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Section 15. Decimals

Note. In this section we return to standard base 10 representations of real numbers.

We consider expressing rational numbers as decimals and determine, for those with

a repeating part, how long the repeating part may be.

Note. We denote the real number

d1

10
+

d2

102 +
d3

103 + · · · =
∞∑

k=1

dk

10k

where 0 ≤ dk < 10 for all k as 0.d1d2d3 · · ·. A bar over part of a decimal will indicate

that this part repeats indefinitely time after time starting with the overlines part

(and this is all that appears in the decimal expansion after the bar is introduced).

For example, 0.0147 = 0.01474747 · · · and 0.9 = 0.999 · · ·. We can convert a decimal

representation with a repeating pattern into a rational number as follows.

Example 15.A. Let x = 0.0147. Then 100x = 1.47, so that

99x = 100x− x = 1.4747− 0.0147 = 1.46.

Therefore, x = 1.46/99 = 146/9900 and we have that 0.0147 = 146/9900. Also,

with x = 0.9 we have 10x = 9.9 and 9x = 10x− x = 9.9− 0.9 = 9, so that x = 1.

Notice that this means that some numbers have two different decimal represen-

tations, since we have 1.0 = 0.9. We can similarly take any terminating decimal

representation and convert it into an infinite repeating decimal representation. For

example, we can write 0.123 as 1.1229.
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Note. The next table gives the repeating part of the reciprocal of the integers 2

through 29, and the length of the repeating part. It suggests a pattern that we will

establish below in Theorem 15.3.

n 1/n Period

2 0.5 0

3 0.3 0

4 0.25 1

5 0.2 0

6 0.16 0

7 0.142857 6

8 0.125 0

9 0.1 1

10 0.1 0

11 0.09 2

12 0.083 1

13 0.076923 6

14 0.0714285 6

15 0.06 1

n 1/n Period

16 0.0625 0

17 0.0588235294117647 16

18 0.05 1

19 0.052631578947368421 18

20 0.05 0

21 0.047619 6

22 0.045 2

23 0.0434782608695652173913 22

24 0.0416 1

25 0.04 0

26 0.0384615 6

27 0.037 3

28 0.03571428 6

29 0.0344827586206896551724137931 28

We see that the integers with reciprocals that have terminating decimal represen-

tations are 2, 4, 5, 8, 10, 16, 20, and 25. Each of these numbers is of the form

2a5b for and nonnegative integers a and b. This is suggestive, since base 10 decimal

representations have the property that 10 = 2 · 5. In fact, this is not a coincidence

as we now show.
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Theorem 15.1. If a and b are any nonnegative integers, then the decimal expan-

sion of 1/(2a5b) terminates.

Note. The converse of Theorem 15.1 also holds, as we now show.

Theorem 15.2. If 1/n has a terminating decimal expansion, then n = 2a5b for

some nonnegative integers a and b.

Note. We see in the table above that length of the repeating part of the reciprocal

of a positive integer n appears to be bounded by n−1; this is particularly suggested

by some of the prime values of n. We now prove that this holds in general.

Theorem 15.3. The length of the decimal period of 1/n is no longer than n− 1.

Exercise 15.5. We now illustrate the proof of Theorem 15.3 by applying the

division algorithm to find the decimal expansion of 1/41.

Solution. First, we have 101 < 41 < 102, so we take t = 1 and then we get

102 = 2 · 41 + 18

10 · 18 = 4 · 41 + 16

10 · 16 = 3 · 41 + 37

10 · 37 = 9 · 41 + 1

10 · 1 = 0 · 41 + 10
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10 · 10 = 2 · 41 + 18.

Now we see that the remainders will start to repeat at this stage. Therefore we

have
1

n
=

d1

10t+1 +
d2

10t+2 +
d3

10t+3 + · · · = 0.024390. �

Note. We can refine Theorem 15.3 when n is relatively prime to 10.

Theorem 15.4. If (n, 10) = 1, then the period of 1/n is r, where r is the smallest

positive integer such that 10r ≡ 1 (mod n).

Note. We now find the period of 1/21. Let n = 21. We consider 10r (mod 21) for

small values of r:

r 1 2 3 4 5 6

10r (mod 21) 10 16 13 4 19 1

So 106 − 1 = 999999 is divisible by 21, and in fact 999999 = 21 · 47619. So, as in

the proof of Theorem 15.4,

1

21
=

47619

999999
=

47619

1000000

(
1− 1

1− 0.000001

)
= (0.047619)(1 + (0.000001) + (0.000001)2 + · · ·) = 0.047619.

Note. So far we have only considered repeated patterns of reciprocals 1/n. The

proof of Theorem 15.4 carries over to general rationals c/n where (c, n) = 1 (that
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is, where c/n is in reduced form). Also, if a fraction is divided by 2 or 5 then its

period is unchanged. In summary, we have the next result.

Theorem 15.5. If n 6= 2a5b and (c, n) = 1, then the period of the decimal

expansion of c/n is r, the smallest positive integer such that 10r ≡ 1 (mod n1),

where n = 2a5bn1 and (n1, 10) = 1.
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