≡ 0 (mod

m), where we require that m is an odd prime and A 6≡ 0 (mod m).

Note. With p prime, for any A 6≡ 0 (mod p) there is A′ such that AA′ ≡ 1 (mod

p) by Lemma 5.2. So the quadratic congruence Ax2 + Bx + C ≡ 0 (mod p) can

always be converted to a quadratic congruence of the form x2+(A′B)x+(A′C) ≡ 0

(mod p).

Note. If A′B is even, then we can complete the square in x2 +(A′B)x+(A′C) ≡ 0

(mod p) to get

x2 + (A′B)x +

(
A′B

2

)2

≡
(

A′B

2

)2

− (A′C) (mod p),

or (
x +

A′B

2

)2

≡
(

A′B

2

)2

− (A′C) (mod p).

If A′B is odd, we can change it to p + (A′B), which is even and of course p ≡ 0

(mod p), and then complete the square. This gives x2 + (A′B + p)x + (A′C) ≡ 0

(mod p), from which we find(
x +

A′B + p

2

)2

≡
(

A′B

2
+ p

)2

− (A′C) (mod p).

Independent of the parity of A′B, we get an equivalent congruence of the form

y2 ≡ a (mod p). So if we can solve this congruence, then we can solve any quadratic

congruence (mod p); we still require p 6= 2.
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Exercises 11.1, 11.2, and 11.3. Consider the quadratic congruence 2x2+3x+1 ≡

0 (mod 5). Convert is to a quadratic with x2 coefficient 1. Then change the

congruence into the form y2 ≡ a (mod p). Find all solutions.

Solution. For A = 2 and p = 5, we need A′ = 3 since A′A = 2 · 3 ≡ 1

(mod 5). So the original congruence becomes 3 · (2x2 + 3x + 1) ≡ 0 (mod 5)

or x2 + 4x + 3 ≡ 0 (mod 5) . Since A′B ≡ 4 (mod 5) is even, then A′B/2 ≡ 2

(mod 5) and we complete the square to get (x + (2))2 ≡ (2) − 1 ≡ 1 (mod 5), or

y2 ≡ (x + 2)2 ≡ 1 (mod 5) . By inspection, we see that the possible values of y are

1 or 4 (mod 5), so that the values of x are 2 or 4 (mod 5) . �

Note. Continuing along similar lines of the previous exercises, notice that not all

quadratic congruences have solutions. With p = 5, we have for the least residues

modulo 5 that 00 ≡ 0 (mod 5), 12 ≡ 42 ≡ 1 (mod 5), and 22 ≡ 32 ≡ 4 (mod 5). So

the quadratic congruence x2 ≡ a (mod 5) has no solution for a = 2 or 3. Also, there

is one solution when a = 0, and two solutions for a = 1 or 4. We would expect two

solutions to a quadratic (by the Fundamental Theorem of Algebra, say), and we

see that if r2 ≡ 2 (mod p), then (−r)2 ≡ (p− r)2 ≡ p2−2pr + r2 ≡ r2 ≡ a (mod p).

So if r is a least residue modulo p that is a solution to x2 ≡ a (mod p), then so is

least residue p− r; this gives two different solutions unless r ≡ 0 (mod p) in which

case p− r ≡ r ≡ 0 (mod p). The next theorem classifies the number of solutions.

Theorem 11.1. Suppose that p is an odd prime. If p - a, then x2 ≡ a (mod p)

has exactly two (least residue) solutions or no solutions.
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Note. The condition that p if prime is necessary in Theorem 11.1. For example,

the quadratic congruence x2 ≡ 1 (mod 8) has more than two solutions, namely 1,

3, 5, and 7.

