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Section 16 Supplement. The Group of

Pythagorean Triples

Note. In this supplement to Section 16. Pythagorean Triangles, we create a group

P out of the primitive Pythagorean triples. We define a binary operation and show

that P is a free abelian group. The results of this supplement are from: Ernest

Eckert, The Group of Primitive Pythagorean Triangles, Mathematics Magazine,

57(1), 22–27 (January 1984).

Note. In January 1984, I was an undergraduate student in math at Auburn Uni-

versity at Montgomery. I was in the middle of completing an Analysis (MATH

321 and 322) sequence and a Numerical Analysis (MATH 460 and 461) sequence. I

had taken Number Theory (MATH 330) and the Introduction to Modern Algebra

(MATH 331 and 332) sequence during the previous academic year. I was mildly

fascinated that one could take Pythagorean triples (from number theory) and make

them elements of a group (from modern algebra). This supplement will assume a

bit of knowledge of the structure and properties of groups, as covered in ETSU’s

Introduction to Modern Algebra (for introduction to the concept of a group; this

is also briefly covered Mathematical Reasoning [MATH 3000] in Section 6.1. Op-

erations) and Introduction to Modern Algebra 2 (especially Section VII.38. Free

Abelian Groups).

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-16.pdf
https://www.aum.edu/
https://www.aum.edu/
https://faculty.etsu.edu/gardnerr/4127/notes.htm
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-1.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-1.pdf
https://faculty.etsu.edu/gardnerr/4127/notes2.htm
https://faculty.etsu.edu/gardnerr/4127/notes/VII-38.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VII-38.pdf
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Note/Definition. Recall that three positive integers a, b, c which are lengths of the

sides of a right triangle determine a Pythagorean triple (a, b, c) when a2 + b2 = c2.

If a, b, c share no common divisor (that is, if a, b, c is a fundamental solution to

the equation x2 + y2 = z2), then we call (a, b, c) a primitive Pythagorean triple

(or the lengths of the sides of a primitive Pythagorean triangle). Notice that we

are treating Pythagorean triples as ordered triples so, for example, we distinguish

between (3, 4, 5) and (4, 3, 5).

Definition. We define an equivalence relation on the set of all Pythagorean triples

as

(a1, b1, c1) ≡ (a2, b2, c2) if and only if a1/a2 = b1/b2 = c1/c2 ∈ N

or a2/a1 = b2/b1 = c2/c1 ∈ N.

That is, two Pythagorean triples are equivalent if and only if one is a positive

integer multiple of the other. Notice that each equivalence class contains exactly

one primitive Pythagorean triple. We denote an equivalence class as the unique

primitive Pythagorean triple in the equivalence class. Let P denote the set of all

equivalence classes of Pythagorean triples.

Note. We have, for example, that (3, 4, 5) ≡ (6, 8, 10) ≡ (9, 12, 15), but (3, 4, 5) 6≡

(4, 3, 5). We should comment that Eckert in his paper does not discuss an equiva-

lence relation or equivalence classes, but instead accomplishes this through a geo-

metric argument.
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Note. It is straightforward to confirm that the product of two integers, each of

which is a sum of two squares, is again a sum of two squares:

(a2+b2)(A2+B2) = (aA−bB)2+(aB+bA)2. (1)

Notice that if a2 + b2 = c2 and A2 + B2 = C2, that is, if (a, b, c) and (A, B, C) are

Pythagorean triples, then this equation suggests a way to make a new Pythagorean

triple. Based on this observation, we define a binary operation that produces a

Pythagorean triple from two given Pythagorean triples. We’ll put a geometric

interpretation on this process below.

Definition. Define the binary operation (which we denote as “+”) on the set of

P of equivalence classes of Pythagorean triples as

(a, b, c) + (A, B, C) =

 (aA− bB, bA + aB, cC) when aA− bB > 0

(bA + aB, bB − aA, cC) whenaA− bB ≤ 0

Note. If we consider (ka, kb, kc) and (KA, KB,KC) as non-primitive Pythagorean

triples with (ka, kb, kc) ≡ (a, b, c) and (KA, KB,KC) ≡ (A, B, C), then we have

(ka, kb, kc) + (KA, KB,KC) ≡ (a, b, c) + (A, B, C). That is, + is well defined.

Note. In order to make a group, we need the binary operation to be associative, we

need an identity, and each element must have an inverse. We add the equivalence

class containing (1, 0, 1) to P and notice that for (a, b, c), (A, B, C) ∈ P we have

(a, b, c) + (1, 0, 1) = (1a− 0b, 1b + 0a, 1c) = (a, b, c)
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and (1, 0, 1) + (A, B, C) = (1A− 0B, 0B + 1A, 1C) = (A, B, C).

