Section 12. Quadratic Reciprocity

Note. In this section we prove two results stated in the previous section. We prove the Quadratic Reciprocity Theorem (Theorem 11.4/12.4) and Theorem 11.6/12.2 which lets us evaluate the Legendre symbol $(2 / p)$ for odd prime p. The proofs in this section are among the longest in the book.

Note. As discussed in the last section, Carl F. Gauss (April 20, 1777-February $23,1855)$ was the first to prove our modern version of the Quadratic Reciprocity Theorem. He included a proof in his first 1801 edition of Disquisitiones Arithmeticae ["Investigations in Arithmetic"]. So we start with a result by Gauss that will be used in the proofs of both the Quadratic Reciprocity Theorem and Theorem 11.6/12.2.

Theorem 12.1. Gauss's Lemma.

Suppose that p is an odd prime, $p \nmid a$, and there are among the least residues (mod p) of

$$
a, 2 a, 3 a, \ldots,\left(\frac{p-1}{2}\right) a
$$

exactly g that are greater than $(p-1) / 2$. Then $x^{2} \equiv a(\bmod p)$ has a solution or no solution according as g is even or odd. That is, $(a / p)=(-1)^{g}$.

Note. To illustrate Gauss's Lemma (Theorem 12.1), consider $a=5$ and $p=$ 17. We have $(p-1) / 2=((16)-1) / 2=8$, and the multiples of $a=5$ are
$5,10,15,20,25,30,35,40$, which have least residues $(\bmod 17)$ of $5,10,15,3,8,13,1,6$, respectively. Since $g=3$ of these are greater than $(p-1) / 2=8$, then Gauss's Lemma implies that for $a=5$ and $p=17$ we have $(a / p)=(5 / 17)=(-1)^{3}=-1$, so that $a=5$ is a quadratic nonresidue $(\bmod 17)$.

Theorem 12.2. If p is an odd prime, then

$$
(2 / p)=1 \text { if } p \equiv 1 \text { or } 7(\bmod 8), \text { or }(2 / p)=-1 \text { if } p \equiv 3 \text { or } 5(\bmod 8) .
$$

Note. Dudley observes (see page 98): "Not theorem has been proved that will tell which primes 2 is a primitive root of, and it has not even been proved that 2 is a primitive root of infinitely many primes." But we do have the following concerning 2 as a primitive root of some primes.

Theorem 12.3. If p and $4 p+1$ are both primes, then 2 is a primitive root $4 p+1$.

Note. We need one more lemma before giving a proof of the Quadratic Reciprocity Theorem.

Lemma 12.1. If p and q are different odd primes, then

$$
\sum_{k=1}^{(p-1) / 2}\left[\frac{k q}{p}\right]+\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]=\frac{p-1}{2} \cdot \frac{q-1}{2} .
$$

Here, $[\cdot]$ denotes the greatest integer function.

Note. In the previous section, we stated the Quadratic Reciprocity Theorem (Theorem 11.4) as: "If p and q are odd primes and $p \equiv q \equiv 3(\bmod 4)$, then $(p / q)=-(q / p)$. Otherwise, $(p / q)=(q / p) . "$ The statement we now give and prove is equivalent to this original version.

Theorem 12.4. The Quadratic Reciprocity Theorem.

If p and q are odd primes, then $(p / q)(q / p)=(-1)^{(p-1)(q-1) / 4}$.