Note. As shown in the proof of Theorem 11.1, if r is a solution to x2 ≡ a (mod

p) then p − r (where r 6≡ p − r (mod p)) is also a solution, and these are the only

solutions. So we can pair together the least residues 1, 2, 3, . . . , p − 1 in such a

way that they give solutions to x2 ≡ a (mod p), with each pair associated with a

different value of a. So for the possible values 1, 2, 3, . . . , p − 1 of a, half of them

are associated with quadratic congruences that have two solutions, and the other

half are associated with quadratic congruences that have no solutions. That is, the

quadratic congruence x2 ≡ a (mod p) has two solutions for (p− 1)/2 of the values

of a, and has no solutions for the other (p − 1)/2 values of a. For example, with

p = 7 the various values of x give:

x 1 2 3 4 5 6

x2 (mod 7) 1 4 2 2 4 1

Notice the values of x2 (mod 7) are symmetric in the table with respect to p/2 =

7/2 = 3.5, because the value of r2 is the same as the value of (p− r)2. The values

of a here for which two solutions exist are 1, 2, and 4. The next theorem gives

a condition on a that allows us to determine if the quadratic congruence has two

solutions or no solutions.
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Theorem 11.2. Euler’s Criterion.

If p is an odd prime and p - a, then x2 ≡ a (mod p) has a solution or no solution

depending on whether a(p−1)/2 ≡ 1 (mod p), or a(p−1)/2 ≡ −1 (mod p), respectively.

Definition. If x2 ≡ a (mod m) has a solution, then a is a quadratic residue (mod

m). If x2 ≡ a (mod m) has no solution, then a is a quadratic nonresidue (mod

m). We similarly consider xn ≡ a (mod m) and define an nth residue and nth

nonresidue.

Problem 11.2(b). Does x2 ≡ 15 (mod 31) have a solution?

Solution. We apply Euler’s criterion, and consider a(p−1)/2 = 15(31−1)/2 = 1515

(mod 31). We have 152 = 225 ≡ 8 (mod 31), 154 ≡ 82 ≡ 64 ≡ 2 (mod 31),

158 ≡ 22 ≡ 4 (mod 31), and 157 ≡ 154 · 152 · 15 ≡ 2 · 8 · 15 ≡ 240 ≡ 23 (mod 31).

So 1515 ≡ 158 · 157 ≡ 4 · 23 ≡ 92 ≡ −1 (mod 31). Therefore, by Euler’s criterion

(Theorem 11.2), x2 ≡ 15 (mod 31) does not have a solution . �

Note. Euler’s criterion could be computationally involved for large numbers. We

present an easier technique below. It is based on the notation we now introduce.

Definition. The Legendre symbol, (a/p) =

(
a

p

)
, where p is an odd prime and

p - a is

(a/p) =

 1 if a is a quadratic residue (mod p)

−1 if a is a quadratic nonresidue (mod p).
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Note. It would be easy to confuse the Legendre symbol with some type of divi-

sion. We shall use context and verbiage to clarify the difference between Legendre

symbols and regular division.

Exercise 11.8. What is (4/5)? (4/7)? (4/p) for any odd prime p?

Solution. Since 22 ≡ 4 (mod 5), then (4/5) = 1 . Since 22 ≡ 4 (mod 7), then

(4/7) = 1 . For p = 3, 11 ≡ 4 (mod 3), so (4/3) = 1 . Since 22 ≡ 4 (mod p), for

odd prime p ≥ 5, then (4/p) = 1 for such p. �

Note. To apply the Legendre symbol to large numbers, we use the following

properties that allow us to simplify computations.

Theorem 11.3. The Legendre symbol has the properties

(A) if a ≡ b (mod p), then (a/p) = (b/p),

(B) if p - a, then (a2/p) = 1, and

(C) if p - a and p - b, then (ab/p) = (a/p)(b/p).

Note. By considering the possible values of the Legendre symbol for a and b,

we can paraphrase Theorem 11.3(C) as: the product of two residues is a residue,

the product of two nonresidues is a residue, and the product of a residue and a

nonresidue is a nonresidue.
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Note. The historical comments in this note are based on the first few pages

of Franz Lemmermeyer ’s Reciprocity Laws: From Euler to Eisenstein (Springer

Monographs in Mathematics), Springer (2000). Several pages of the book can be

viewed on Google Books (accessed 3/12/2022); you might find several pages also

available on the Amazon.com page for this book. The first to study the idea of

reciprocity is French amateur mathematician Pierre de Fermat (August 17, 1601–

January 12, 1665); this is maybe not surprising, given the prominent role of Fer-

mat’s “Little” Theorem (Theorem 6.1) in the proof of Euler’s Criterion (Theorem

11.2). Fermat’s interest in quadratic reciprocity arose in his study of numbers

can be written as a sum of two squares (we explore this in Section 18. Sums

of Two Squares; notice Lemma 18.4). He mentions this problem in a letter to

Marin Mersenne (we mentioned correspondence between these two in Section 8.