So (1, 0, 1) is a left and right identity. Notice that if we included the equivalence

class containing triple (0, 1, 1), then we would have (a, b, c)+(0, 1, 1) = (0b+1a, 1b−

0a, 1c = (a, b, c) and (0, 1, 1) + (A, B, C) = (1A + 0B, 1B − 0A, 1C) = (A, B, C)

and this would also be an identity under +; but we do not include this triple and

the identity is unique. We also have

(A, B, C) + (a, b, c) =

 (Aa−Bb,Ba + Ab, Cc) when Aa−Bb > 0

(Ba + Ab, Bb− Aa, Cc) when Aa−Bb ≤ 0

=

 (aA− bB, bA + aB, cC) when aA− bB > 0

(bA + aB, bB − aA, cC) when aA− bB ≤ 0.

That is, (a, b, c) + (A, B, C) = (A, B, C) + (a, b, c) and so the binary operation

is commutative. Notice that for any (a, b, c) ∈ P, we also have (b, a, c) ∈ P (as

ordered triples, these are distinct), and

(a, b, c)+(b, a, c) = (bb+aa, ba−ab, cc) = (a2+b2, 0, c2) ≡ (1, 0, 1), so that the inverse

under + of (a, b, c) is (b, a, c). We could establish associativity computationally

(though it will be tedious), but instead we now make a geometric observation and

argue associativity from this geometric interpretation (as Eckert does in his paper).

Note. Suppose (a, b, c) is a Pythagorean triple (or the triple (1, 0, 1)). Consider

the complex number z = a + ib, where a > 0 and b ≥ 0 (notice that a and b

play different roles here; this will ultimately be related to the fact that, in the

associated Pythagorean triples, we distinguish between (a, b, c) and (b, a, c)). Then

the modulus of z is |z| = |a + ib| =
√

a2 + c2 = c. Then z is in the (open)

first quadrant of the complex plane C, or z = a is a positive real number. If we
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“normalize” z and consider the complex number z/|z| of modulus 1, then we get

z/|z| = (a/c) + i(b/c). Now every complex number of modulus 1 is of the form

eiα, where α is an argument of the complex number. Since z/|z| is in the open

first quadrant of C or is a positive real number, then we can choose α to satisfy

0 ≤ α < π/2. For material on the behavior of complex numbers, see my online

notes for Complex Variables (MATH 4337/5337). So if (A, B, C) is a Pythagorean

triple (or the triple (1, 0, 1)) then we can similarly consider the complex number

w = A + iB of modulus C, and write w/|w| = (A/C) + i(B/C) = eiβ where

0 ≤ β < π/2. By properties of the complex exponential function, we then have:

z

|z|
w

|w|
= eiαeiβ = ei(α+β) =

(
a

c
+ i

b

c

) (
A

C
+ i

B

C

)
=

aA− bB

cC
+ i

aB + bA

cC
.

See Figure 1.

Figure 1. From Eckert’s “The Group of Primitive Pythagorean Triangles”

Note. Notice that the complex number Z =
aA− bB

cC
+ i

aB + bA

cC
may have a 0

or negative real part and so may not lie in the open first quadrant or along the

positive real axis. We do know that (aA − bB)2 + (aB + bA)2 = (cC)2, either

because the complex number Z is of modulus 1 or by equation (1) above. So we

know that we can make a Pythagorean triple out of either aA − bB, aB + bA, cC

https://faculty.etsu.edu/gardnerr/5337/notes.htm
https://faculty.etsu.edu/gardnerr/5337/notes.htm
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or bB − aA, aB + bA, cC. By our definition of + we take the Pythagorean triple

(aA− bB, bA+aB, cC) if aA− bB > 0, and (bA+aB, bB−aA, cC) if aA− bB ≤ 0.

But this means that when aA − bB ≤ 0, we are modifying the complex number

Z =
aA− bB

cC
+ i

aB + bA

cC
(which lies in the open second quadrant of along the

positive imaginary axis) to the new complex number
aB + bA

cC
+ i

bB − aA

cC
. That

is, we are replacing Z with −iZ; notice that with Z = Re(Z) + iIm(Z) we have

−iZ = −i(Re(Z) + iIm(Z)) = Im(Z)− iRe(Z)),

so that this new complex number lies in the open first quadrant or along the positive

real axis. Geometrically, this corresponds to subtracting π/2 from the argument of

Z. Notice that if an argument of Z is γ so that Z = eiγ = cos γ + i sin γ, then we

have

−iZ = −ieiγ = −i(cos(γ) + i sin(γ))

= sin γ − i cos γ = cos(γ − π/2) + i sin(γ − π/2),

since by the the difference formulae cos(α − β) = cos α cos β + sin α sin β and

sin(α − β) = sin α cos β − cos α sin β imply that cos(γ − π/2) = cos γ cos π/2 +

sin γ sin π/2 = sin γ and sin(γ − π/2) = sin γ cos π/2 − cos γ sin π/2 = − cos γ (we

can also justify this claim using the fact that an argument of −i is −π/2).