Perfect Numbers). Leonhard Euler (April 15, 1707–September 18, 1783) stated a

claim equivalent to the Quadratic Reciprocity Theorem, but was unable to prove

it in its entirety; his claim appeared in 1783 after his death in Observationes circa

divisionem quadratorum per numeros primes, Opera Omnia I - 3 (1783). Adrie-

Marie Legendre (September 18, 1752–January 10, 1833) published a version of the

Quadratic Reciprocity Theorem in 1788 by proving eight theorems for various val-

ues of two odd primes modulo 4 (in his Recherches d’analyse indéterminée, Histoire

de l’Academie Royale des Sciences de Paris (1785), 465–559, Paris 1788). In 1789,

Legendre introduces his “Legendre symbol” in Essai sur la théorie des nombres,

1st ed. Paris 1798. In this, he also proved “Legendre’s Lemma”: For each prime

a ≡ 1 (mod 4), there exists prime b ≡ 3 (mod 4) such that the Legendre symbol

(1/b) = −1. Carl F. Gauss (April 20, 1777–February 23, 1855) was the first to

https://books.google.com/books?id=EwjpPeK6GpEC
https://www.amazon.com/
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-18.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-18.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-8.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-8.pdf
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prove our modern version of the Quadratic Reciprocity Theorem. He published six

proofs, and two more were found in his unpublished papers. He included a proof

in his first 1801 edition of Disquisitiones Arithmeticae [“Investigations in Arith-

metic”]. In this book, Gauss covers elementary number theory and some of, what

today would be called, algebraic number theory. It is in this work that the congru-

ence symbol, ≡, is introduced. The seven sections of Disquisitiones Arithmeticae

are: I. Congruent Numbers in General, II. Congruences of the First Degree, III.

Residues of Powers, IV. Congruences of the Second Degree, V. Forms and Indeter-

minate Equations of the Second Degree, VI. Various Applications of the Preceding

Discussions, and VII. Equations Defining Sections of a Circle. In fact, this book

is still in print in English as: Carl Friedrich Gauss Disquisitiones Arithmeticae,

English Edition, translated by Arthur A. Clarke (revised by William Waterhouse),

NY: Springer-Verlag (1986) (originally Yale University Press, 1966).

Note. The Quadratic Reciprocity Theorem relates the Legendre symbols (p/q) and

(q/p) for given odd primes p and q. Hence, it relates the solvability of quadratic

congruences x2 ≡ p (mod q) and x2 ≡ q (mod p). It turns out to simply involve

the values of p and q modulo 4. We now state the Quadratic Reciprocity Theorem

and use it, but delay a proof until the next section.

Theorem 11.4. The Quadratic Reciprocity Theorem.

If p and q are odd primes and p ≡ q ≡ 3 (mod 4), then (p/q) = −(q/p). Otherwise,

(p/q) = (q/p).
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Note 11.A. Consider the quadratic congruence x2 ≡ 85 (mod 97). To see if this

has a solution, we just need to compute the Legendre symbol (85/97). By Theorem

11.3(C), we have (85/97) = ((17 · 5)/97) = (17/97)(5/97). Now 97 ≡ 1 (mod 4),

so by the Quadratic Reciprocity Theorem (Theorem 11.4), (17/97) = (97/17), and

since 97 ≡ 12 (mod 17) then by Theorem 11.3(A) (97/17) = (12/17). So

(12/17) = ((4 · 3)/17) = (4/17)(3/17) by Theorem 11.3(C)

= (3/17) by Theorem 11.3(B), since 22 = 4 and so (4/17) = 1

= (17/3) by Quadratic Reciprocity Theorem (Theorem 11.4)

= (2/3) by Theorem 11.3(A), because 17 ≡ 2 (mod 3)

= −1 since x2 ≡ 2 (mod 3) has no solution.