Note. So we can interpret (a, b, c)+(A, B, C) in P as multiplying the modulus-one

complex numbers (a/c)+ i(b/c) and (A/C)+ i(B/C), reducing the argument of the

resulting product modulo π/2, and converting back to a Pythagorean triple with

third entry cC. As an example, consider (3, 4, 5) + (5, 12, 13). We consider
3

5
+ i

4

5

and
5

13
+ i

12

13
, which produce the product −33

65
+ i

56

65
. But the product is in the
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second quadrant (that is, the argument of the product is greater than π/2). We

next subtract π/2 from the argument of the product (or shuffle around the real

and imaginary parts) to get
56

65
+ i

33

65
. So (3, 4, 5) + (5, 12, 13) = (56, 33, 65). See

Figure 2.

Figure 2. From Eckert’s “The Group of Primitive Pythagorean Triangles”

Note. Notice that we can associate Pythagorean triple (a, b, c) with modulus-one

complex number eiα where α = cos−1(a/c). Conversely we can associate com-

plex number eiα, where cos α = a/c for some a, c ∈ N ∪ {0} such that c2 − a2

is a perfect square, with the Pythagorean triple (a,
√

c2 − a2, c). So if (a1, b1, c1),

(a2, b2, c2), and (a3, b3, c3) are Pythagorean triples which under this association

are associated with the modulus-one complex numbers eiα1, eiα2, and eiα3, respec-

tively, then ((a1, b1, c1)+(a2, b2, c2))+(a3, b3, c3) is associated with (eiα1eiα2)(eiα3) =

ei(α1+α2+α3 and (a1, b1, c1)+((a2, b2, c2)+(a3, b3, c3)) is associated with eiα1(eiα2eiα3) =

ei(α1+α2+α3. It follows that

((a1, b1, c1) + (a2, b2, c2)) + (a3, b3, c3) = (a1, b1, c1) + ((a2, b2, c2)) + (a3, b3, c3)),

so that we have associativity of +. Therefore, P is a commutative group under +.
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Note. Consider the group of elements [0, π/2) with the binary operation of addition

modulo π/2. With the “association” of the previous note, we see that we can map

the group P into the group [0, π/2) under addition modulo π/2 (in the process,

we go “through” the modulus-one complex numbers described above). So P is

isomorphic to a subgroup of [0, π/2).

Note. Since we treat P as an additive group, then we denote the sum of an element

(a, b, c) with itself n times as n(a, b, c):

n(a, b, c) = (a, b, c) + (a, b, c) + · · ·+ (a, b, c)︸ ︷︷ ︸
n times

.

This is not to be confused with the idea above involving the equivalence relation.

Here, the coefficient represents repeated addition. For −n a negative integer, we

have:

−n(a, b, c) = (b, a, c) + (b, a, c) + · · ·+ (b, a, c)︸ ︷︷ ︸
n times

.

For n = 0, we take n(a, b, c) = 0(a, b, c) = (1, 0, 1) (the identity in P). We can now

consider the subgroup of P generated by an element of P:

〈(a, b, c)〉 = {n(a, b, c) | n ∈ Z}.

Notice that 〈(a, b, c)〉 = 〈(b, a, c)〉. Eckert gives an argument that each element of

P, other than the identity (1, 0, 1), generates an infinite cyclic subgroup (Eckert’s

argument is geometric and based on the irrationality of π).
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Definition. In an additive group with identity e, the order of an element a is the

smallest positive integer n such that na =. If no such n exists, then a is of infinite

order. One can show that in a commutative group G, the set of elements of finite

order form a subgroup of G (see Exercise II.11.39 in John B. Fraleigh’s A First

Course In Abstract Algebra, 7th Edition (Addison-Wesley (2003)). This group is

the torsion subgroup of G. A commutative group is torsion free if the identity e is

the only element of finite order.

Definition. For X a subset of commutative group G, if each nonidentity element

a in G can be expressed uniquely (up to order of summands) in the form a =

n1x1 + n2x2 + · · · + nrxr for ni 6= 0 in Z and distinct xi ∈ X, then G is a free

abelian group and X is a basis for the group. (See my online notes for Introduction

to Modern Algebra 2 [MATH 4137/5137] on Section VII.38. Free Abelian Groups).

Note. Eckert proves that P is a free abelian group and gives a basis for the group

in the following result.

Proposition of Eckert. The group P is a free abelian group which has as a basis

X = {a, b, p) | p prime, p ≡ 1(mod 4), and a > b}.

https://faculty.etsu.edu/gardnerr/4127/notes/VII-38.pdf
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Note. Using the representation of the elements of P in terms of the basis given

in his proposition, Eckert is able to count the number of primitive Pythagorean

triangles with the same hypotenuse, as follows.

Corollary of Eckert. The number of primitive Pythagorean triangles with the

same hypotenuse c = pn1
1 pn2

2 · · · pnk

k is 2k. Equivalently, the number of primitive

Pythagorean triples of the form (a, b, c) where a2 + b2 = c2 and c = pn1
1 pn2

2 · · · pnk

k is

2k.
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