For the other factor,

(5/97) = (97/5) by Quadratic Reciprocity Theorem (Theorem 11.4)

= (2/5) by Theorem 11.3(A), because 97 ≡ 2 (mod 5)

= −1 since x2 ≡ 2 (mod 5) has no solution.

So (85/97) = (17/97)(5/97) = (−1) · (−1) = 1 and, by the definition of Legendre

symbol, the congruence x2 ≡ 85 (mod 97) has a solution.

Theorem 11.5. If p is an odd prime, then

(−1/p) = 1 if p ≡ 1 (mod 4), and (−1/p) = −1 if p ≡ 3 (mod 4).
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Note. We can use Theorem 11.5 to compute (85/97) more directly than we did in

Note 11.A. We have

(85/97) = (−12/97) by Theorem 11.3(A), because − 12 ≡ 85 (mod 97)

= (−1/97)(4/97)c(3/97) by Theorem 11.3(C)

= (−1/97)(3/97) by Theorem 11.3(B), since 22 = 4 and so (4/17) = 1

= (−1/97)(97/3) by Quadratic Reciprocity Theorem (Theorem 11.4)

= (−1/97)(1/3) by Theorem 11.3(A), because 97 ≡ 1 (mod 3)

= (−1/97) since x2 ≡ 1 (mod 3) has a solution and (1/3) = 1

= 1 by Theorem 11.5, since 97 ≡ 1 (mod4).

Note. Notice that Theorem 11.5 says that we can find square roots of −1 modulo

p when p ≡ 1 (mod 4). In fact, by Theorem 11.1 we know that under these

conditions, there are two square roots of −1. The next result (which we prove in

the next section) gives us conditions under which 2 has a square root.

Theorem 11.6. If p is an odd prime, then

(2/p) = 1 if p ≡ 1 or 7 (mod 8), and (2/p) = −1 if p ≡ 2 or 5 (mod 8).

Note. Theorem 11.3, 11.4 (Quadratic Reciprocity Theorem), 11.5, and 11.6 allow

us to evaluate any Legendre symbol. Theorems 11.3 and 11.4 let us “reduce” the

symbols, and Theorems 11.5 and 11.6 allow us to evaluate the reduced symbols. For
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example, consider the Legendre symbol (3201, 8191). First, since 3201 = 3·11·97, so

by Theorem 11.3(C) we have (3201, 8191) = (3/8191)(11/8191)(97/8191). Next, by

the Quadratic Reciprocity Theorem and Theorem 11.3(A) (since 8191 ≡ 1 (mod

3)) we have: (3, 8191) = −(8191/3) = −(1/3) = −(1) = −1. Similarly, by the

Quadratic Reciprocity Theorem, Theorem 11.3(A) (since 8191 ≡ 7 (mod 11)), the

Quadratic Reciprocity Theorem (again), and Theorem 11.3(A) (again, this time

since 11 ≡ 4 (mod 7)), and Theorem 11.3(B) (which implies that (4/7) = 1) we

have:

(11, 8191) = −(8191, 11) = −(7/11) = −(−(11/7)) = (11/7) = (4/7) = 1.

Finally, by the Quadratic Reciprocity Theorem, Theorem 11.3(A) (since 8191 ≡

43 (mod 97)), the Quadratic Reciprocity Theorem (again), and Theorem 11.3(A)

(again, this time since 97 ≡ 11 (mod 43)), the Quadratic Reciprocity Theorem (a

third time), Theorem 11.3(A) (yet again, this time since 43 ≡ −1 (mod 11)), and

Theorem 11.5 (which implies that (−1/11) = −1 since 11 ≡ 3 (mod 4)) we have:

(97/8191) = (8191/97) = (43/97) = (97/43) = (11/43)

= −(43/11) = −(−1/11) = −(−1) = 1.

Therefore,

(3201, 8191) = (3/8191)(11/8191)(97/8191) = (−1)(1)(1) = −1.

There are Legendre symbol calculators online. For example, see EasyCalcula-

tion.com’s Legendre symbol calculator webpage (notice that is shows some of the

intermediate steps; accessed 3/13/2022).
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https://www.easycalculation.com/legendre-symbol.php
https://www.easycalculation.com/legendre-symbol.php

